Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Periodontal Res ; 59(2): 395-407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311599

RESUMEN

OBJECTIVE: The study aimed to investigate the change of amyloid precursor protein (APP) processing and amyloid ß (Aß) metabolites in linking periodontitis to Alzheimer's disease (AD). BACKGROUND: Aß is one of the main pathological features of AD, and few studies have discussed changes in its expression in peripheral tissues or analyzed the relationship between the peripheral imbalance of Aß production and clearance. METHODS: A murine model of periodontitis was established by oral infection with Porphyromonas gingivalis (P. gingivalis). Micro-computed tomography (Micro-CT) was used to observe the destruction of the alveolar bone. Nested quantitative polymerase chain reaction (qPCR) was used to measure small quantities of P.gingivalis DNA in different tissues. Behavioral experiments were performed to measure cognitive function in the mice. The mRNA levels of TNF-α, IL-6, IL-8, RANKL, OPG, APP695, APP751, APP770, and BACE1 in the gingival tissues or cortex were detected by RT-PCR. The levels of Aß1-40 and Aß1-42 in gingival crevicular fluid (GCF) and plasma were tested by ELISA. RESULTS: P. gingivalis oral infection was found to cause alveolar bone resorption and impaired learning and memory. P.gingivalis DNA was detected in the gingiva, blood and cortex of the P.gingivalis group by nested qPCR (p < .05). The mRNA expression of TNF-α, IL-6, IL-8, RANKL/OPG, and BACE1 in the gingival tissue was significantly higher than that in the control group (p < .05). Similarly, upregulated mRNA levels of APP695 and APP770 were observed in the gingival tissuses and cortex of the P. gingivalis group (p < .05). The levels of Aß1-40 and Aß1-42 in the GCF and plasma of the P. gingivalis group were significantly higher than those in the control group (p < .05). CONCLUSION: P. gingivalis can directly invade the brain via hematogenous infection. The invasion of P. gingivalis could trigger an immune response and lead to an imbalance between Aß production and clearance in peripheral tissues, which may trigger an abnormal Aß metabolite in the brain, resulting in the occurrence and development of AD.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Ratones , Animales , Precursor de Proteína beta-Amiloide/genética , Porphyromonas gingivalis/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides/metabolismo , Factor de Necrosis Tumoral alfa , Modelos Animales de Enfermedad , Microtomografía por Rayos X , Interleucina-6 , Interleucina-8 , Ácido Aspártico Endopeptidasas , Periodontitis/metabolismo , ARN Mensajero/análisis , ADN
2.
Oral Dis ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923260

RESUMEN

OBJECTIVES: To investigate the correlation between periodontitis and cerebral small vessel disease (CSVD) from the clinical and microbiological aspects. SUBJECTS AND METHODS: Periodontitis patients (CP group, n = 31) and CSVD patients (CSVD group, n = 30) were examined for neurological and periodontal condition. Subgingival plaque was collected and performed using 16S rRNA sequencing. Logistic regression and LASSO regression were used to analyze the periodontal parameters and subgingival microbiota related to CSVD, respectively. Inflammatory factors in gingival crevicular fluid (GCF) were also detected and compared between the two groups. RESULTS: Clinical attachment level (CAL), teeth number and plaque index demonstrated a significant difference between CP and CSVD group, meanwhile, CAL was independently associated with CSVD. Besides, the microbial richness and composition were distinct between two groups. Five genera related to periodontal pathogens (Treponema, Prevotella, Streptococcus, Fusobacterium, Porphyromonas) were screened out by LASSO regression, suggesting a potential association with CSVD. Finally, the levels of inflammatory factors in GCF were statistically higher in CSVD group than those in CP group. CONCLUSIONS: Cerebral small vessel disease patients demonstrated worse periodontal condition, meanwhile the interaction between microbiota dysbiosis and host factors (inflammation) leading to a better understanding of the association between periodontitis and CSVD.

3.
Oral Dis ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923332

RESUMEN

OBJECTIVES: Porphyromonas gingivalis-LPS regulated bone metabolism by triggering dysfunction of osteoblasts directly, and affecting activity of osteoclasts through intracellular communication. Exosome, as the mediator of intercellular communication, was important vesicle to regulate osteogenesis and osteoclastogenesis. This research was designed for investigating the mechanism of BMSCs-EXO in modulating osteoclastic activity under the P. gingivalis-LPS. MATERIALS AND METHODS: The cytotoxicity and osteogenic effects of P. gingivalis-LPS on BMSCs was evaluated, and then osteoclastic activity of RAW264.7 co-cultured with exosomes was detected. Besides, Affymetrix miRNA array and luciferase reporter assay were used to identify the target exosomal miRNA signal pathway. RESULTS: BMSCs' osteogenic differentiation and proliferation were decreased under 1 and 10 µg/mL P. gingivalis-LPS. Osteoclastic-related genes and proteins levels were promoted by P. gingivalis-LPS-stimulated BMSCs-EXO. Based on the miRNA microarray analysis, exosomal miR-151-3p was lessened in BMExo-LPS group, which facilitated osteoclastic differentiation through miR-151-3p/PAFAH1B1. CONCLUSIONS: Porphyromonas gingivalis-LPS could regulated bone metabolism by inhibiting proliferation and osteogenesis of BMSCs directly. Also, P. gingivalis-LPS-stimulated BMSCs-EXO promoted osteoclastogenesis via activating miR-151-3p/PAFAH1B1 signal pathway.

4.
Oral Dis ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934473

RESUMEN

OBJECTIVES: The purpose of this study was to determine whether indoxyl sulfate (IS) is involved in alveolar bone deterioration and to elucidate the mechanism underlying alveolar bone loss in chronic kidney disease (CKD) patients. MATERIALS AND METHODS: Mice were divided into the control group, CP group (ligature-induced periodontitis), CKD group (5/6 nephrectomy), and CKD + CP group. The concentration of IS in the gingival crevicular fluid (GCF) was determined by HPLC. The bone microarchitecture was evaluated by micro-CT. MC3T3-E1 cells were stimulated with IS, and changes in mitochondrial morphology and ferroptosis-related factors were detected. RT-PCR, western blotting, alkaline phosphatase activity assays, and alizarin red S staining were utilized to assess how IS affects osteogenic differentiation. RESULTS: Compared with that in the other groups, alveolar bone destruction in the CKD + CP group was more severe. IS accumulated in the GCF of mice with CKD. IS activated the aryl hydrocarbon receptor (AhR) in vitro, inhibited MC3T3-E1 cell osteogenic differentiation, caused changes in mitochondrial morphology, and activated the SLC7A11/GPX4 signaling pathway. An AhR inhibitor attenuated the aforementioned changes induced by IS. CONCLUSIONS: IS activated the AhR/SLC7A11/GPX4 signaling pathway, inhibited osteogenesis in MC3T3-E1 cells, and participated in alveolar bone resorption in CKD model mice through ferroptosis.

5.
J Neuroinflammation ; 20(1): 153, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370108

RESUMEN

BACKGROUND: The existence of an interconnected mechanism between cognitive disorders and periodontitis has been confirmed by mounting evidence. However, the role of age or sex differences in this mechanism has been less studied. This study aims to investigate sex and age differences in the characterization of periodontal bone tissue, immune state and cognitive function in amyloid precursor protein/presenilin 1(APP/PS1) murine model of Alzheimer's disease (AD). METHODS: Three- and twelve-month-old male and female APP/PS1 transgenic mice and wild-type (WT) littermates were used in this study. The Morris water maze (MWM) was used to assess cognitive function. The bone microarchitecture of the posterior maxillary alveolar bone was evaluated by microcomputed tomography (micro-CT). Pathological changes in periodontal bone tissue were observed by histological chemistry. The proportions of helper T cells1 (Th1), Th2, Th17 and regulatory T cells (Tregs) in the peripheral blood mononuclear cells (PBMCs) and brain samples were assessed by flow cytometry. RESULTS: The learning ability and spatial memory of 12-month-old APP/PS1 mice was severely damaged. The changes in cognitive function were only correlated with age and genotype, regardless of sex. The 12-month-old APP/PS1 female mice exhibited markedly periodontal bone degeneration, evidenced by the decreased bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and bone mineral density (BMD), and the increased trabecular separation (Tb.Sp). The altered periodontal bone microarchitecture was associated with genotype, age and females. The flow cytometry data showed the increased Th1 and Th17 cells and the decreased Th2 cells in the brain and PBMC samples of 12-month-old APP/PS1 mice, compared to age- and sex-matched WT mice. However, there was no statistical correlation between age or sex and this immune state. CONCLUSIONS: Our data emphasize that age and sex are important variables to consider in evaluating periodontal bone tissue of APP/PS1 mice, and the cognitive impairment is more related to age. In addition, immune dysregulation (Th1, Th2, and Th17 cells) was found in the brain tissue and PBMCs of APP/PS1 mice, but this alteration of immune state was not statistically correlated with sex or age.


Asunto(s)
Enfermedad de Alzheimer , Resorción Ósea , Ratones , Femenino , Masculino , Animales , Enfermedad de Alzheimer/patología , Leucocitos Mononucleares/patología , Presenilina-1/genética , Modelos Animales de Enfermedad , Microtomografía por Rayos X , Caracteres Sexuales , Precursor de Proteína beta-Amiloide/genética , Cognición/fisiología , Ratones Transgénicos , Huesos/patología , Resorción Ósea/complicaciones , Péptidos beta-Amiloides
6.
J Clin Periodontol ; 50(7): 964-979, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36940707

RESUMEN

AIM: To investigate whether silibinin impacts diabetic periodontitis (DP) via mitochondrial regulation. MATERIALS AND METHODS: In vivo, rats were divided into control, diabetes, DP and DP combined with silibinin groups. Diabetes and periodontitis were induced by streptozocin and silk ligation, respectively. Bone turnover was evaluated by microcomputed tomography, histology and immunohistochemistry. In vitro, human periodontal ligament cells (hPDLCs) were exposed to hydrogen peroxide (H2 O2 ) with or without silibinin. Osteogenic function was analysed by Alizarin Red and alkaline phosphatase staining. Mitochondrial function and biogenesis were investigated by mitochondrial imaging assays and quantitative polymerase chain reaction. Activator and lentivirus-mediated knockdown of peroxisome proliferator-activated receptor gamma-coactivator 1-alpha (PGC-1α), a critical regulator of mitochondria biogenesis, was used to explore the mitochondrial mechanisms. RESULTS: Silibinin attenuated periodontal destruction and mitochondrial dysfunction and enhanced mitochondrial biogenesis and PGC-1α expression in rats with DP. Meanwhile, silibinin promoted cell proliferation, osteogenesis and mitochondrial biogenesis and increased the PGC-1α level in hPDLCs exposed to H2 O2 . Silibinin also protected PGC-1α from proteolysis in hPDLCs. Furthermore, both silibinin and activator of PGC-1α ameliorated cellular injury and mitochondrial abnormalities in hPDLCs, while knockdown of PGC-1α abolished the beneficial effect of silibinin. CONCLUSIONS: Silibinin attenuated DP through the promotion of PGC-1α-dependent mitochondrial biogenesis.


Asunto(s)
Diabetes Mellitus Tipo 1 , Factores de Transcripción , Ratas , Animales , Humanos , Factores de Transcripción/metabolismo , Silibina/farmacología , Silibina/uso terapéutico , Biogénesis de Organelos , Microtomografía por Rayos X , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
7.
BMC Nephrol ; 24(1): 71, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964507

RESUMEN

OBJECTIVE: The microinflammatory state can influence the occurrence of dialysis-related complications in dialysis patients. Chronic periodontitis (CP), in which plaque biofilm is considered to be the initiating factor, is a chronic infectious disease in the oral cavity. It is still uncertain whether CP affects the microinflammatory state in peritoneal dialysis (PD) and the occurrence of dialysis-related complications. The purpose of this study was to investigate the correlation between the periodontal index and clinical parameters in peritoneal dialysis patients with CP and dialysis-related complications, including peritoneal dialysis-associated peritonitis (PDAP) and cardiovascular and cerebrovascular events (CCEs). METHODS: This was a retrospective cohort study, and 76 patients undergoing PD were enrolled. Clinical parameters, the occurrence of PD-related complications and periodontitis-related indicators, including the gingival index (GI), plaque index (PLI), probing depth (PPD) and clinical attachment loss (CAL), were collected. Correlation analysis was used to explore the correlation between periodontal or clinical parameters and the occurrence of PD-related complications. RESULTS: All the patients had different degrees of periodontitis (mild 9.2%, moderate 72.4%, severe 18.4%); PPD was inversely related to serum albumin (r = - 0.235, p = 0.041); CAL has a positive correlation with serum C-reactive protein (rs = 0.242, p = 0.035); PLI was positively correlated with serum calcium (r = 0.314, p = 0.006). ANOVA, multivariate logistic regression analysis and Kaplan-Meier Survival curve suggested that CAL was a risk factor for the occurrence of PDAP. There was no correlation between periodontal parameters and CCEs or poor prognosis. CONCLUSION: CP is universally present in PD patients, and the presentation of periodontitis influences the systemic inflammatory state in PD patients. CP is a risk factor for PDAP.


Asunto(s)
Periodontitis Crónica , Fallo Renal Crónico , Diálisis Peritoneal , Humanos , Periodontitis Crónica/epidemiología , Periodontitis Crónica/complicaciones , Estudios Retrospectivos , Prevalencia , Diálisis Renal , Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/terapia , Diálisis Peritoneal/efectos adversos
8.
BMC Oral Health ; 23(1): 800, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884939

RESUMEN

BACKGROUND: Gingival papilla defects, which cause an unpleasant appearance and involve the upper anterior teeth, may be triggered by several factors. Several noninvasive and invasive techniques have been proposed for gingival papilla reconstruction. The combination of interproximal tunneling and customized connective tissue grafts (CTGs) has shown promise in papilla augmentation. However, due to the narrowness and limited blood supply of the gingival papilla, the long-term outcomes of these techniques remain unpredictable. Therefore, achieving tension-free coronal advancement of the interdental papilla and proper placement of the CTG is crucial for successful long-term outcomes and could provide widely applicable methods for papilla augmentation. CASE REPORT: In this study, we enrolled three patients with gingival papilla defects in the maxillary anterior teeth. For reconstruction, we proposed a modified interproximal tunneling (MIPT) technique combined with a CTG. A crucial modification based on previous studies involved adding a cutback incision to the base of the palatal vertical incision, resulting in tension-free healing. Additionally, the CTG was sutured upright to further enhance the height of the gingiva papilla. To evaluate the efficacy of the MIPT technique, the clinical parameters-including the Jemt papilla index and the distance from the tip of the papilla to the interproximal contact point-were examined using a periodontal probe (UNC15, Hu-friedy) at baseline and 12 months after surgery. All three patients achieved satisfactory papilla reconstruction 12 months after the surgery. These three cases were used to evaluate the efficacy of the MIPT technique combined with the customized CTG. An average increase in the Jemt papilla score from 1.6 to 2.8 and a reduction in the distance from the papilla tip to the contact point of adjacent teeth from 2 mm to 0.08 mm were observed 12 months after surgery. CONCLUSION: The preliminary results confirmed that this technique holds promise for gingival papilla augmentation between tooth/tooth or tooth/implant.


Asunto(s)
Implantes Dentales , Diente , Humanos , Encía/cirugía , Cicatrización de Heridas , Tejido Conectivo/trasplante
9.
J Clin Periodontol ; 49(10): 1067-1078, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35713233

RESUMEN

AIM: Periodontitis (PD) is the sixth most prevalent disease around the world and is involved in the development and progression of multiple systemic diseases. Previous studies have reported that PD may aggravate liver injuries. The objective of this study was to investigate whether and how PD affects liver fibrosis. MATERIALS AND METHODS: Ligature-induced PD (LIP) was induced in male C57/B6J mice, and sub-gingival plaques (PL) from patients with PD were applied to mouse teeth. Liver fibrosis was induced by carbon tetrachloride (CCl4 ) injection. The mice were randomly divided into six groups: Oil, Oil+LIP, Oil+LIP+PL, CCl4 , CCl4 +LIP, and CCl4 +LIP+PL. Alveolar bone resorption was evaluated by methylene blue staining. Hepatic function was analysed by serum alanine aminotransferase and hepatic hydroxyproline. Picrosirius red and α-smooth muscle actin (SMA) staining were used to evaluate the fibrotic area. RNA sequencing and quantitative RT-PCR were used to measure gene expression. Western blotting was used to measure protein levels. Flow cytometry was used to analyse the accumulation of immune cells. Mouse microbiota were analysed using 16S rRNA gene sequencing. RESULTS: Mice in the CCl4 +LIP+PL group displayed higher serum alanine aminotransferase and hepatic hydroxyproline as well as more Picrosirius red-positive and α-SMA-positive areas in liver samples than those of the CCl4 group, suggesting that PD (LIP+PL) aggravated CCl4 -induced hepatic dysfunction and liver fibrosis. Consistently, the expression of fibro-genic genes and the protein levels of transforming growth factor ß were much higher in the CCl4 +LIP+PL group than in the CCl4 group. Flow cytometry revealed that PD increased the accumulation of immune cells, including Kupffer cells, B cells, and Th17 cells, in the liver of mice with CCl4 treatment. PD also increased the expression of inflammatory genes and activated pro-inflammatory nuclear factor-kappa B pathway in the livers of CCl4 -injected mice. Moreover, PD altered both oral and liver microbiota in CCl4 -injected mice. CONCLUSIONS: PD aggravates CCl4 -induced hepatic dysfunction and fibrosis in mice, likely through the increase of inflammation and alteration of microbiota in the liver.


Asunto(s)
Cirrosis Hepática , Microbiota , Periodontitis , Actinas , Alanina Transaminasa , Animales , Compuestos Azo , Tetracloruro de Carbono/efectos adversos , Hidroxiprolina/metabolismo , Cirrosis Hepática/inducido químicamente , Masculino , Azul de Metileno , Ratones , Periodontitis/complicaciones , ARN Ribosómico 16S , Factor de Crecimiento Transformador beta/metabolismo
10.
J Neuroinflammation ; 18(1): 80, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757547

RESUMEN

BACKGROUND: Increasing evidence suggests a causal link between periodontitis and cognitive disorders. Systemic inflammation initiated by periodontitis may mediate the development of cognitive impairment. Our study aims to investigate the effect of ligature-induced periodontitis on cognitive function and the role of signal transducers and activators of transcription 3 (STAT3) in this process. MATERIALS AND METHODS: Ligature-induced periodontitis was established, and the rats were treated intraperitoneally with/without the pSTAT3 inhibitor cryptotanshinone (CTS). Alveolar bone resorption and periodontal inflammation were detected by micro-computed tomography analysis and histopathological evaluation. Locomotor activity and cognitive function were evaluated by the open field test and the Morris water maze test, respectively. The activation of microglia and astrocytes in the hippocampus and cortex was assessed by immunohistochemistry (IHC). The expression of interleukins (IL-1ß, IL-6, IL-8, IL-21) in both the periphery and cortex was evaluated by RT-PCR and ELISA. The expression of TLR/NF-κB and ROS cascades was evaluated by RT-PCR. The expression of pSTAT3 and the activation of the STAT3 signaling pathway (JAK2, STAT3, and pSTAT3) in the periodontal tissue and cortex were assessed by IHC and Western blot. The expression of amyloid precursor protein (APP) and its key secretases was evaluated by RT-PCR. The level of amyloid ß-protein (Aß) and the ratio of Aß1-40/1-42 were measured via ELISA in the plasma and cortex while IHC was used to detect the level of Aß1-42 in the brain. RESULTS: In periodontal ligature rats, significant alveolar bone resorption and local inflammatory cell infiltration were present. Apparent increases in inflammatory cytokines (IL-1ß, IL-6, IL-8, and IL-21) were detected in peripherial blood and brain. Additionally, spatial learning and memory ability was impaired, while locomotor activity was not affected. Activated microglia and astrocytes were found in the cortex and hippocampus, presenting as enlarged cell bodies and irregular protrusions. Levels of TLR/NF-kB, PPAR and ROS were altered. The STAT3 signaling pathway was activated in both the periodontal tissue and cortex, and the processing of APP by ß- and γ-secretases was promoted. The changes mentioned above could be relieved by the pSTAT3 inhibitor CTS. CONCLUSIONS: Ligature-induced periodontitis in rats resulted in systemic inflammation and further abnormal APP processing, leading to cognitive impairments. In this progress, the activation of the STAT3 signaling pathway may play an important role by increasing inflammatory load and promoting neuroinflammation.


Asunto(s)
Disfunción Cognitiva/metabolismo , Mediadores de Inflamación/metabolismo , Periodontitis/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Animales , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Inflamación/metabolismo , Inflamación/patología , Inflamación/psicología , Ligadura/efectos adversos , Masculino , Periodontitis/patología , Periodontitis/psicología , Ratas , Ratas Sprague-Dawley
11.
J Periodontal Res ; 56(3): 547-557, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33522612

RESUMEN

BACKGROUND: An increasing number of patients with chronic periodontitis (CP) have received implant restoration. However, very few studies have evaluated the probable risk indicators of implant loss in patients with CP. OBJECTIVE: The aim of this study is to evaluate implant long-term survival rates in patients with CP. The results are analyzed to discern potential risk indicators of implant loss. METHODS: A total of 1549 implants were inserted in 827 non-smokers and systemically healthy CP patients between March 2011 and March 2019. Clinical variables (age; sex; implant location; implant diameter; implant length; implant type; bone quality; bone graft, periodontal disease status, and insertion torque) were recorded. Kaplan-Meier survival curves illustrated the cumulative survival rate. The relationship between variables and implant loss was discerned by univariate analysis. Further multivariate Cox proportional hazard regression analysis was carried out for the variables with P < 0.2. RESULTS: The cumulative survival rates were 98.8% after 3 months, 97.9% after 6 months, 97.7% after 1 year, and 97.4% after 2 to 9 years. After adjusting possible confounders, the multivariable Cox regression model revealed statistically significant influences of implant location, history of bone graft, and insertion torque on implant loss. Implants with history of bone graft were more likely to loss. Implants inserted in the anterior area had a higher implant loss risk; insertion torque of <15 Newton-centimeter (Ncm) showed a relatively high risk of being lost. CONCLUSIONS: The study represented public hospital insight into long-term implant results of patients with CP. Under the premise of strict periodontal control, patients with the history of CP exhibited relatively high implant survival rate. Anterior implant location, history of bone graft, and insertion torque <15 Ncm are associated with a lower implant survival rate and could be considered at a higher risk of implant failure in patients with CP.


Asunto(s)
Pérdida de Hueso Alveolar , Implantes Dentales , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/epidemiología , Implantes Dentales/efectos adversos , Fracaso de la Restauración Dental , Estudios de Seguimiento , Humanos , No Fumadores , Estudios Retrospectivos , Tasa de Supervivencia
12.
Phys Chem Chem Phys ; 22(27): 15573-15581, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32613219

RESUMEN

Investigations relevant to ionic liquids (ILs) as antibacterial agents have drawn considerable attention. However, the high cost and potential toxicity of ILs have severely limited their extensive applications, which has motivated researchers to design inexpensive and health-benign ILs. In this work, the interactions between the hydrated zwitterionic phospholipid (POPC) bilayer and a series of hypothetical amino cation-based and acetate anion-based ILs with different counterparts were investigated using molecular dynamics (MD) simulations to predict their antibacterial abilities. The cations of the ILs were found to insert into the lipid bilayer spontaneously, especially amino cations. Reorientation of the inserted imidazolium-based cations was observed, while the inserted amino cations showed no obvious reorientation phenomena, probably because of the strong charge interactions between the positive NH3 groups of the amino cation and the negative PO4 groups of the lipid bilayer. Due to their strong affinity with water, acetate-based anions disperse better in water solution, which weakens the insertion of the cations into the lipid bilayer to some extent. The structure and dynamic properties of the lipid bilayer, such as electrostatic potential, local ordering, area per lipid, volume per lipid, bilayer thickness, and lateral diffusion, are significantly influenced by the insertion of the cations, which results in disorder of the lipid bilayer and further disruption of the activity of the cell membrane. The insights into the relationship between the structures of ILs and their antibacterial activity in this work will provide a good reference for the screening and design of less expensive, safer, and greener IL candidates as antibacterial agents.


Asunto(s)
Antibacterianos/química , Líquidos Iónicos/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , Estructura Molecular
13.
J Neuroinflammation ; 15(1): 37, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426327

RESUMEN

BACKGROUND: Porphyromonas gingivalis lipopolysaccharide (P. gingivalis-LPS) is one of the major pathogenic factors of chronic periodontitis (CP). Few reports on the correlation between P. gingivalis-LPS and cognitive function exist. Thus, the present study aimed to investigate the effects of P. gingivalis-LPS on cognitive function and the associated underlying mechanism in C57BL/6 mice. METHODS: The C57BL/6 mice were injected with P. gingivalis-LPS (5 mg kg-1) either with or without Toll-like receptor 4 (TLR4) inhibitor (TAK-242, 5 mg kg-1). After 7 days, behavioral alterations were assessed with the open field test (OFT), Morris water maze (MWM) test, and passive avoidance test (PAT). The activation of astrocytes and microglia in the cerebral cortex and hippocampus of mice was observed by immunohistochemistry. The expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-8), TLRs (TLR2, TLR3, and TLR4), and CD14 and the activation of the NF-κB signaling pathway (IRAK1, p65, and p-p65) in the cerebral cortex of the mice were evaluated by RT-PCR, ELISA, and western blot. RESULTS: The OFT showed that P. gingivalis-LPS did not affect the initiative and activity of mice. Administration of P. gingivalis-LPS significantly impaired spatial learning and memory during the MWM test and attenuated the ability of passive avoidance learning during the PAT. Both astrocytes and microglia were activated in the cortex and hippocampus. The messenger RNA (mRNA) and protein expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-8) was upregulated by P. gingivalis-LPS in the cortex. In addition, the TLR4/NF-κB signaling pathway was activated (TLR4, CD14, IRAK1, and p-p65). These effects were effectively alleviated by TAK-242. CONCLUSIONS: Administration of P. gingivalis-LPS can lead to learning and memory impairment in C57BL/6 mice. This impairment is mediated by activation of the TLR4 signaling pathway. Our study suggests that P. gingivalis-LPS-induced neuroinflammation plays an important role in cognitive impairment. It also reveals that endotoxins of periodontal pathogens could represent a risk factor for cognitive disorders.


Asunto(s)
Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Lipopolisacáridos/toxicidad , Porphyromonas gingivalis , Receptor Toll-Like 4/metabolismo , Animales , Disfunción Cognitiva/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sulfonamidas/farmacología , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/antagonistas & inhibidores
14.
J Biol Chem ; 290(4): 2007-23, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25488669

RESUMEN

The atrioventricular (AV) junction plays a critical role in chamber septation and transmission of cardiac conduction pulses. It consists of structures that develop from embryonic dorsal mesenchymal protrusion (DMP) and the embryonic AV canal. Despite extensive studies on AV junction development, the genetic regulation of DMP development remains poorly understood. In this study we present evidence that Shox2 is expressed in the developing DMP. Intriguingly, this Shox2-expressing domain possesses a pacemaker-specific genetic profile including Hcn4 and Tbx3. This genetic profile leads to nodal-like electrophysiological properties, which is gradually silenced as the AV node becomes matured. Phenotypic analyses of Shox2(-/-) mice revealed a hypoplastic and defectively differentiated DMP, likely attributed to increased apoptosis, accompanied by dramatically reduced expression of Bmp4 and Hcn4, ectopic activation of Cx40, and an aberrant pattern of action potentials. Interestingly, conditional deletion of Bmp4 or inhibition of BMP signaling by overexpression of Noggin using a Shox2-Cre allele led to a similar DMP hypoplasia and down-regulation of Hcn4, whereas activation of a transgenic Bmp4 allele in Shox2(-/-) background attenuated DMP defects. Moreover, the lack of Hcn4 expression in the DMP of mice carrying Smad4 conditional deletion and direct binding of pSmad1/5/8 to the Hcn4 regulatory region further confirm the Shox2-BMP genetic cascade in the regulation of DMP development. Our results reveal that Shox2 regulates DMP fate and development by controlling BMP signaling through the Smad-dependent pathway to drive tissue growth and to induce Hcn4 expression and suggest a temporal pacemaking function for the DMP during early cardiogenesis.


Asunto(s)
Relojes Biológicos , Proteínas Morfogenéticas Óseas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Proteínas de Homeodominio/metabolismo , Potenciales de Acción , Alelos , Animales , Apoptosis , Proteína Morfogenética Ósea 4/genética , Diferenciación Celular , Electrofisiología , Femenino , Tabiques Cardíacos/embriología , Proteínas de Homeodominio/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Fenotipo , Transducción de Señal
15.
Development ; 140(21): 4375-85, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24067353

RESUMEN

Odontoblasts and osteoblasts develop from multipotent craniofacial neural crest cells during tooth and jawbone development, but the mechanisms that specify and sustain their respective fates remain largely unknown. In this study we used early mouse molar and incisor tooth germs that possess distinct tooth-forming capability after dissociation and reaggregation in vitro to investigate the mechanism that sustains odontogenic fate of dental mesenchyme during tooth development. We found that after dissociation and reaggregation, incisor, but not molar, mesenchyme exhibits a strong osteogenic potency associated with robustly elevated ß-catenin signaling activity in a cell-autonomous manner, leading to failed tooth formation in the reaggregates. Application of FGF3 to incisor reaggregates inhibits ß-catenin signaling activity and rescues tooth formation. The lack of FGF retention on the cell surface of incisor mesenchyme appears to account for the differential osteogenic potency between incisor and molar, which can be further attributed to the differential expression of syndecan 1 and NDST genes. We further demonstrate that FGF signaling inhibits intracellular ß-catenin signaling by activating the PI3K/Akt pathway to regulate the subcellular localization of active GSK3ß in dental mesenchymal cells. Our results reveal a novel function for FGF signaling in ensuring the proper fate of dental mesenchyme by regulating ß-catenin signaling activity during tooth development.


Asunto(s)
Diferenciación Celular/fisiología , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Mesodermo/embriología , Odontogénesis/fisiología , Transducción de Señal/fisiología , Diente/embriología , Animales , Factor 3 de Crecimiento de Fibroblastos/farmacología , Galactósidos , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Indoles , Mesodermo/citología , Ratones , Microesferas , Cresta Neural/citología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , beta Catenina/metabolismo
16.
J Biol Chem ; 288(15): 10440-50, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23460641

RESUMEN

Cleft palate represents one of the most common congenital birth defects in humans. TGFß signaling, which is mediated by Smad-dependent and Smad-independent pathways, plays a crucial role in regulating craniofacial development and patterning, particularly in palate development. However, it remains largely unknown whether the Smad-independent pathway contributes to TGFß signaling function during palatogenesis. In this study, we investigated the function of TGFß activated kinase 1 (Tak1), a key regulator of Smad-independent TGFß signaling in palate development. We show that Tak1 protein is expressed in both the epithelium and mesenchyme of the developing palatal shelves. Whereas deletion of Tak1 in the palatal epithelium or mesenchyme did not give rise to a cleft palate defect, inactivation of Tak1 in the neural crest lineage using the Wnt1-Cre transgenic allele resulted in failed palate elevation and subsequently the cleft palate formation. The failure in palate elevation in Wnt1-Cre;Tak1(F/F) mice results from a malformed tongue and micrognathia, resembling human Pierre Robin sequence cleft of the secondary palate. We found that the abnormal tongue development is associated with Fgf10 overexpression in the neural crest-derived tongue tissue. The failed palate elevation and cleft palate were recapitulated in an Fgf10-overexpressing mouse model. The repressive effect of the Tak1-mediated noncanonical TGFß signaling on Fgf10 expression was further confirmed by inhibition of p38, a downstream kinase of Tak1, in the primary cell culture of developing tongue. Tak1 thus functions to regulate tongue development by controlling Fgf10 expression and could represent a candidate gene for mutation in human PRS clefting.


Asunto(s)
Linaje de la Célula , Fisura del Paladar/embriología , Embrión de Mamíferos/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Cresta Neural/embriología , Lengua/anomalías , Lengua/embriología , Animales , Fisura del Paladar/genética , Fisura del Paladar/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos/patología , Factor 10 de Crecimiento de Fibroblastos/biosíntesis , Factor 10 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Mutantes , Cresta Neural/patología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Alzheimers Res Ther ; 16(1): 41, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373985

RESUMEN

BACKGROUND: The relationship between periodontitis and Alzheimer's disease (AD) has attracted more attention recently, whereas profiles of subgingival microbiomes and gingival crevicular fluid (GCF) metabolic signatures in AD patients have rarely been characterized; thus, little evidence exists to support the oral-brain axis hypothesis. Therefore, our study aimed to characterize both the microbial community of subgingival plaque and the metabolomic profiles of GCF in patients with AD and amnestic mild cognitive impairment (aMCI) for the first time. METHODS: This was a cross-sectional study. Clinical examinations were performed on all participants. The microbial community of subgingival plaque and the metabolomic profiles of GCF were characterized using the 16S ribosomal RNA (rRNA) gene high-throughput sequencing and liquid chromatography linked to tandem mass spectrometry (LC-MS/MS) analysis, respectively. RESULTS: Thirty-two patients with AD, 32 patients with aMCI, and 32 cognitively normal people were enrolled. The severity of periodontitis was significantly increased in AD patients compared with aMCI patients and cognitively normal people. The 16S rRNA gene sequencing results showed that the relative abundances of 16 species in subgingival plaque were significantly correlated with cognitive function, and LC-MS/MS analysis identified a total of 165 differentially abundant metabolites in GCF. Moreover, multiomics Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) analysis revealed that 19 differentially abundant metabolites were significantly correlated with Veillonella parvula, Dialister pneumosintes, Leptotrichia buccalis, Pseudoleptotrichia goodfellowii, and Actinomyces massiliensis, in which galactinol, sn-glycerol 3-phosphoethanolamine, D-mannitol, 1 h-indole-1-pentanoic acid, 3-(1-naphthalenylcarbonyl)- and L-iditol yielded satisfactory accuracy for the predictive diagnosis of AD progression. CONCLUSIONS: This is the first combined subgingival microbiome and GCF metabolome study in patients with AD and aMCI, which revealed that periodontal microbial dysbiosis and metabolic disorders may be involved in the etiology and progression of AD, and the differential abundance of the microbiota and metabolites may be useful as potential markers for AD in the future.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Microbiota , Periodontitis , Humanos , Estudios Transversales , ARN Ribosómico 16S/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem
18.
J Dent ; 146: 105026, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38679134

RESUMEN

OBJECTIVES: To analyze the role of oxidative stress (OS) biomarkers in peri­implant diseases using a systematic review and meta-analysis approach. DATE: The review incorporated cross-sectional studies, randomized controlled trials, and case-control trials to evaluate the differences in OS biomarkers of peri­implant disease. SOURCES: A comprehensive literature search was conducted in electronic databases such as PubMed, Scopus, Embase, Web of Science, and CNKI, and no restrictions were applied during the search process. STUDY SELECTION: A total of 452 studies were identified, of which 18 were eligible for inclusion. Risk of bias and sensitivity analysis were assessed using Egger's test and funnel plots. RESULTS: We found that the levels of glutathione peroxidase (GSH-Px) in the peri­implant sulcus fluid (PISF) of patients with peri­implant diseases were significantly reduced (SMD = -1.40; 95 % CI = 1.70, -1.11; p < 0.001), while the levels of total myeloperoxidase (MPO) and malondialdehyde (MDA) were significantly increased (SMD = 0.46; 95 % CI = 0.12, 0.80; p = 0.008; SMD = 0.28; 95 % CI = 0.01, 0.56; p = 0.043). However, there were no significant differences of MPO concentration (SMD = 0.38; 95 % CI = -0.39, 1.15; p = 0.331) and superoxide dismutase (SOD)(SMD = -0.43; 95 % CI = -1.94, 1.07; p = 0.572) in PISF between peri­implant disease group and control group. Similarly, salivary MPO did not show significant differences (SMD = 1.62; 95 % CI = -1.01, 4.24; p = 0.227). CONCLUSIONS: Our results supported that the level of local OS biomarkers was closely related to peri­implant diseases. GSH-Px, total MPO and MDA may be PISF biomarkers with good capability to monitor the development of peri­implant disease. CLINICAL SIGNIFICANCE: This study found significant differences in the levels of local OS biomarkers (GSH-Px, total MPO, and MDA) between patients with peri­implant diseases and healthy subjects, which may be ideal candidate biomarkers for predicting and diagnosing peri­implant diseases.


Asunto(s)
Biomarcadores , Implantes Dentales , Glutatión Peroxidasa , Malondialdehído , Estrés Oxidativo , Periimplantitis , Peroxidasa , Humanos , Biomarcadores/análisis , Peroxidasa/análisis , Malondialdehído/análisis , Malondialdehído/metabolismo , Periimplantitis/metabolismo , Glutatión Peroxidasa/análisis , Glutatión Peroxidasa/metabolismo , Líquido del Surco Gingival/química
19.
Adv Sci (Weinh) ; 11(13): e2307812, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38243646

RESUMEN

Zinc (Zn)-dysprosium (Dy) binary alloys are promising biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for bone fracture healing, due to the lack of Zn-Dy alloys with tailored proper bio-mechanical and osteointegration properties for bone regeneration. A Zn-5Dy alloy with high strength and ductility and a degradation rate aligned with the bone remodeling cycle is developed. Here, mechanical stability is further confirmed, proving that Zn-5Dy alloy can resist aging in the degradation process, thus meeting the mechanical requirements of fracture fixation. In vitro cellular experiments reveal that the Zn-5Dy alloy enhances osteogenesis and angiogenesis by elevating SIRT4-mediated mitochondrial function. In vivo Micro-CT, SEM-EDS, and immunohistochemistry analyses further indicate good biosafety, suitable biodegradation rate, and great osteointegration of Zn-5Dy alloy during bone healing, which also depends on the upregulation of SIRT4-mediated mitochondrial events. Overall, the study is the first to report a Zn-5Dy alloy that exerts remarkable osteointegration properties and has a strong potential to promote bone healing. Furthermore, the results highlight the importance of mitochondrial modulation and shall guide the future development of mitochondria-targeting materials in enhancing bone fracture healing.


Asunto(s)
Aleaciones , Osteogénesis , Implantes Absorbibles , Aleaciones/química , Aleaciones/farmacología , Ensayo de Materiales , Mitocondrias/efectos de los fármacos , Zinc/química , Disprosio/química , Disprosio/farmacología , Osteogénesis/efectos de los fármacos , Sirtuinas/efectos de los fármacos , Humanos , Fracturas Óseas/tratamiento farmacológico
20.
J Oral Microbiol ; 14(1): 2055523, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368854

RESUMEN

Porphyromonas gingivalis is a keystone pathogen in periodontitis, a biofilm-mediated infection disease. This research aimed to investigate the effect of coumarin on P. gingivalis biofilm formation. We detected the antimicrobial effect on P. gingivalis planktonic growth, observed membrane structure and morphological change by TEM, and quantified membrane permeability by calcein-AM staining. The cell surface hydrophobicity, aggregation, and attachment were assessed. We also investigated different sub-MIC concentrations of coumarin on biofilm formation, and observed biofilm structureby confocal laser scanning microscopy. The biofilm-related gene expression was evaluated using real-time PCR. The results showed that coumarin inhibited P. gingivalis growth and damaged the cell morphology above 400 µM concentration. Coumarin did not affect cell surface hydrophobicity, aggregation, attachment, and the early stage of biofilm formation at sub-MIC concentrations. Still, it exhibited anti-biofilm effects for the late-stage and pre-formed biofilms dispersion. The biofilms after coumarin treatment became interspersed, and biofilm-related gene expression was downregulated. Coumarin also inhibited AI-2 activity and interacted with the HmuY protein by molecular docking analysis. Our research demonstrated that coumarin inhibited P. gingivalis biofilm formation through a quorum sensing system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA