Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Exp Dermatol ; 31(11): 1748-1760, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36320153

RESUMEN

Inflammaging is a theory of ageing which purports that low-level chronic inflammation leads to cellular dysfunction and premature ageing of surrounding tissue. Skin is susceptible to inflammaging because it is the first line of defence from the environment, particularly solar radiation. To better understand the impact of ageing and photoexposure on epidermal biology, we performed a system biology-based analysis of photoexposed face and arm, and photoprotected buttock sites, from women between the ages of 20s to 70s. Biopsies were analysed by histology, transcriptomics, and proteomics and skin surface biomarkers collected from tape strips. We identified morphological changes with age of epidermal thinning, rete ridge pathlength loss and stratum corneum thickening. The SASP biomarkers IL-8 and IL-1RA/IL1-α were consistently elevated in face across age and cis/trans-urocanic acid were elevated in arms and face with age. In older arms, the DNA damage response biomarker 53BP1 showed higher puncti numbers in basal layers and epigenetic ageing were accelerated. Genes associated with differentiation and senescence showed increasing expression in the 30s whereas genes associated with hypoxia and glycolysis increased in the 50's. Proteomics comparing 60's vs 20's confirmed elevated levels of differentiation and glycolytic-related proteins. Representative immunostaining for proteins of differentiation, senescence and oxygen sensing/hypoxia showed similar relationships. This system biology-based analysis provides a body of evidence that young photoexposed skin is undergoing inflammaging. We propose the presence of chronic inflammation in young skin contributes to an imbalance of epidermal homeostasis that leads to a prematurely aged appearance during later life.


Asunto(s)
Epidermis , Piel , Humanos , Femenino , Anciano , Adulto Joven , Adulto , Piel/metabolismo , Homeostasis , Inflamación/metabolismo , Hipoxia/metabolismo , Senescencia Celular
2.
J Invest Dermatol ; 142(6): 1670-1681.e12, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34740582

RESUMEN

Nicotinamide (NAM), a NAM adenine dinucleotide precursor, is known for its benefits to skin health. Under standard culture conditions, NAM delays the differentiation and enhances the proliferation of human primary keratinocytes, leading to the maintenance of stem cells. In this study, we investigated the effects of NAM on photoaging in two-dimensional human primary keratinocyte cultures and three-dimensional organotypic epidermal models. In both models, we found that UVB irradiation and hydrogen peroxide induced human primary keratinocyte premature terminal differentiation and senescence. In three-dimensional organotypics, the phenotype was characterized by a thickening of the granular layer expressing filaggrin and loricrin, but thinning of the epidermis overall. NAM limited premature differentiation and ameliorated senescence, as evidenced by the maintenance of lamin B1 levels in both models, with decreased lipofuscin staining and reduced IL-6/IL-8 secretion in three-dimensional models, compared to those in UVB-only controls. In addition, DNA damage observed after irradiation was accompanied by a decline in energy metabolism, whereas both effects were partially prevented by NAM. Our data thus highlight the protective effects of NAM against photoaging and oxidative stress in the human epidermis and pinpoint DNA repair and energy metabolism as crucial underlying mechanisms.


Asunto(s)
Envejecimiento de la Piel , Humanos , Queratinocitos/metabolismo , Niacinamida/farmacología , Estrés Oxidativo , Rayos Ultravioleta/efectos adversos
3.
Oncoimmunology ; 5(3): e1085146, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27141339

RESUMEN

Programmed death one (PD-1) is a well-established co-inhibitory regulator that suppresses proliferation and cytokine production of T cells. Despite remarkable progress in delineating the functional roles of PD-1 on T lymphocytes, little is known about the regulatory role of PD-1 expressed on myeloid cells such as dendritic cells (DCs). Here, we show that CD8+ T cells can be more potently activated to secrete IL-2 and IFNγ by PD-1-deficient DCs compared to wild-type DCs. Adoptive transfer of PD-1-deficient DCs demonstrated their superior capabilities in inducing antigen-specific CD8+ T cell proliferation in vivo. In addition, we provide first evidence demonstrating the existence of peripheral blood DCs and CD11c+ tumor-infiltrating myeloid cells that co-express PD-1 in patients with hepatocellular carcinoma (HCC). The existence of PD-1-expressing HCC-infiltrating DCs (HIDCs) was further supported in a mouse model of HCC. Intratumoral transfer of PD-1-deficient DCs rendered recipient mice resistant to the growth of HCC by promoting tumor-infiltrating CD8+ effector T cells to secrete perforin and granzyme B. This novel finding provides a deeper understanding of the role of PD-1 in immune regulation and has significant implications for cancer immunotherapies targeting PD-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA