Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 367: 121971, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39074433

RESUMEN

In recent years, there has been a growing interest in utilizing spinel ferrite and their nanocomposites as Fenton-like catalysts. The use of these materials offers numerous advantages, including ability to efficiently degrade pollutants and potential for long-term and repeated use facilitated by their magnetic properties that make them easily recoverable. The remarkable catalytic properties, stability, and reusability of these materials make them highly attractive for researchers. This paper encompasses a comprehensive review of various aspects related to the Fenton process and the utilization of spinel ferrite and their composites in catalytic applications. Firstly, it provides an overview of the background, principles, mechanisms, and key parameters governing the Fenton reaction, along with the role of physical field assistance in enhancing the process. Secondly, it delves into the advantages and mechanisms of H2O2 activation induced by different spinel ferrite and their composites for the removal of organic pollutants, shedding light on their efficacy in environmental remediation. Thirdly, the paper explores the application of these materials in various Fenton-like processes, including Fenon-like, photo-Fenton-like, sono-Fenton-like, and electro-Fenton-like, for the effective removal of different types of contaminants. Furthermore, it addresses important considerations such as the toxicity, recovery, and reuse of these materials. Finally, the paper presents the challenges associated with H2O2 activation by these materials, along with proposed directions for future improvements.


Asunto(s)
Compuestos Férricos , Peróxido de Hidrógeno , Hierro , Catálisis , Peróxido de Hidrógeno/química , Compuestos Férricos/química , Hierro/química , Nanocompuestos/química , Óxido de Aluminio , Óxido de Magnesio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA