Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(40): e2306761120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37756335

RESUMEN

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.


Asunto(s)
Antineoplásicos , Factor de Transcripción STAT5 , Humanos , Inmunidad Innata , Diferenciación Celular , Células Asesinas Naturales , Inflamación , Factor de Transcripción STAT4/genética
2.
Mol Cancer ; 23(1): 68, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561826

RESUMEN

Cancer progression is continuously controlled by the immune system which can identify and destroy nascent tumor cells or inhibit metastatic spreading. However, the immune system and its deregulated activity in the tumor microenvironment can also promote tumor progression favoring the outgrowth of cancers capable of escaping immune control, in a process termed cancer immunoediting. This process, which has been classified into three phases, i.e. "elimination", "equilibrium" and "escape", is influenced by several cancer- and microenvironment-dependent factors. Senescence is a cellular program primed by cells in response to different pathophysiological stimuli, which is based on long-lasting cell cycle arrest and the secretion of numerous bioactive and inflammatory molecules. Because of this, cellular senescence is a potent immunomodulatory factor promptly recruiting immune cells and actively promoting tissue remodeling. In the context of cancer, these functions can lead to both cancer immunosurveillance and immunosuppression. In this review, the authors will discuss the role of senescence in cancer immunoediting, highlighting its context- and timing-dependent effects on the different three phases, describing how senescent cells promote immune cell recruitment for cancer cell elimination or sustain tumor microenvironment inflammation for immune escape. A potential contribution of senescent cells in cancer dormancy, as a mechanism of therapy resistance and cancer relapse, will be discussed with the final objective to unravel the immunotherapeutic implications of senescence modulation in cancer.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Senescencia Celular , Sistema Inmunológico , Terapia de Inmunosupresión , Microambiente Tumoral
3.
Cancer Immunol Immunother ; 73(6): 113, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693312

RESUMEN

Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.


Asunto(s)
Neoplasias de la Mama , Senescencia Celular , Neutrófilos , Piperazinas , Piridinas , Humanos , Piperazinas/farmacología , Piridinas/farmacología , Senescencia Celular/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Neutrófilos/metabolismo , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Línea Celular Tumoral , Activación Neutrófila/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
4.
J Autoimmun ; 145: 103189, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442677

RESUMEN

OBJECTIVES: Monocyte-derived dendritic cells (DCs) are key players in the induction of inflammation, autoreactive T cell activation and loss of tolerance in rheumatoid arthritis (RA), but the precise mechanisms underlying their activation remain elusive. Here, we hypothesized that extracellular microRNAs released in RA synovial fluids may represent a novel, physiological stimulus triggering unwanted immune response via TLR8-expressing DC stimulation. METHODS: Human monocyte-derived DCs were stimulated with a mixture of GU-rich miRNAs upregulated in RA tissues and released in synovial fluids (Ex-miRNAs). Activation of DCs was assessed in terms of NF-κB activation by Western blot, cytokine production by ELISA, T cell proliferation and polarization by allogeneic mixed lymphocyte reaction. DC differentiation into osteoclasts was evaluated in terms of tartrate-resistant acid phosphatase production and formation of resorption pits in dentine slices. Induction of joint inflammation in vivo was evaluated using a murine model of DC-induced arthritis. TLR7/8 involvement was assessed by specific inhibitors. RESULTS: Ex-miRNAs activate DCs to secrete TNFα, induce joint inflammation, start an early autoimmune response and potentiate the differentiation of DCs into aggressive osteoclasts. CONCLUSIONS: This work represents a proof of concept that the pool of extracellular miRNAs overexpressed in RA joints can act as a physiological activator of inflammation via the stimulation of TLR8 expressed by human DCs, which in turn exert arthritogenic functions. In this scenario, pharmacological inhibition of TLR8 might offer a new therapeutic option to reduce inflammation and osteoclast-mediated bone destruction in RA.


Asunto(s)
Artritis Reumatoide , Diferenciación Celular , Células Dendríticas , MicroARNs , Osteoclastos , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , MicroARNs/genética , Receptor Toll-Like 8/metabolismo , Osteoclastos/metabolismo , Osteoclastos/inmunología , Animales , Receptor Toll-Like 7/metabolismo , Ratones , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Líquido Sinovial/inmunología , Líquido Sinovial/metabolismo , Células Cultivadas , Femenino , Masculino
5.
Proteins ; 90(9): 1714-1720, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35437825

RESUMEN

Chemokine (C-C motif) receptor-like 2 (CCRL2), is a seven transmembrane receptor closely related to the chemokine receptors CCR1, CCR2, CCR3, and CCR5. Nevertheless, CCRL2 is unable to activate conventional G-protein dependent signaling and to induce cell directional migration. The only commonly accepted CCRL2 ligand is the nonchemokine chemotactic protein chemerin (RARRES2). The chemerin binding to CCLR2 does induce leukocyte chemotaxis, yet, genetic targeting of CCRL2 was shown to modulate the inflammatory response in different experimental models. This mechanism was shown to be crucial for lung dendritic cell migration, neutrophil recruitment, and Natural Killer cell-dependent immune surveillance in lung cancer. To gain more insight in the interactions involved in the CCRL2-chemerin, the binding complexes were generated by protein-protein docking, then submitted to accelerated molecular dynamics. The obtained trajectories were inspected by principal component analyses followed by kernel density estimation to identify the ligand-receptor regions most frequently involved in the binding. To conclude, the reported analyses led to the identification of the putative hot-spot residues involved in CCRL2-chemerin binding.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Simulación de Dinámica Molecular , Quimiocinas/genética , Quimiocinas/metabolismo , Ligandos , Receptores CCR/genética , Receptores CCR/metabolismo
6.
Eur J Immunol ; 51(11): 2568-2575, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34347289

RESUMEN

Type 1 innate lymphoid cells (ILC1) are tissue-resident lymphocytes that provide early protection against bacterial and viral infections. Discrete transcriptional states of ILC1 have been identified in homeostatic and pathological contexts. However, whether these states delineate ILC1 with different functional properties is not completely understood. Here, we show that liver ILC1 are heterogeneous for the expression of distinct effector molecules and surface receptors, including granzyme A (GzmA) and CD160, in mice. ILC1 expressing high levels of GzmA are enriched in the liver of adult mice, and represent the main hepatic ILC1 population at birth. However, the heterogeneity of GzmA and CD160 expression in hepatic ILC1 begins perinatally and increases with age. GzmA+ ILC1 differ from NK cells for the limited homeostatic requirements of JAK/STAT signals and the transcription factor Nfil3. Moreover, by employing Rorc(γt)-fate map (fm) reporter mice, we established that ILC3-ILC1 plasticity contributes to delineate the heterogeneity of liver ILC1, with RORγt-fm+ cells skewed toward a GzmA- CD160+ phenotype. Finally, we showed that ILC1 defined by the expression of GzmA and CD160 are characterized by graded cytotoxic potential and ability to produce IFN-γ. In conclusion, our findings help deconvoluting ILC1 heterogeneity and provide evidence for functional diversification of liver ILC1.


Asunto(s)
Hígado/citología , Hígado/inmunología , Subgrupos Linfocitarios/citología , Linfocitos/citología , Animales , Antígenos CD/metabolismo , Proteínas Ligadas a GPI/metabolismo , Granzimas/metabolismo , Inmunidad Innata/inmunología , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Receptores Inmunológicos/metabolismo
7.
J Transl Med ; 20(1): 203, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538539

RESUMEN

BACKGROUND: Tanimilast is a novel and selective inhaled inhibitor of phosphodiesterase-4 in advanced clinical development for chronic obstructive pulmonary disease (COPD). Tanimilast is known to exert prominent anti-inflammatory activity when tested in preclinical experimental models as well as in human clinical studies. Recently, we have demonstrated that it also finely tunes, rather than suppressing, the cytokine network secreted by activated dendritic cells (DCs). This study was designed to characterize the effects of tanimilast on T-cell polarizing properties of DCs and to investigate additional functional and phenotypical features induced by tanimilast. METHODS: DCs at day 6 of culture were stimulated with LPS in the presence or absence of tanimilast or the control drug budesonide. After 24 h, DCs were analyzed for the expression of surface markers of maturation and activation by flow cytometry and cocultured with T cells to investigate cell proliferation and activation/polarization. The regulation of type 2-skewing mediators was investigated by real-time PCR in DCs and compared to results obtained in vivo in a randomized placebo-controlled trial on COPD patients treated with tanimilast. RESULTS: Our results show that both tanimilast and budesonide reduced the production of the immunostimulatory cytokine IFN-γ by CD4+ T cells. However, the two drugs acted at different levels since budesonide mainly blocked T cell proliferation, while tanimilast skewed T cells towards a Th2 phenotype without affecting cell proliferation. In addition, only DCs matured in the presence of tanimilast displayed increased CD86/CD80 ratio and CD141 expression, which correlated with Th2 T cell induction and dead cell uptake respectively. These cells also upregulated cAMP-dependent immunosuppressive molecules such as IDO1, TSP1, VEGF-A and Amphiregulin. Notably, the translational value of these data was confirmed by the finding that these same genes were upregulated also in sputum cells of COPD patients treated with tanimilast as add-on to inhaled glucocorticoids and bronchodilators. CONCLUSION: Taken together, these findings demonstrate distinct immunomodulatory properties of tanimilast associated with a type 2 endotype and CD141 upregulation in DCs and provide a mechanistic rationale for the administration of tanimilast on top of inhaled corticosteroids.


Asunto(s)
Inhibidores de Fosfodiesterasa 4 , Enfermedad Pulmonar Obstructiva Crónica , Trombomodulina , Budesonida/farmacología , Budesonida/uso terapéutico , Células Cultivadas , Citocinas/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Humanos , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Ensayos Clínicos Controlados Aleatorios como Asunto , Trombomodulina/inmunología , Regulación hacia Arriba/efectos de los fármacos
8.
Cell Biochem Funct ; 40(7): 718-728, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36069062

RESUMEN

Dendritic cells (DCs) are innate immune cells with a central role in immunity and tolerance. Under steady-state, DCs are scattered in tissues as resting cells. Upon infection or injury, DCs get activated and acquire the full capacity to prime antigen-specific CD4+ and CD8+ T cells, thus bridging innate and adaptive immunity. By secreting different sets of cytokines and chemokines, DCs orchestrate diverse types of immune responses, from a classical proinflammatory to an alternative pro-repair one. DCs are highly heterogeneous, and physiological differences in tissue microenvironments greatly contribute to variations in DC phenotype. Oxygen tension is normally low in some lymphoid areas, including bone marrow (BM) hematopoietic niches; nevertheless, the possible impact of tissue hypoxia on DC physiology has been poorly investigated. We assessed whether DCs are hypoxic in BM and spleen, by staining for hypoxia-inducible-factor-1α subunit (HIF-1α), the master regulator of hypoxia-induced response, and pimonidazole (PIM), a hypoxic marker, and by flow cytometric analysis. Indeed, we observed that mouse DCs have a hypoxic phenotype in spleen and BM, and showed some remarkable differences between DC subsets. Notably, DCs expressing membrane c-kit, the receptor for stem cell factor (SCF), had a higher PIM median fluorescence intensity (MFI) than c-kit- DCs, both in the spleen and in the BM. To determine whether SCF (a.k.a. kit ligand) has a role in DC hypoxia, we evaluated molecular pathways activated by SCF in c-kit+ BM-derived DCs cultured in hypoxic conditions. Gene expression microarrays and gene set enrichment analysis supported the hypothesis that SCF had an impact on hypoxia response and inhibited autophagy-related gene sets. Our results suggest that hypoxic response and autophagy, and their modulation by SCF, can play a role in DC homeostasis at the steady state, in agreement with our previous findings on SCF's role in DC survival.


Asunto(s)
Linfocitos T CD8-positivos , Factor de Células Madre , Animales , Autofagia , Hipoxia de la Célula , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas , Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Factor de Células Madre/metabolismo
9.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35887206

RESUMEN

Colorectal cancer (CRC) is one of the most common malignancies and leading causes of cancer-related deaths worldwide. Despite its complex pathogenesis and progression, CRC represents a well-fitting example of how the immune contexture can dictate the disease outcome. The presence of cytotoxic lymphocytes, both CD8+ T cells and natural killer (NK) cells, represents a relevant prognostic factor in CRC and is associated with a better overall survival. Together with NK cells, other innate lymphocytes, namely, innate lymphoid cells (ILCs), have been found both in biopsies of CRC patients and in murine models of intestinal cancer, playing both pro- and anti-tumor activities. In particular, several type 1 innate lymphoid cells (ILC1) with cytotoxic functions have been recently described, and evidence in mice shows a role for both NK cells and ILC1 in controlling CRC metastasis. In this review, we provide an overview of the features of NK cells and the expanding spectrum of innate lymphocytes with cytotoxic functions. We also comment on both the described and the potential roles these innate lymphocytes can play during the progression of intestinal cancer leading to metastasis. Finally, we discuss recent advances in the molecular mechanisms underlying the functional regulation of cytotoxic innate lymphocytes in CRC.


Asunto(s)
Neoplasias Colorrectales , Linfocitos , Animales , Linfocitos T CD8-positivos , Inmunidad Innata , Células Asesinas Naturales , Ratones
10.
Infect Immun ; 89(8): e0014121, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34031126

RESUMEN

Some bacterial pathogens can manipulate the angiogenic response, suppressing or inducing it for their own ends. In humans, Bartonella henselae is associated with cat-scratch disease and vasculoproliferative disorders such as bacillary angiomatosis and bacillary peliosis. Although endothelial cells (ECs) support the pathogenesis of B. henselae, the mechanisms by which B. henselae induces EC activation are not completely clear, as well as the possible contributions of other cells recruited at the site of infection. Mesenchymal stromal cells (MSCs) are endowed with angiogenic potential and play a dual role in infections, exerting antimicrobial properties but also acting as a shelter for pathogens. Here, we delved into the role of MSCs as a reservoir of B. henselae and modulator of EC functions. B. henselae readily infected MSCs and survived in perinuclearly bound vacuoles for up to 8 days. Infection enhanced MSC proliferation and the expression of epidermal growth factor receptor (EGFR), Toll-like receptor 2 (TLR2), and nucleotide-binding oligomerization domain-containing protein 1 (NOD1), proteins that are involved in bacterial internalization and cytokine production. Secretome analysis revealed that infected MSCs secreted higher levels of the proangiogenic factors vascular endothelial growth factor (VEGF), fibroblast growth factor 7 (FGF-7), matrix metallopeptidase 9 (MMP-9), placental growth factor (PIGF), serpin E1, thrombospondin 1 (TSP-1), urokinase-type plasminogen activator (uPA), interleukin 6 (IL-6), platelet-derived growth factor D (PDGF-D), chemokine ligand 5 (CCL5), and C-X-C motif chemokine ligand 8 (CXCL8). Supernatants from B. henselae-infected MSCs increased the susceptibility of ECs to B. henselae infection and enhanced EC proliferation, invasion, and reorganization in tube-like structures. Altogether, these results indicate MSCs as a still underestimated niche for persistent B. henselae infection and reveal MSC-EC cross talk that may contribute to exacerbate bacterium-induced angiogenesis and granuloma formation.


Asunto(s)
Angiomatosis Bacilar/metabolismo , Angiomatosis Bacilar/microbiología , Bartonella henselae/fisiología , Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neovascularización Patológica/metabolismo , Angiomatosis Bacilar/patología , Biomarcadores , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Humanos
12.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299186

RESUMEN

Hypoxia is a key component of the tumor microenvironment (TME) and promotes not only tumor growth and metastasis, but also negatively affects infiltrating immune cells by impairing host immunity. Dendritic cells (DCs) are the most potent antigen-presenting cells and their biology is weakened in the TME in many ways, including the modulation of their viability. RNASET2 belongs to the T2 family of extracellular ribonucleases and, besides its nuclease activity, it exerts many additional functions. Indeed, RNASET2 is involved in several human pathologies, including cancer, and it is functionally relevant in the TME. RNASET2 functions are not restricted to cancer cells and its expression could be relevant also in other cell types which are important players in the TME, including DCs. Therefore, this study aimed to unravel the effect of hypoxia (2% O2) on the expression of RNASET2 in DCs. Here, we showed that hypoxia enhanced the expression and secretion of RNASET2 in human monocyte-derived DCs. This paralleled the HIF-1α accumulation and HIF-dependent and -independent signaling, which are associated with DCs' survival/autophagy/apoptosis. RNASET2 expression, under hypoxia, was regulated by the PI3K/AKT pathway and was almost completely abolished by TLR4 ligand, LPS. Taken together, these results highlight how hypoxia- dependent and -independent pathways shape RNASET2 expression in DCs, with new perspectives on its implication for TME and, therefore, in anti-tumor immunity.


Asunto(s)
Hipoxia de la Célula/fisiología , Células Dendríticas/metabolismo , Monocitos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ribonucleasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Apoptosis/fisiología , Autofagia/fisiología , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/patología , Humanos , Monocitos/inmunología , Monocitos/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ribonucleasas/biosíntesis , Ribonucleasas/inmunología , Transducción de Señal , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/inmunología
13.
Int J Mol Sci ; 21(11)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486257

RESUMEN

Dendritic cells (DCs) constitute a complex network of cell subsets with common functions but also with many divergent aspects. All dendritic cell subsets share the ability to prime T cell response and to undergo a complex trafficking program related to their stage of maturation and function. For these reasons, dendritic cells are implicated in a large variety of both protective and detrimental immune responses, including a crucial role in promoting anti-tumor responses. Although cDC1s are the most potent subset in tumor antigen cross-presentation, they are not sufficient to induce full-strength anti-tumor cytotoxic T cell response and need close interaction and cooperativity with the other dendritic cell subsets, namely cDC2s and pDCs. This review will take into consideration different aspects of DC biology, including the functional role of dendritic cell subsets in both fostering and suppressing tumor growth, the mechanisms underlying their recruitment into the tumor microenvironment, as well as the prognostic value and the potentiality of dendritic cell therapeutic targeting. Understanding the specificity of dendritic cell subsets will allow to gain insights on role of these cells in pathological conditions and to design new selective promising therapeutic approaches.


Asunto(s)
Células Dendríticas/inmunología , Neoplasias/patología , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos de Neoplasias/inmunología , Antineoplásicos/farmacología , Linfocitos T CD8-positivos/inmunología , Movimiento Celular , Quimiocinas/inmunología , Citocinas/inmunología , Progresión de la Enfermedad , Homeostasis , Humanos , Inmunofenotipificación , Inmunosupresores/farmacología , Inmunoterapia , Ratones , Neoplasias/inmunología , Pronóstico , Resultado del Tratamiento , Microambiente Tumoral
14.
Blood ; 130(10): 1223-1234, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28743719

RESUMEN

CCRL2 is a 7-transmembrane domain receptor that shares structural and functional similarities with the family of atypical chemokine receptors (ACKRs). CCRL2 is upregulated by inflammatory signals and, unlike other ACKRs, it is not a chemoattractant-scavenging receptor, does not activate ß-arrestins, and is widely expressed by many leukocyte subsets. Therefore, the biological role of CCRL2 in immunity is still unclear. We report that CCRL2-deficient mice have a defect in neutrophil recruitment and are protected in 2 models of inflammatory arthritis. In vitro, CCRL2 was found to constitutively form homodimers and heterodimers with CXCR2, a main neutrophil chemotactic receptor. By heterodimerization, CCRL2 could regulate membrane expression and promote CXCR2 functions, including the activation of ß2-integrins. Therefore, upregulation of CCRL2 observed under inflammatory conditions is functional to finely tune CXCR2-mediated neutrophil recruitment at sites of inflammation.


Asunto(s)
Artritis/metabolismo , Artritis/patología , Neutrófilos/patología , Receptores de Quimiocina/metabolismo , Receptores de Interleucina-8B/metabolismo , Animales , Artritis/complicaciones , Antígenos CD18/metabolismo , Supervivencia Celular , Modelos Animales de Enfermedad , Inflamación/complicaciones , Inflamación/patología , Ratones Noqueados , Infiltración Neutrófila , Conformación Proteica , Multimerización de Proteína , Receptores CCR , Receptores de Quimiocina/química , Receptores de Quimiocina/deficiencia , Receptores de Interleucina-8B/química , Transducción de Señal
16.
Blood ; 127(26): 3382-6, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27207797

RESUMEN

Hermansky-Pudlak syndrome type 2 (HPS2) is a primary immunodeficiency due to adaptor protein-3 (AP-3) complex deficiency. HPS2 patients present neutropenia, partial albinism, and impaired lysosomal vesicles formation in hematopoietic cells. Given the role of dendritic cells (DCs) in the immune response, we studied monocyte-derived DCs (moDCs) and plasmacytoid DCs (pDCs) in two HPS2 siblings. Mature HPS2 moDCs showed impaired expression of CD83 and DC-lysosome-associated membrane protein (LAMP), low levels of MIP1-ß/CCL4, MIG/CXCL9, and severe defect of interleukin-12 (IL-12) secretion. DCs in lymph-node biopsies from the same patients showed a diffuse cytoplasm reactivity in a large fraction of DC-LAMP(+) cells, instead of the classical dot-like stain. In addition, analysis of pDC-related functions of blood-circulating mononuclear cells revealed reduced interferon-α secretion in response to herpes simplex virus-1 (HSV-1), whereas granzyme-B induction upon IL-3/IL-10 stimulation was normal. Finally, T-cell costimulatory activity, as measured by mixed lymphocyte reaction assay, was lower in patients, suggesting that function and maturation of DCs is abnormal in patients with HPS2.


Asunto(s)
Complejo 3 de Proteína Adaptadora/deficiencia , Células Dendríticas/inmunología , Regulación de la Expresión Génica/inmunología , Síndrome de Hermanski-Pudlak/inmunología , Monocitos/inmunología , Complejo 3 de Proteína Adaptadora/inmunología , Antígenos CD/genética , Antígenos CD/inmunología , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/inmunología , Citocinas/genética , Citocinas/inmunología , Células Dendríticas/patología , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Granzimas/genética , Granzimas/inmunología , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/patología , Herpesvirus Humano 1/inmunología , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/inmunología , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Monocitos/patología , Linfocitos T/inmunología , Linfocitos T/patología , Antígeno CD83
18.
J Autoimmun ; 85: 126-140, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28774715

RESUMEN

Dendritic cells (DCs) are professional antigen presenting cells displaying the unique capability to activate naïve T cells. DCs react to pathogen encounter also by the production of mediators of inflammation, including pro-inflammatory cytokines. Because of this complex role, any imbalance in DC function reflects into defective or exaggerated immune response and tissue damage. DCs comprise two main subsets, namely conventional or classical DCs (cDCs), that are dedicated antigen presenting cells, and plasmacytoid DCs (pDCs), that respond to nucleic acids by releasing high amounts of type I interferons (IFNs). Since the formal demonstration that DC can prime autoreactive naïve T cells, a full body of evidence has implicated DCs in virtually all manifestations of autoimmunity, although their exact pathogenic role often remains poorly characterized. The recent availability of progressively more refined strategies of constitutive and inducible DC ablation is contributing in defining the precise role of DCs at least in some autoimmune disease models. This review aims at critically summarizing the current literature concerning selected aspects of DC biology that, when altered, facilitate autoimmunity. These aspects include: i) mechanisms of tissue entry and accumulation, ii) mechanisms of activation and iii) orchestration of the immune balance by cytokine production. A special focus will be on inappropriate DC activation by signals released by damaged tissues via innate immune receptors, such as Toll-like receptors. These signals are responsible, in pDCs, for exaggerated type I IFN production, the hallmark of a set of apparently distant autoimmune conditions such as systemic lupus erythematosus and type 1 diabetes; whereas in cDCs, they trigger DC rapid maturation and Th1/Th17 cytokine secretion. Tissue-derived molecules also contribute to further promote tissue damage and autoantigen spreading, possibly through pDC-derived Granzyme B secretion. Finally, the therapeutic possibilities based on DC targeting in human autoimmune diseases will be briefly summarized.


Asunto(s)
Autoinmunidad/inmunología , Células Dendríticas/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Citocinas/inmunología , Humanos , Inmunidad Innata/inmunología
19.
Pharmacol Rev ; 66(1): 1-79, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24218476

RESUMEN

Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.


Asunto(s)
Receptores de Quimiocina , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Receptores de Quimiocina/clasificación , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Terminología como Asunto , Garrapatas , Proteínas Virales/genética , Proteínas Virales/metabolismo
20.
Eur J Immunol ; 45(1): 40-3, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25472709

RESUMEN

Cell migration is a response highly conserved in evolution. Chemotactic factors secreted in injured and inflamed tissues generate a concentration-based, chemotactic gradient that directs leukocytes from the blood compartment into tissue. In this issue of the European Journal of Immunology, Gouwy et al. [Eur. J. Immunol. 2015. 45: 101-112] show that the SAA1α isoform of serum amyloid A (SAA), which is an acute phase protein upregulated in inflammation and shown to chemoattract some leukocyte subsets, is also able to chemoattract monocyte-derived immature dendritic cells (DCs). The authors also show that the chemotactic activity of SAA1α for monocytes and DCs is indirectly mediated by rapid chemokine induction, providing evidence that proposes a new level of regulation of leukocyte migration.


Asunto(s)
Quimiocina CCL3/inmunología , Células Dendríticas/efectos de los fármacos , Interleucina-8/inmunología , Monocitos/efectos de los fármacos , Proteína Amiloide A Sérica/farmacología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA