Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Hum Genomics ; 17(1): 14, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849973

RESUMEN

The SPATA5 gene encodes a 892 amino-acids long protein that has a putative mitochondrial targeting sequence and has been proposed to function in maintenance of mitochondrial function and integrity during mouse spermatogenesis. Several studies have associated homozygous or compound heterozygous mutations in SPATA5 gene to microcephaly, intellectual disability, seizures and hearing loss. This suggests a role of the SPATA5 gene also in neuronal development. Recently, our group presented results validating the use of blood cells for the assessment of mitochondrial function for diagnosis and follow-up of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsy. In this study, we were able to diagnose a patient with epileptogenic encephalopathy using next generation sequencing. We found two novel compound heterozygous variants in SPATA5 that are most likely causative. To analyze the impact of SPATA5 mutations on mitochondrial functional studies directly on the patients' mononuclear cells and platelets were undertaken. Oxygen consumption rates in platelets and PBMCs were impaired in the patient when compared to a healthy control. Also, a decrease in mitochondrial mass was observed in the patient monocytes with respect to the control. This suggests a true pathogenic effect of the mutations in mitochondrial function, especially in energy production and possibly biogenesis, leading to the observed phenotype.


Asunto(s)
Encefalopatías , Microcefalia , Animales , Masculino , Ratones , Biopsia , Mitocondrias/genética , Convulsiones , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396700

RESUMEN

Understanding the intricate molecular mechanisms governing the fate of human adipose-derived stem cells (hASCs) is essential for elucidating the delicate balance between adipogenic and osteogenic differentiation in both healthy and pathological conditions. Long non-coding RNAs (lncRNAs) have emerged as key regulators involved in lineage commitment and differentiation of stem cells, operating at various levels of gene regulation, including transcriptional, post-transcriptional, and post-translational processes. To gain deeper insights into the role of lncRNAs' in hASCs' differentiation, we conducted a comprehensive analysis of the lncRNA transcriptome (RNA-seq) and translatome (polysomal-RNA-seq) during a 24 h period of adipogenesis and osteogenesis. Our findings revealed distinct expression patterns between the transcriptome and translatome during both differentiation processes, highlighting 90 lncRNAs that are exclusively regulated in the polysomal fraction. These findings underscore the significance of investigating lncRNAs associated with ribosomes, considering their unique expression patterns and potential mechanisms of action, such as translational regulation and potential coding capacity for microproteins. Additionally, we identified specific lncRNA gene expression programs associated with adipogenesis and osteogenesis during the early stages of cell differentiation. By shedding light on the expression and potential functions of these polysome-associated lncRNAs, we aim to deepen our understanding of their involvement in the regulation of adipogenic and osteogenic differentiation, ultimately paving the way for novel therapeutic strategies and insights into regenerative medicine.


Asunto(s)
Adipogénesis , ARN Largo no Codificante , Humanos , Adipogénesis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Osteogénesis/genética , Diferenciación Celular/genética , Células Madre/metabolismo , Polirribosomas/metabolismo
3.
Hum Genomics ; 15(1): 28, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971976

RESUMEN

BACKGROUND: Rare diseases are pathologies that affect less than 1 in 2000 people. They are difficult to diagnose due to their low frequency and their often highly heterogeneous symptoms. Rare diseases have in general a high impact on the quality of life and life expectancy of patients, which are in general children or young people. The advent of high-throughput sequencing techniques has improved diagnosis in several different areas, from pediatrics, achieving a diagnostic rate of 41% with whole genome sequencing (WGS) and 36% with whole exome sequencing, to neurology, achieving a diagnostic rate between 47 and 48.5% with WGS. This evidence has encouraged our group to pursue a molecular diagnosis using WGS for this and several other patients with rare diseases. RESULTS: We used whole genome sequencing to achieve a molecular diagnosis of a 7-year-old girl with a severe panvascular artery disease that remained for several years undiagnosed. We found a frameshift variant in one copy and a large deletion involving two exons in the other copy of a gene called YY1AP1. This gene is related to Grange syndrome, a recessive rare disease, whose symptoms include stenosis or occlusion of multiple arteries, congenital heart defects, brachydactyly, syndactyly, bone fragility, and learning disabilities. Bioinformatic analyses propose these mutations as the most likely cause of the disease, according to its frequency, in silico predictors, conservation analyses, and effect on the protein product. Additionally, we confirmed one mutation in each parent, supporting a compound heterozygous status in the child. CONCLUSIONS: In general, we think that this finding can contribute to the use of whole genome sequencing as a diagnosis tool of rare diseases, and in particular, it can enhance the set of known mutations associated with different diseases.


Asunto(s)
Arteriopatías Oclusivas/genética , Proteínas de Ciclo Celular/genética , Cardiopatías Congénitas/genética , Enfermedades Raras/genética , Factores de Transcripción/genética , Arteriopatías Oclusivas/diagnóstico , Arteriopatías Oclusivas/patología , Arterias/diagnóstico por imagen , Arterias/patología , Niño , Femenino , Mutación del Sistema de Lectura/genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/patología , Homocigoto , Humanos , Linaje , Enfermedades Raras/diagnóstico , Enfermedades Raras/patología , Secuenciación Completa del Genoma
4.
BMC Pediatr ; 22(1): 545, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100855

RESUMEN

BACKGROUND: Lissencephaly (LIS) is a cortical malformation, characterized by smooth or nearly smooth cerebral surface and a shortage of gyral and sulcal development, which is caused by deficient neuronal migration during embryogenesis. Neuronal migration involves many gene products, among which is the product of the PAFAH1B1 gene, associated with this disease. LIS is a rare disease, characterized by low population frequency, and with non-specific clinical symptoms such as early epilepsy, developmental delay or cerebral palsy-like motor problems. Given that high-throughput sequencing techniques have been improving diagnosis, we have chosen this technique for addressing this patient. CASE PRESENTATION: We present the case of a seven years old male patient with an undiagnosed rare disease, with non-specific clinical symptoms possibly compatible with lissencephaly. The patient was enrolled in a study that included the sequencing of his whole genome. Sequence data was analyzed following a bioinformatic pipeline. The variants obtained were annotated and then subjected to different filters for prioritization. Also mitochondrial genome was analyzed. A novel candidate frameshift insertion in known PAFAH1B1 gene was found, explaining the index case phenotype. The assessment through in silico tools reported that it causes nonsense mediated mechanisms and that it is damaging with high confidence scores. The insertion causes a change in the reading frame, and produces a premature stop codon, severely affecting the protein function and probably the silencing of one allele. The healthy mother did not carry the mutation, and the unaffected father was not available for analysis. CONCLUSIONS: Through this work we found a novel de novo mutation in LIS1/PAFAH1B1 gene, as a likely cause of a rare disease in a young boy with non-specific clinical symptoms. The mutation found correlates with the phenotype studied since the loss of function in the gene product has already been described in this condition. Since there are no other variants in the PAFAH1B1 gene with low population frequency and due to family history, a de novo disease mechanism is proposed.


Asunto(s)
Mutación del Sistema de Lectura , Lisencefalia , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Humanos , Lisencefalia/genética , Masculino , Proteínas Asociadas a Microtúbulos/genética , Enfermedades Raras
5.
Emerg Infect Dis ; 27(11): 2957-2960, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34437831

RESUMEN

We developed a genomic surveillance program for real-time monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) in Uruguay. We report on a PCR method for SARS-CoV-2 VOCs, the surveillance workflow, and multiple independent introductions and community transmission of the SARS-CoV-2 P.1 VOC in Uruguay.


Asunto(s)
COVID-19 , SARS-CoV-2 , Genómica , Humanos , Uruguay/epidemiología
6.
Retrovirology ; 17(1): 18, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32615986

RESUMEN

BACKGROUND: Some multifunctional cellular proteins, as the monocyte chemotactic protein-induced protein 1 (ZC3H12A/MCPIP1) and the cyclin-dependent kinase inhibitor CDKN1A/p21, are able to modulate the cellular susceptibility to the human immunodeficiency virus type 1 (HIV-1). Several studies showed that CDKN1A/p21 is expressed at high levels ex vivo in cells from individuals who naturally control HIV-1 replication (HIC) and a recent study supports a coordinate regulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in a model of renal carcinoma cells. Here, we explored the potential associations between mRNA expression of ZC3H12A/MCPIP1 and CDKN1A/p21 in HIC sustaining undetectable (elite controllers-EC) or low (viremic controllers-VC) viral loads. RESULTS: We found a selective upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in PBMC from HIC compared with both ART-suppressed and HIV-negative control groups (P≤ 0.02) and higher MCPIP1 and p21 proteins levels in HIC than in HIV-1 negative subjects. There was a moderate positive correlation (r ≥ 0.57; P ≤ 0.014) between expressions of both transcripts in HIC and in HIC combined with control groups. We found positive correlations between the mRNA level of CDKN1A/p21 with activated CD4+ T cells levels in HIC (r ≥ 0.53; P ≤ 0.017) and between the mRNA levels of both CDKN1A/p21 (r = 0.74; P = 0.005) and ZC3H12A/MCPIP1 (r = 0.58; P = 0.040) with plasmatic levels of sCD14 in EC. Reanalysis of published transcriptomic data confirmed the positive association between ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in CD4+ T cells and monocytes from disparate cohorts of HIC and other HIV-positive control groups. CONCLUSIONS: These data show for the first time the simultaneous upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in the setting of natural suppression of HIV-1 replication in vivo and the positive correlation of the expression of these cellular factors in disparate cohorts of HIV-positive individuals. The existence of a common regulatory pathway connecting ZC3H12A/MCPIP1 and CDKN1A/p21 could have a synergistic effect on HIV-1 replication control and pharmacological manipulation of these multifunctional host factors may open novel therapeutic perspectives to prevent HIV-1 replication and disease progression.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Infecciones por VIH/inmunología , VIH-1/fisiología , Ribonucleasas/metabolismo , Factores de Transcripción/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Leucocitos Mononucleares/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , ARN Mensajero/metabolismo , Ribonucleasas/genética , Factores de Transcripción/genética , Regulación hacia Arriba , Carga Viral
7.
Mol Cell Biochem ; 468(1-2): 35-45, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32125578

RESUMEN

Long non-coding RNAs (lncRNAs) have been found to be involved in many biological processes, including the regulation of cell differentiation, but a complete characterization of lncRNA is still lacking. Additionally, there is evidence that lncRNAs interact with ribosomes, raising questions about their functions in cells. Here, we used a developmentally staged protocol to induce cardiogenic commitment of hESCs and then investigated the differential association of lncRNAs with polysomes. Our results identified lncRNAs in both the ribosome-free and polysome-bound fractions during cardiogenesis and showed a very well-defined temporal lncRNA association with polysomes. Clustering of lncRNAs was performed according to the gene expression patterns during the five timepoints analyzed. In addition, differential lncRNA recruitment to polysomes was observed when comparing the differentially expressed lncRNAs in the ribosome-free and polysome-bound fractions or when calculating the polysome-bound vs ribosome-free ratio. The association of lncRNAs with polysomes could represent an additional cytoplasmic role of lncRNAs, e.g., in translational regulation of mRNA expression.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Desarrollo de Músculos/genética , Miocitos Cardíacos/metabolismo , Polirribosomas/metabolismo , ARN Largo no Codificante/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Familia de Multigenes , Organogénesis/genética , Biosíntesis de Proteínas , ARN Largo no Codificante/genética , RNA-Seq
8.
Hum Mutat ; 40(8): 1013-1029, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31021519

RESUMEN

SATB2-associated syndrome (SAS) is an autosomal dominant neurodevelopmental disorder caused by alterations in the SATB2 gene. Here we present a review of published pathogenic variants in the SATB2 gene to date and report 38 novel alterations found in 57 additional previously unreported individuals. Overall, we present a compilation of 120 unique variants identified in 155 unrelated families ranging from single nucleotide coding variants to genomic rearrangements distributed throughout the entire coding region of SATB2. Single nucleotide variants predicted to result in the occurrence of a premature stop codon were the most commonly seen (51/120 = 42.5%) followed by missense variants (31/120 = 25.8%). We review the rather limited functional characterization of pathogenic variants and discuss current understanding of the consequences of the different molecular alterations. We present an expansive phenotypic review along with novel genotype-phenotype correlations. Lastly, we discuss current knowledge of animal models and present future prospects. This review should help provide better guidance for the care of individuals diagnosed with SAS.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/genética , Mutación , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Animales , Niño , Preescolar , Codón de Terminación , Modelos Animales de Enfermedad , Femenino , Reordenamiento Génico , Estudios de Asociación Genética , Humanos , Masculino , Mutación Missense , Polimorfismo de Nucleótido Simple
9.
BMC Genomics ; 20(1): 219, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30876407

RESUMEN

BACKGROUND: Cardiac cell fate specification occurs through progressive steps, and its gene expression regulation features are still being defined. There has been an increasing interest in understanding the coordination between transcription and post-transcriptional regulation during the differentiation processes. Here, we took advantage of the polysome profiling technique to isolate and high-throughput sequence ribosome-free and polysome-bound RNAs during cardiomyogenesis. RESULTS: We showed that polysome-bound RNAs exhibit the cardiomyogenic commitment gene expression and that mesoderm-to-cardiac progenitor stages are strongly regulated. Additionally, we compared ribosome-free and polysome-bound RNAs and found that the post-transcriptional regulation vastly contributes to cardiac phenotype determination, including RNA recruitment to and dissociation from ribosomes. Moreover, we found that protein synthesis is decreased in cardiomyocytes compared to human embryonic stem-cells (hESCs), possibly due to the down-regulation of translation-related genes. CONCLUSIONS: Our data provided a powerful tool to investigate genes potentially controlled by post-transcriptional mechanisms during the cardiac differentiation of hESC. This work could prospect fundamental tools to develop new therapy and research approaches.


Asunto(s)
Biomarcadores/análisis , Diferenciación Celular , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Miocitos Cardíacos/metabolismo , Polirribosomas/metabolismo , ARN Mensajero/metabolismo , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento , Células Madre Embrionarias Humanas/citología , Humanos , Miocitos Cardíacos/citología , Organogénesis , Polirribosomas/genética , ARN Mensajero/genética
10.
Diagnostics (Basel) ; 14(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337829

RESUMEN

The Kondo-Fu type of spondyloepiphyseal dysplasia (SEDKF) is a rare skeletal dysplasia caused by homozygous or compound heterozygous mutations in the MBTPS1 gene. The MBTPS1 gene encodes a protein that is involved in the regulation of cholesterol and fatty acid metabolism. Mutations in MBTPS1 can lead to reduced levels of these lipids, which can have a number of effects on development, including skeletal anomalies, growth retardation, and elevated levels of blood lysosomal enzymes. This work reports the case of a 5-year-old girl with SEDKF. The patient had a severely short stature and a number of skeletal anomalies, including kyphosis, pectus carinatum, and reduced bone mineral density. She also had early onset cataracts and inguinal hernias. Genetic testing revealed two novel compound heterozygous variants in the MBTPS1 gene. These variants are predicted to disrupt the function of the MBTPS1 protein, which is consistent with the patient's clinical presentation. This case report adds to the growing body of evidence that mutations in the MBTPS1 gene are causal of SEDKF. We summarized the features of previous reported cases (with age ranges from 4 to 24 years) and identified that 80% had low stature, 70% low weight, 80% had bilateral cataracts and 70% showed Spondyloepiphyseal dysplasia on X-rays. The findings of this study suggest that SEDKF is a clinically heterogeneous disorder that can present with a variety of features. Further studies are needed to better understand the underlying mechanisms of SEDKF and to develop more effective treatments.

11.
Front Mol Biosci ; 11: 1336336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380430

RESUMEN

Alternative polyadenylation (APA) increases transcript diversity through the generation of isoforms with varying 3' untranslated region (3' UTR) lengths. As the 3' UTR harbors regulatory element target sites, such as miRNAs or RNA-binding proteins, changes in this region can impact post-transcriptional regulation and translation. Moreover, the APA landscape can change based on the cell type, cell state, or condition. Given that APA events can impact protein expression, investigating translational control is crucial for comprehending the overall cellular regulation process. Revisiting data from polysome profiling followed by RNA sequencing, we investigated the cardiomyogenic differentiation of pluripotent stem cells by identifying the transcripts that show dynamic 3' UTR lengthening or shortening, which are being actively recruited to ribosome complexes. Our findings indicate that dynamic 3' UTR lengthening is not exclusively associated with differential expression during cardiomyogenesis but rather with recruitment to polysomes. We confirm that the differentiated state of cardiomyocytes shows a preference for shorter 3' UTR in comparison to the pluripotent stage although preferences vary during the days of the differentiation process. The most distinct regulatory changes are seen in day 4 of differentiation, which is the mesoderm commitment time point of cardiomyogenesis. After identifying the miRNAs that would target specifically the alternative 3' UTR region of the isoforms, we constructed a gene regulatory network for the cardiomyogenesis process, in which genes related to the cell cycle were identified. Altogether, our work sheds light on the regulation and dynamic 3' UTR changes of polysome-recruited transcripts that take place during the cardiomyogenic differentiation of pluripotent stem cells.

12.
Front Pediatr ; 12: 1379254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751748

RESUMEN

Background: Neuronal Ceroid Lipofuscinosis (NCL) disorders, recognized as the primary cause of childhood dementia globally, constitute a spectrum of genetic abnormalities. CLN8, a subtype within NCL, is characterized by cognitive decline, motor impairment, and visual deterioration. This study focuses on an atypical case with congenital onset and a remarkably slow disease progression. Methods: Whole-genome sequencing at 30× coverage was employed as part of a national genomics program to investigate the genetic underpinnings of rare diseases. This genomic approach aimed to challenge established classifications (vLINCL and EPMR) and explore the presence of a continuous phenotypic spectrum associated with CLN8. Results: The whole-genome sequencing revealed two novel likely pathogenic mutations in the CLN8 gene on chromosome 8p23.3. These mutations were not previously associated with CLN8-related NCL. Contrary to established classifications (vLINCL and EPMR), our findings suggest a continuous phenotypic spectrum associated with CLN8. Pathological subcellular markers further validated the genomic insights. Discussion: The identification of two previously undescribed likely pathogenic CLN8 gene mutations challenges traditional classifications and highlights a more nuanced phenotypic spectrum associated with CLN8. Our findings underscore the significance of genetic modifiers and interactions with unrelated genes in shaping variable phenotypic outcomes. The inclusion of pathological subcellular markers further strengthens the validity of our genomic insights. This research enhances our understanding of CLN8 disorders, emphasizing the need for comprehensive genomic analyses to elucidate the complexity of phenotypic presentations and guide tailored therapeutic strategies. The identification of new likely pathogenic mutations underscores the dynamic nature of CLN8-related NCL and the importance of individualized approaches to patient management.

13.
Sci Rep ; 14(1): 15085, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956222

RESUMEN

Obesity poses significant challenges, necessitating comprehensive strategies for effective intervention. Bariatric Surgery (BS) has emerged as a crucial therapeutic approach, demonstrating success in weight loss and comorbidity improvement. This study aimed to evaluate the outcomes of BS in a cohort of 48 Uruguayan patients and investigate the interplay between BS and clinical and metabolic features, with a specific focus on FSTL1, an emerging biomarker associated with obesity and inflammation. We quantitatively analyzed BS outcomes and constructed linear models to identify variables impacting BS success. The study revealed the effectiveness of BS in improving metabolic and clinical parameters. Importantly, variables correlating with BS success were identified, with higher pre-surgical FSTL1 levels associated with an increased effect of BS on BMI reduction. FSTL1 levels were measured from patient plasma using an ELISA kit pre-surgery and six months after. This research, despite limitations of a small sample size and limited follow-up time, contributes valuable insights into understanding and predicting the success of BS, highlighting the potential role of FSTL1 as a useful biomarker in obesity.


Asunto(s)
Cirugía Bariátrica , Biomarcadores , Proteínas Relacionadas con la Folistatina , Obesidad , Humanos , Proteínas Relacionadas con la Folistatina/sangre , Proteínas Relacionadas con la Folistatina/metabolismo , Femenino , Masculino , Cirugía Bariátrica/métodos , Adulto , Persona de Mediana Edad , Biomarcadores/sangre , Obesidad/cirugía , Obesidad/metabolismo , Uruguay/epidemiología , Estudios de Cohortes , Pérdida de Peso , Resultado del Tratamiento , Índice de Masa Corporal
14.
Proc Biol Sci ; 280(1767): 20131629, 2013 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-23902915

RESUMEN

Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)-in such a way that a scale-invariant ratio between both variables is equal to one-as could be expected from the Scholander-Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs.


Asunto(s)
Metabolismo Basal , Evolución Biológica , Regulación de la Temperatura Corporal , Roedores/fisiología , Animales , Clima , Ecosistema , Ambiente , Geografía , Filogenia , Estaciones del Año , Especificidad de la Especie , Temperatura
15.
Front Oncol ; 13: 1248964, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781189

RESUMEN

Background: Common variable immunodeficiency disorders (CVIDs), which are primary immunodeficiencies characterized by the failure of primary antibody production, typically present with recurrent bacterial infections, decreased antibody levels, autoimmune features, and rare atypical manifestations that can complicate diagnosis and management. Although most cases are sporadic, approximately 10% of the patients may have a family history of immunodeficiency. Genetic causes involving genes related to B-cell development and survival have been identified in only a small percentage of cases. Case presentation: We present the case of a family with two brothers who presented with mycosis fungoides as an exclusive symptom of a common variable immunodeficiency disorder (CVID). Whole-exome sequencing of the index patient revealed a pathogenic variant of the NFKB2 gene. Based on this diagnosis and re-evaluation of other family members, the father and brother were diagnosed with this rare immune and preneoplastic syndrome. All CVID-affected family members presented with mycosis fungoides as their only symptom, which is, to the best of our knowledge, the first case to be reported. Conclusion: This case highlights the importance of high-throughput sequencing techniques for the proper diagnosis and treatment of hereditary hematological disorders.

16.
Am Nat ; 179(6): E172-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22617269

RESUMEN

Macrophysiology is defined as the study of variation in physiological traits-including physiological trait flexibility-over large geographical and temporal scales, and the ecological implications of this variation. A classic example of a macrophysiological trend is the one emerging from the climatic variability hypothesis, which states that as the range of climatic fluctuation experienced by terrestrial animals increases with latitude, individuals at higher latitudes should be more plastic than individuals inhabiting lower latitudes. In this context, we evaluate the correlation between absolute metabolic scope during cold exposure (an instantaneous measure of metabolic flexibility) and different geographic and climatic variables for 48 rodent species. Conventional and phylogenetic informed analyses indicated a positive correlation between metabolic scope and geographic latitude. These findings, together with previous reports on latitudinal pattern in phenotypic flexibility, suggest that an increase in physiological flexibility with latitude may hold for many phenotypic traits.


Asunto(s)
Metabolismo Basal , Filogenia , Roedores/fisiología , Animales , Geografía , Fenotipo , Tiempo (Meteorología)
17.
PLoS One ; 17(8): e0271097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35960716

RESUMEN

The ancestry of each locus of the genome can be estimated (local ancestry) based on sequencing or genotyping information together with reference panels of ancestral source populations. The length of those ancestry-specific genomic segments are commonly used to understand migration waves and admixture events. In short time scales, it is often of interest to determine the existence of the most recent unadmixed ancestor from a specific population t generations ago. We built a hypothesis test to determine if an individual has an ancestor belonging to a target ancestral population t generations ago based on these lengths of the ancestry-specific segments at an individual level. We applied this test on a data set that includes 20 Uruguayan admixed individuals to estimate for each one how many generations ago the most recent indigenous ancestor lived. As this method tests each individual separately, it is particularly suited to small sample sizes, such as our study or ancient genome samples.


Asunto(s)
Genética de Población , Polimorfismo de Nucleótido Simple , Genoma Humano , Humanos , Uruguay
18.
Artículo en Inglés | MEDLINE | ID: mdl-36577524

RESUMEN

We present the case of a 53-yr-old woman with an inherited bone marrow failure coexisting with uncommon extrahematological symptoms, such as cirrhosis and skin abnormalities. Whole-exome sequencing revealed a diagnosis of Shwachman-Diamond syndrome (SDS) with an atypical presentation. Unexpected was the age of disease expression, normally around the pediatric age, with a predominantly median survival age of 36 yr. To our knowledge, she was the first adult patient with a molecular diagnosis of Shwachman-Diamond in Uruguay. The patient was referred to our service when she was 43-yr-old with a history of bone marrow failure with anemia and thrombocytopenia. All secondary causes of pancytopenia were excluded. Bone marrow aspirate and biopsy specimens were hypocellular for the patient's age. Numerous dysplastic features were observed in the three lineages. She had a normal karyotype and normal chromosomal fragility. A diagnosis of low-risk hypoplastic MDS was made. Dermatological examination revealed reticulate skin pigmentation with hypopigmented macules involving the face, neck, and extremities; nail dystrophy; premature graying; and thin hair. Extrahematological manifestations were present (e.g., learning difficulties, short stature). Last, she was diagnosed with cryptogenic liver cirrhosis CHILD C. This rules out all other possible causes of chronic liver disease. This clinical presentation initially oriented the diagnosis toward telomeropathy, so we did a telomeropathy NGS panel that came up negative. Finally, we did an exome sequencing that confirmed the diagnosis of SDS. Using whole-exome sequencing, we were able to find two compound heterozygous mutations in the SBDS gene that were responsible for the phenotype of a patient that was undiagnosed for 10 years. An earlier genetic diagnosis could have influenced our patient's outcome.


Asunto(s)
Enfermedades de la Médula Ósea , Insuficiencia Pancreática Exocrina , Femenino , Humanos , Síndrome de Shwachman-Diamond/genética , Insuficiencia Pancreática Exocrina/diagnóstico , Enfermedades de la Médula Ósea/diagnóstico , Enfermedades de la Médula Ósea/genética , Mutación , Proteínas/genética
19.
Mult Scler Relat Disord ; 57: 103383, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34922254

RESUMEN

Multiple Sclerosis is an autoimmune disease with an unknown etiology. Both genetic and environmental factors are believed to trigger MS autoimmunity. Among the environmental factors, infectious agents have been extensively investigated, and the Human Endogenous Retroviruses (HERVs), especially HERV-W, are believed to be associated with MS pathogenesis. HERVs are derived from ancestral infections and comprise around 8% of the human genome. Although most HERVs are silenced, retroviral genes may be expressed with virion formation. There is extensive evidence of the relationship between HERV-W and MS, including higher levels of HERV-W expression in MS patients, HERV-W protein detection in MS plaques, and the HERV-W env protein inducing an inflammatory response in in vitro and in vivo models. Here we discuss possible links of HERVs and the pathogenesis of MS and present new data regarding the diversity of HERVs expression in samples derived from MS patients.


Asunto(s)
Retrovirus Endógenos , Esclerosis Múltiple , Retrovirus Endógenos/genética , Humanos , Esclerosis Múltiple/genética , Transcriptoma
20.
BioData Min ; 14(1): 44, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479616

RESUMEN

BACKGROUND: Missing data is a common issue in different fields, such as electronics, image processing, medical records and genomics. They can limit or even bias the posterior analysis. The data collection process can lead to different distribution, frequency, and structure of missing data points. They can be classified into four categories: Structurally Missing Data (SMD), Missing Completely At Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR). For the three later, and in the context of genomic data (especially non-coding data), we will discuss six imputation approaches using 31,245 variants collected from ClinVar and annotated with 13 genome-wide features. RESULTS: Random Forest and kNN algorithms showed the best performance in the evaluated dataset. Additionally, some features show robust imputation regardless of the algorithm (e.g. conservation scores phyloP7 and phyloP20), while other features show poor imputation across algorithms (e.g. PhasCons). We also developed an R package that helps to test which imputation method is the best for a particular data set. CONCLUSIONS: We found that Random Forest and kNN are the best imputation method for genomics data, including non-coding variants. Since Random Forest is computationally more challenging, kNN remains a more realistic approach. Future work on variant prioritization thru genomic screening tests could largely profit from this methodology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA