Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO J ; 40(20): e107159, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34523144

RESUMEN

Permeabilization of the outer mitochondrial membrane by pore-forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro-apoptotic Bak during pore formation, high-resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX-MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high-resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3-only proteins. Furthermore, we determined the first high-resolution structure of the Bak transmembrane helix. Upon activation, α-helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane-bound state. In line with this finding, comparative protein folding experiments with Bak and anti-apoptotic BclxL suggest that α-helix 1 in Bak is a metastable structural element contributing to its pro-apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α-helix 1 yielded Bak variants with delayed pore-forming activity. These insights will contribute to a better mechanistic understanding of Bak-mediated membrane permeabilization.


Asunto(s)
Liposomas/química , Lípidos de la Membrana/química , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína bcl-X/química , Sitios de Unión , Clonación Molecular , Medición de Intercambio de Deuterio , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
2.
J Am Chem Soc ; 146(22): 15403-15410, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787792

RESUMEN

High-resolution structural NMR analyses of membrane proteins are challenging due to their large size, resulting in broad resonances and strong signal overlap. Among the isotope labeling methods that can remedy this situation, segmental isotope labeling is a suitable strategy to simplify NMR spectra and retain high-resolution structural information. However, protein ligation within integral membrane proteins is complicated since the hydrophobic protein fragments are insoluble, and the removal of ligation side-products is elaborate. Here, we show that a stabilized split-intein system can be used for rapid and high-yield protein trans-splicing of integral membrane proteins under denaturing conditions. This setup enables segmental isotope labeling experiments within folded protein domains for NMR studies. We show that high-quality NMR spectra of markedly reduced complexity can be obtained in detergent micelles and lipid nanodiscs. Of note, the nanodisc insertion step specifically selects for the ligated and correctly folded membrane protein and simultaneously removes ligation byproducts. Using this tailored workflow, we show that high-resolution NMR structure determination is strongly facilitated with just two segmentally isotope-labeled membrane protein samples. The presented method will be broadly applicable to structural and dynamical investigations of (membrane-) proteins and their complexes by solution and solid-state NMR but also other structural methods where segmental labeling is beneficial.


Asunto(s)
Marcaje Isotópico , Proteínas de la Membrana , Resonancia Magnética Nuclear Biomolecular , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos
3.
Plant Biotechnol J ; 20(10): 1928-1939, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35702941

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy can be used to determine the structure, dynamics and interactions of proteins. However, protein NMR requires stable isotope labelling for signal detection. The cells used for the production of recombinant proteins must therefore be grown in medium containing isotopically labelled substrates. Stable isotope labelling is well established in Escherichia coli, but bacteria are only suitable for the production of simple proteins without post-translational modifications. More complex proteins require eukaryotic production hosts, but their growth can be impaired by labelled media, thus reducing product yields and increasing costs. To address this limitation, we used media supplemented with isotope-labelled substrates to cultivate the tobacco-derived cell line BY-2, which was then cast into plant cell packs (PCPs) for the transient expression of a labelled version of the model protein GB1. Mass spectrometry confirmed the feasibility of isotope labelling with 15 N and 2 H using this approach. The resulting NMR spectrum featured a signal dispersion comparable to recombinant GB1 produced in E. coli. PCPs therefore offer a rapid and cost-efficient alternative for the production of isotope-labelled proteins for NMR analysis, especially suitable for complex proteins that cannot be produced in microbial systems.


Asunto(s)
Escherichia coli , Células Vegetales , Escherichia coli/genética , Marcaje Isotópico/métodos , Espectroscopía de Resonancia Magnética/métodos , Células Vegetales/metabolismo , Proteínas Recombinantes/genética
4.
J Hepatol ; 73(6): 1347-1359, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32598967

RESUMEN

BACKGROUND & AIMS: Selective elimination of virus-infected hepatocytes occurs through virus-specific CD8 T cells recognizing peptide-loaded MHC molecules. Herein, we report that virus-infected hepatocytes are also selectively eliminated through a cell-autonomous mechanism. METHODS: We generated recombinant adenoviruses and genetically modified mouse models to identify the molecular mechanisms determining TNF-induced hepatocyte apoptosis in vivo and used in vivo bioluminescence imaging, immunohistochemistry, immunoblot analysis, RNAseq/proteome/phosphoproteome analyses, bioinformatic analyses, mitochondrial function tests. RESULTS: We found that TNF precisely eliminated only virus-infected hepatocytes independently of local inflammation and activation of immune sensory receptors. TNF receptor I was equally relevant for NF-kB activation in healthy and infected hepatocytes, but selectively mediated apoptosis in infected hepatocytes. Caspase 8 activation downstream of TNF receptor signaling was dispensable for apoptosis in virus-infected hepatocytes, indicating an unknown non-canonical cell-intrinsic pathway promoting apoptosis in hepatocytes. We identified a unique state of mitochondrial vulnerability in virus-infected hepatocytes as the cause for this non-canonical induction of apoptosis through TNF. Mitochondria from virus-infected hepatocytes showed normal biophysical and bioenergetic functions but were characterized by reduced resilience to calcium challenge. In the presence of unchanged TNF-induced signaling, reactive oxygen species-mediated calcium release from the endoplasmic reticulum caused mitochondrial permeability transition and apoptosis, which identified a link between extrinsic death receptor signaling and cell-intrinsic mitochondrial-mediated caspase activation. CONCLUSION: Our findings reveal a novel concept in immune surveillance by identifying a cell-autonomous defense mechanism that selectively eliminates virus-infected hepatocytes through mitochondrial permeability transition. LAY SUMMARY: The liver is known for its unique immune functions. Herein, we identify a novel mechanism by which virus-infected hepatocytes can selectively eliminate themselves through reduced mitochondrial resilience to calcium challenge.


Asunto(s)
Caspasa 8/metabolismo , Hepatocitos , Mitocondrias Hepáticas , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Animales , Apoptosis/inmunología , Señalización del Calcio , Células Cultivadas , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Ratones , Mitocondrias Hepáticas/inmunología , Mitocondrias Hepáticas/metabolismo , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
5.
Nat Struct Mol Biol ; 30(6): 761-769, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37156968

RESUMEN

Triose phosphates (TPs) are the primary products of photosynthetic CO2 fixation in chloroplasts, which need to be exported into the cytosol across the chloroplast inner envelope (IE) and outer envelope (OE) membranes to sustain plant growth. While transport across the IE is well understood, the mode of action of the transporters in the OE remains unclear. Here we present the high-resolution nuclear magnetic resonance (NMR) structure of the outer envelope protein 21 (OEP21) from garden pea, the main exit pore for TPs in C3 plants. OEP21 is a cone-shaped ß-barrel pore with a highly positively charged interior that enables binding and translocation of negatively charged metabolites in a competitive manner, up to a size of ~1 kDa. ATP stabilizes the channel and keeps it in an open state. Despite the broad substrate selectivity of OEP21, these results suggest that control of metabolite transport across the OE might be possible.


Asunto(s)
Cloroplastos , Proteínas de Transporte de Membrana , Cloroplastos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fotosíntesis , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Transporte de Proteínas
6.
J Mol Biol ; 433(15): 167098, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34116124

RESUMEN

MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8-12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Mutación , Ingeniería de Proteínas/métodos , Membrana Celular/metabolismo , Dicroismo Circular , Disulfuros/metabolismo , Humanos , Proteínas de la Membrana/genética , Micelas , Proteínas Mitocondriales/genética , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Multimerización de Proteína , Estructura Secundaria de Proteína
7.
Front Chem ; 7: 9, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30834240

RESUMEN

Halogen bonds have recently gained attention in life sciences and drug discovery. However, it can be difficult to harness their full potential, when newly introducing them into an established hit or lead structure by molecular design. A possible solution to overcome this problem is the use of halogen-enriched fragment libraries (HEFLibs), which consist of chemical probes that provide the opportunity to identify halogen bonds as one of the main features of the binding mode. Initially, we have suggested the HEFLibs concept when constructing a focused library for finding p53 mutant stabilizers. Herein, we broaden and extent this concept aiming for a general HEFLib comprising a huge diversity of binding motifs and, thus, increasing the applicability to various targets. Using the construction principle of feature trees, we represent each halogenated fragment by treating all simple to complex substituents as modifiers of the central (hetero)arylhalide. This approach allows us to focus on the proximal binding interface around the halogen bond and, thus, its integration into a network of interactions based on the fragment's binding motif. As a first illustrative example, we generated a library of 198 fragments that unifies a two-fold strategy: Besides achieving a diversity-optimized basis of the library, we have extended this "core" by structurally similar "satellite compounds" that exhibit quite different halogen bonding interfaces. Tuning effects, i.e., increasing the magnitude of the σ-hole, can have an essential influence on the strength of the halogen bond. We were able to implement this key feature into the diversity selection, based on the rapid and efficient prediction of the highest positive electrostatic potential on the electron isodensity surface, representing the σ-hole, by VmaxPred.

8.
mBio ; 10(4)2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266859

RESUMEN

It is essential for microbes to acquire information about their environment. Fungi use soluble degradation products of plant cell wall components to understand the substrate composition they grow on. Individual perception pathways have been well described. However, the interconnections between pathways remain poorly understood. In the present work, we provide evidence of crosstalk between the perception pathways for cellulose and the hemicellulose mannan being conserved in several filamentous fungi and leading to the inhibition of cellulase expression. We used the functional genomics tools available for Neurospora crassa to investigate this overlap at the molecular level. Crosstalk and competitive inhibition could be identified both during uptake by cellodextrin transporters and intracellularly. Importantly, the overlap is independent of CRE-1-mediated catabolite repression. These results provide novel insights into the regulatory networks of lignocellulolytic fungi and will contribute to the rational optimization of fungal enzyme production for efficient plant biomass depolymerization and utilization.IMPORTANCE In fungi, the production of enzymes for polysaccharide degradation is controlled by complex signaling networks. Previously, these networks were studied in response to simple sugars or single polysaccharides. Here, we tackled for the first time the molecular interplay between two seemingly unrelated perception pathways: those for cellulose and the hemicellulose (gluco)mannan. We identified a so far unknown competitive inhibition between the respective degradation products acting as signaling molecules. Competition was detected both at the level of the uptake and intracellularly, upstream of the main transcriptional regulator CLR-2. Our findings provide novel insights into the molecular communication between perception pathways. Also, they present possible targets for the improvement of industrial strains for higher cellulase production through the engineering of mannan insensitivity.


Asunto(s)
Celulasa/biosíntesis , Celulosa/metabolismo , Regulación hacia Abajo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Mananos/metabolismo , Neurospora crassa/metabolismo , Transducción de Señal/efectos de los fármacos , Represión Catabólica , Redes Reguladoras de Genes , Genómica , Neurospora crassa/enzimología , Neurospora crassa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA