RESUMEN
For years, the AT2R-selective ligand CGP42112 has been erroneously characterized as a partial agonist, partly due to its ability to also interact with the AT1R at high concentrations. As late as 2009, it was still being characterized as an antagonist as well. In this perspective/opinion piece, we try to resolve the ambiguity that surrounds the efficacy of this compound by extensively reviewing the literature, tracing its beginnings to 1989, showing that CGP42112 has never been convincingly shown to be a partial agonist or an antagonist at the AT2R. While CGP42112 is now routinely characterized as an AT2R agonist, regrettably, there is a paucity of studies that can validate its efficacy as a full agonist at the AT2R, leaving the door open for continuing speculation regarding the extent of its efficacy. Hopefully, the information presented in this perspective/opinion piece will firmly establish CGP42112 as a full agonist at the AT2R such that it can once again be used as a tool to study the AT2R.
Asunto(s)
Receptor de Angiotensina Tipo 2 , Sistema Renina-Angiotensina , Receptor de Angiotensina Tipo 2/agonistas , Oligopéptidos , LigandosAsunto(s)
Insuficiencia Renal Crónica , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/efectos de los fármacos , Insuficiencia Renal Crónica/tratamiento farmacológico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/farmacologíaRESUMEN
Throughout the world, including the United States, men have worse outcomes from COVID-19 than women. SARS-CoV-2, the causative virus of the COVID-19 pandemic, uses angiotensin-converting enzyme 2 (ACE2) to gain cellular entry. ACE2 is a member of the renin-angiotensin system (RAS) and plays an important role in counteracting the harmful effects mediated by the angiotensin type 1 receptor. Therefore, we conducted Ovid MEDLINE and Embase database searches of basic science studies investigating the impact of the biological variable of sex on ACE2 expression and regulation from 2000, the year ACE2 was discovered, through December 31, 2020. Out of 2,131 publications, we identified 853 original research articles on ACE2 conducted in primary cells, tissues, and/or whole mammals excluding humans. The majority (68.7%) of these studies that cited the sex of the animal were conducted in males, while 11.2% were conducted solely in females; 9.26% compared ACE2 between the sexes, while 10.8% did not report the sex of the animals used. General findings are that sex differences are tissue-specific and when present, are dependent upon gonadal state. Renal, cardiac, and adipose ACE2 is increased in both sexes under experimental conditions that model co-morbidities associated with worse COVID-19 outcomes including hypertension, obesity, and renal and cardiovascular diseases; however, ACE2 protein was generally higher in the males. Studies in Ace2 knockout mice indicate ACE2 plays a greater role in protecting the female from developing hypertension than the male. Studying the biological variable of sex in ACE2 research provides an opportunity for discovery in conditions involving RAS dysfunction and will shed light on sex differences in COVID-19 severity.
Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , SARS-CoV-2/patogenicidad , Factores Sexuales , Animales , COVID-19/virología , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/virología , Humanos , Masculino , Peptidil-Dipeptidasa A/metabolismoRESUMEN
It is well-established that Ang-(1-7) counteracts the effects of Ang II in the periphery, while stimulating vasopressin release and mimicking the activity of Ang II in the brain, through interactions with various receptors. The rapid metabolic inactivation of Ang-(1-7) has proven to be a limitation to therapeutic administration of the peptide. To circumvent this problem, Alves et al. (Clinical Science (2021) 135(18), https://doi.org/10.1042/CS20210599) developed a new transgenic rat model that overexpresses an Ang-(1-7)-producing fusion protein. In this commentary, we discuss potential concerns with this model while also highlighting advances that can ensue from this significant technical feat.
Asunto(s)
Encéfalo , Sistema Renina-Angiotensina , Animales , RatasRESUMEN
Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a diverse variety of ligands including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by the United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of nonself or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. This classification was discussed at three national meetings and input from participants at these meetings was requested. The following manuscript is a consensus statement that combines the recommendations of the initial workshop and incorporates the input received from the participants at the three national meetings.
Asunto(s)
Receptores Depuradores/clasificación , Receptores Depuradores/fisiología , Animales , Endocitosis , Humanos , Ligandos , Ratones , National Institute of Allergy and Infectious Diseases (U.S.)/normas , Fagocitosis , Receptores Inmunológicos/fisiología , Receptores Depuradores de Clase A/fisiología , Transducción de Señal , Terminología como Asunto , Estados UnidosRESUMEN
The issue of cardiovascular and cognitive health in women is complex. During the premenopausal phase of life, women have healthy blood pressure levels that are lower than those of age-matched men, and they have less cardiovascular disease. However, in the postmenopausal stage of life, blood pressure in women increases, and they are increasingly susceptible to cardiovascular disease, cognitive impairments, and dementia, exceeding the incidence in men. The major difference between pre- and postmenopausal women is the loss of estrogen. Thus, it seemed logical that postmenopausal estrogen replacement therapy, with or without progestin, generally referred to as menopausal hormone treatment (MHT), would prevent these adverse sequelae. However, despite initially promising results, a major randomized clinical trial refuted the benefits of MHT, leading to its falling from favor. However, reappraisal of this study in the framework of a "critical window," or "timing hypothesis," has changed our perspective on the benefit-to-risk ratio of MHT, and this review discusses the historical, current, and future approaches to MHT.
Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Demencia/prevención & control , Terapia de Reemplazo de Estrógeno/efectos adversos , Estradiol/administración & dosificación , Estradiol/efectos adversos , Estradiol/uso terapéutico , Terapia de Reemplazo de Estrógeno/métodos , Femenino , Humanos , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Chronic intermittent hypoxia (CIH) increases basal sympathetic nervous system activity, augments chemoreflex-induced sympathoexcitation, and raises blood pressure. All effects are attenuated by systemic or intracerebroventricular administration of angiotensin II type 1 receptor (AT1R) antagonists. This study aimed to quantify the effects of CIH on AT1R- and AT2R-like immunoreactivity in the rostroventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), central regions that are important components of the extended chemoreflex pathway. Eighteen Sprague-Dawley rats were exposed to intermittent hypoxia (FIO2 = 0.10, 1 min at 4-min intervals) for 10 hr/day for 1, 5, 10, or 21 days. After exposure, rats were deeply anesthetized and transcardially perfused with phosphate buffered saline (PBS) followed by 4% paraformaldehyde in PBS. Brains were removed and sectioned coronally into 50 µm slices. Immunohistochemistry was used to quantify AT1R and AT2R in the RVLM and the PVN. In the RVLM, CIH significantly increased the AT1R-like immunoreactivity, but did not alter AT2R immunoreactivity, thereby augmenting the AT1R:AT2R ratio in this nucleus. In the PVN, CIH had no effect on immunoreactivity of either receptor subtype. The current findings provide mechanistic insight into increased basal sympathetic outflow, enhanced chemoreflex sensitivity, and blood pressure elevation observed in rodents exposed to CIH.
RESUMEN
Estradiol (E2) decreases both water and saline intakes by female rats. The ERα and ERß subtypes are expressed in areas of the brain that control fluid intake; however, the role that these receptors play in E2's antidipsogenic and antinatriorexigenic effects have not been examined. Accordingly, we tested the hypothesis that activation of ERα and ERß decreases water and saline intakes by female rats. We found a divergence in E2's inhibitory effect on intake: activation of ERα decreased water intake, whereas activation of ERß decreased saline intake. E2 decreases expression of the angiotensin II type 1 receptor (AT1R), a receptor with known relevance to water and salt intakes, in multiple areas of the brain where ERα and ERß are differentially expressed. Therefore, we tested for agonist-induced changes in AT1R mRNA expression by RT-PCR and protein expression by analyzing receptor binding to test the hypothesis that the divergent effects of these ER subtypes are mediated by region-specific changes in AT1R expression. Although we found no changes in AT1R mRNA or binding in areas of the brain known to control fluid intake associated with agonist treatment, the experimental results replicate and extend previous findings that body weight changes mediate alterations in AT1R expression in distinct brain regions. Together, the results reveal selective effects of ER subtypes on ingestive behaviors, advancing our understanding of E2's inhibitory role in the controls of fluid intake by female rats.
Asunto(s)
Peso Corporal/fisiología , Ingestión de Líquidos/fisiología , Receptor alfa de Estrógeno/fisiología , Receptor beta de Estrógeno/fisiología , Receptor de Angiotensina Tipo 1/biosíntesis , Receptor de Angiotensina Tipo 1/genética , Angiotensina II/farmacología , Animales , Peso Corporal/efectos de los fármacos , Química Encefálica/genética , Ingestión de Líquidos/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/efectos de los fármacos , Receptor beta de Estrógeno/efectos de los fármacos , Estrógenos/farmacología , Femenino , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Long-Evans , Receptor de Angiotensina Tipo 1/efectos de los fármacosRESUMEN
To investigate age-associated impairments in fluid homeostasis, 4-mo (young) and 32-mo (old) Fischer 344/BN male rats were studied before and after a dietary sodium load. Transferring young rats from a low-sodium (LS) to a high-sodium (HS) diet increased water intake and urine volume by 1.9- and 3.0-fold, respectively, while urine osmolality and plasma aldosterone decreased by 33 and 98%. Concomitantly, adrenocortical angiotensin type 1 receptor (AT1R) density decreased by 35%, and AT1bR mRNA decreased by 39%; no changes were observed in AT1aR mRNA. In contrast, the increase in water intake (1.4-fold) was lower in the old rats, and there was no effect of the HS diet on urine volume or urine osmolality. AT1R densities were 29% less in the old rats before transferring to the HS diet, and AT1R densities were not reduced as rapidly in response to a HS diet compared with the young animals. After 6 days on the HS diet, plasma potassium was lowered by 26% in the old rats, whereas no change was detected in the young rats. Furthermore, while plasma aldosterone was substantially decreased after 2 days on the HS diet in both young and old rats, plasma aldosterone was significantly lower in the old compared with the young animals after 2 wk on the LS diet. These findings suggest that aging attenuates the responsiveness of the adrenocortical AT1R to a sodium load through impaired regulation of AT1bR mRNA, and that this dysregulation contributes to the defects in water and electrolyte homeostasis observed in aging.
Asunto(s)
Corteza Suprarrenal/crecimiento & desarrollo , Corteza Suprarrenal/metabolismo , Envejecimiento/orina , Capacidad de Concentración Renal/fisiología , Receptor de Angiotensina Tipo 1/biosíntesis , Aldosterona/sangre , Animales , Arginina Vasopresina/sangre , Peso Corporal , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Alimentos , Regulación de la Expresión Génica , Masculino , Concentración Osmolar , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Endogámicas F344 , Receptor de Angiotensina Tipo 1/genética , Sodio en la Dieta/farmacologíaAsunto(s)
Infecciones por Coronavirus , Pandemias , Neumonía Viral , Fumadores , Betacoronavirus , Encéfalo , COVID-19 , Humanos , SARS-CoV-2RESUMEN
Cardiovascular homeostasis is regulated in large part by the rostral ventrolateral medulla (RVLM) in mammals. Projections from the RVLM to the intermediolateral column of the thoracolumbar spinal cord innervate preganglionic neurons of the sympathetic nervous system causing elevation of blood pressure and heart rate. A large proportion, but not all, of the neurons in the RVLM contain the enzymes necessary for the production of epinephrine and are identified as the C1 cell group. Angiotensin II (Ang II) activates the RVLM acting upon AT1 receptors. To assess the proportion of AT1 receptors that are located on C1 neurons in the rat RVLM this study employed an antibody to dopamine-beta-hydroxylase conjugated to saporin, to selectively destroy C1 neurons in the RVLM. Expression of tyrosine hydroxylase immunoreactive neurons in the RVLM was reduced by 57 % in the toxin injected RVLM compared to the contralateral RVLM. In contrast, densitometric analysis of autoradiographic images of (125)I-sarcosine(1), isoleucine(8) Ang II binding to AT1 receptors of the injected side RVLM revealed a small (10 %) reduction in AT1-receptor expression compared to the contralateral RVLM. These results suggest that the majority of AT1 receptors in the rat RVLM are located on non-C1 neurons or glia.
Asunto(s)
Bulbo Raquídeo/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Angiotensina II/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Masculino , Bulbo Raquídeo/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
Previous studies show that the angiotensin type 1 receptor (AT1R) is susceptible to rapid desensitization, but that more chronic treatments that stimulate ANG II lead to sensitization of several responses. It is unclear, however, if the processes of desensitization and sensitization interact. To test for differences in AT1R expression associated with single or repeated injections of ANG II, we measured AT1R mRNA in nuclei that control fluid intake of rats given ANG II either in a single injection or divided into three injections spaced 20 min apart. Rats given a single injection of ANG II had more AT1R mRNA in the subfornical organ (SFO) and the periventricular tissue surrounding the anteroventral third ventricle (AV3V) than did controls. The effect was not observed, however, when the same cumulative dose of ANG II was divided into multiple injections. Behavioral tests found that single daily injections of ANG II sensitized the dipsogenic response to ANG II, but a daily regimen of four injections did not cause sensitization. Analysis of (125)I-Sar(1)-ANG II binding revealed a paradoxical decrease in binding in the caudal AV3V and dorsal median preoptic nucleus after 5 days of single daily injections of ANG II; however, this effect was absent in rats treated for 5 days with four daily ANG II injections. Taken together, these data suggest that a desensitizing treatment regimen prevents behavior- and receptor-level effects of repeated daily ANG II.
Asunto(s)
Angiotensina II/administración & dosificación , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Ingestión de Líquidos/efectos de los fármacos , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Animales , Autorradiografía , Sitios de Unión , Encéfalo/metabolismo , Regulación hacia Abajo , Esquema de Medicación , Tolerancia a Medicamentos , Inyecciones Intraventriculares , Masculino , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Factores de TiempoRESUMEN
A seven-amino acid peptide (PEP7) is encoded within a short open reading frame within exon 2 (E2) in the 5'-leader sequence (5'LS) upstream of the rat ANG 1a-receptor (rAT1aR) mRNA. A chemically synthesized PEP7 markedly inhibited ANG II-induced Erk1/2 activation in cell culture by 62% compared with a scrambled PEP7 (sPEP7) [pErk1/2/Erk1/2 (AU): ANG II, 1.000 ± 0.0, ANG II+PEP7, 0.3812 ± 0.086, ANG II+sPEP7, 1.069 ± 0.18; n = 3]. Under these same conditions, PEP7 had no effect on ANG II-stimulated inositol-trisphosphate production. PEP7 also had no effect on epidermal growth factor- and phorbol methyl ester-induced Erk1/2 activation, suggesting PEP7 selectively inhibits AT1aR-mediated Erk1/2 signaling. PEP7 intracerebroventricularly inhibited ANG II-induced saline intake but had no effect on water intake in male and female rats, indicating PEP7 also selectively inhibits the ANG II-Erk1/2 pathway in vivo since saline drinking is Erk1/2-mediated, while water drinking is not. PEP7 inhibition of ANG II-induced saline ingestion was rapidly reversed by a subsequent intracerebroventricular injection of an oxytocin antagonist, suggesting when PEP7 blocks ANG II-stimulated Erk1/2 activation, animals no longer ingest saline to balance the continued water intake, due to the release of oxytocin and its subsequent inhibitory effects on saline drinking. PEP7 also attenuated ANG II-induced increases in arterial pressure by 35% compared with sPEP7 at the same dose. Thus, we have identified a novel peptide encoded within the rAT1aR E2 that selectively inhibits Erk1/2 activation, resulting in physiological consequences for sodium ingestion and arterial pressure that may have implications for treating sodium-sensitive diseases like hypertension and chronic kidney disease.
Asunto(s)
Angiotensina II/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Oligopéptidos/farmacología , Receptores de Angiotensina/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Ingestión de Líquidos/efectos de los fármacos , Femenino , Hipertensión/metabolismo , Masculino , Oligopéptidos/metabolismo , Fosforilación/fisiología , Ratas , Ratas Sprague-DawleyRESUMEN
The role of the Food and Drug Administration (FDA) is to ensure the safety of prescription and nonprescription drugs, dietary supplements, and the food supply, representing more than 20% of US consumer spending. The increased need to monitor imported drugs, drug products and foods, drug shortages, and compounding pharmacies bring the adequacy of FDA funding into question. Performing even at status quo cannot be accomplished if responsibilities increase without equitable funding increases: both from the federal government and fees imposed on FDA-regulated industries. Additionally, scientific advancement, new legislation, and new industries are continually increasing the FDA workload, necessitating commensurate budget increases.
RESUMEN
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic debilitating condition with no cure that shares commonality with long-COVID. This review examines current understanding of long-COVID symptoms, characteristics of the affected population, the connection with ME/CFS, and the potential for salubrinal, an agent known for its influence on cellular stress pathways, to mitigate these disorders It also describes the historical development and mechanism of action of salubrinal, to mitigate endoplasmic reticulum (ER)/cellular stress responses, that could potentially contribute to symptom improvement in both ME/CFS and long-COVID patients. Further research and clinical trials are warranted to advance our understanding of the potential role of salubrinal in improving the quality of life for individuals with long-COVID-related ME/CFS symptoms as well as ME/CFS patients.
RESUMEN
Recently, we discovered a novel non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site in rodent and human brain membranes, which is distinctly different from angiotensin receptors and key proteases processing angiotensins. It is hypothesized to be a new member of the renin-angiotensin system. This study was designed to isolate and identify this novel angiotensin binding site. An angiotensin analog, photoaffinity probe 125I-SBpa-Ang II, was used to specifically label the non-AT1, non-AT2 angiotensin binding site in mouse forebrain membranes, followed by a two-step purification procedure based on the molecular size and isoelectric point of the photoradiolabeled binding protein. Purified samples were subjected to two-dimensional gel electrophoresis followed by mass spectrometry identification of proteins in the two-dimensional gel sections containing radioactivity. LC-MS/MS analysis revealed eight protein candidates, of which the four most abundant were immunoprecipitated after photoradiolabeling. Immunoprecipitation studies indicated that the angiotensin binding site might be the membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16). To verify these observations, radioligand binding and photoradiolabeling experiments were conducted in membrane preparations of HEK293 cells overexpressing mouse neurolysin or thimet oligopeptidase (EC 3.4.24.15), a closely related metalloendopeptidase of the same family. These experiments also identified neurolysin as the non-AT1, non-AT2 angiotensin binding site. Finally, brain membranes of mice lacking neurolysin were nearly devoid of the non-AT1, non-AT2 angiotensin binding site, further establishing membrane-bound neurolysin as the binding site. Future studies will focus on the functional significance of this highly specific, high affinity interaction between neurolysin and angiotensins.
Asunto(s)
Membrana Celular/metabolismo , Metaloendopeptidasas/metabolismo , Angiotensinas/metabolismo , Animales , Sitios de Unión , Electroforesis en Gel Bidimensional , Femenino , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Espectrometría de Masas , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Metaloendopeptidasas/aislamiento & purificación , Ratones , Embarazo , Prosencéfalo/citología , Unión ProteicaRESUMEN
Blockade of the angiotensin (ANG) II receptor type 1 (AT(1)R) with angiotensin receptor blockers (ARBs) is widely used in the treatment of hypertension. However, ARBs are variably effective in reducing blood pressure, likely due, in part, to polymorphisms in the ARB binding pocket of the AT(1)R. Therefore, we need a better understanding of variations/polymorphisms that alter binding of ARBs in heterogeneous patient populations. The opossum proximal tubule cell (OKP) line is commonly used in research to evaluate renal sodium handling and therefore blood pressure. Investigating this issue, we found natural sequence variations in the opossum AT(1)R paralleling those observed in the human AT(1)R. Therefore, we posited that these sequence variations may explain ARB resistance. We demonstrate that OKP cells express AT(1)R mRNA, bind (125)I-labeled ANG II, and exhibit ANG II-induced phosphorylation of Jak2. However, Jak2 phosphorylation is not inhibited by five different ARBs commonly used to treat hypertension. Additionally, nonradioactive ANG II competes (125)I-ANG II efficiently, whereas a 10-fold molar excess of olmesartan and the ANG II receptor type 2 blocker PD-123319 is unable to block (125)I-ANG II binding. In contrast, ANG II binding to OKP cells stably expressing rat AT(1A)Rs, which have a conserved AT(1)R-binding pocket with human AT(1)R, is efficiently inhibited by olmesartan. A novel observation was that resistance to ARB binding to opossum AT(1)Rs correlates with variations from the human receptor at positions 108, 163, 192, and 198 within the ARB-binding pocket. These observations highlight the potential utility of evaluating AT(1)R polymorphisms within the ARB-binding pocket in various hypertensive populations.
Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Imidazoles/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Zarigüeyas/genética , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/genética , Tetrazoles/farmacología , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Sitios de Unión , Línea Celular , Resistencia a Medicamentos/genética , Humanos , Radioisótopos de Yodo , Janus Quinasa 2/metabolismo , Túbulos Renales Proximales/citología , Filogenia , Polimorfismo Genético/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Mensajero/genética , Ratas , Receptor de Angiotensina Tipo 1/metabolismo , Especificidad de la Especie , Vasoconstrictores/metabolismo , Vasoconstrictores/farmacologíaRESUMEN
An overactive renin-angiotensin system (RAS) is known to contribute to type 2 diabetes mellitus (T2DM). Although ACE2 overexpression has been shown to be protective against the overactive RAS, a role for pancreatic ACE2, particularly in the islets of Langerhans, in regulating glycemia in response to elevated angiotensin II (Ang II) levels remains to be elucidated. This study examined the role of endogenous pancreatic ACE2 and the impact of elevated Ang II levels on the enzyme's ability to alleviate hyperglycemia in an Ang II infusion mouse model. Male C57bl/6J mice were infused with Ang II or saline for a period of 14 days. On the 7th day of infusion, either an adenovirus encoding human ACE2 (Ad-hACE2) or a control adenovirus (Ad-eGFP) was injected into the mouse pancreas. After an additional 7-8 days, glycemia and plasma insulin levels as well as RAS components expression and oxidative stress were assessed. Ang II-infused mice exhibited hyperglycemia, hyperinsulinemia, and impaired glucose-stimulated insulin secretion from pancreatic islets compared with control mice. This phenotype was associated with decreased ACE2 expression and activity, increased Ang II type 1 receptor (AT1R) expression, and increased oxidative stress in the mouse pancreas. Ad-hACE2 treatment restored pancreatic ACE2 expression and compensatory activity against Ang II-mediated impaired glycemia, thus improving ß-cell function. Our data suggest that decreased pancreatic ACE2 is a link between overactive RAS and impaired glycemia in T2DM. Moreover, maintenance of a normal endogenous ACE2 compensatory activity in the pancreas appears critical to avoid ß-cell dysfunction, supporting a therapeutic potential for ACE2 in controlling diabetes resulting from an overactive RAS.