Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Plant Biol ; 24(1): 194, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493116

RESUMEN

BACKGROUND: In soybeans, faster canopy coverage (CC) is a highly desirable trait but a fully covered canopy is unfavorable to light interception at lower levels in the canopy with most of the incident radiation intercepted at the top of the canopy. Shoot architecture that influences CC is well studied in crops such as maize and wheat, and altering architectural traits has resulted in enhanced yield. However, in soybeans the study of shoot architecture has not been as extensive. RESULTS: This study revealed significant differences in CC among the selected soybean accessions. The rate of CC was found to decrease at the beginning of the reproductive stage (R1) followed by an increase during the R2-R3 stages. Most of the accessions in the study achieved maximum rate of CC between R2-R3 stages. We measured Light interception (LI), defined here as the ratio of Photosynthetically Active Radiation (PAR) transmitted through the canopy to the incoming PAR or the radiation above the canopy. LI was found to be significantly correlated with CC parameters, highlighting the relationship between canopy structure and light interception. The study also explored the impact of plant shape on LI and CO2 assimilation. Plant shape was characterized into distinct quantifiable parameters and by modeling the impact of plant shape on LI and CO2 assimilation, we found that plants with broad and flat shapes at the top maybe more photosynthetically efficient at low light levels, while conical shapes were likely more advantageous when light was abundant. Shoot architecture of plants in this study was described in terms of whole plant, branching and leaf-related traits. There was significant variation for the shoot architecture traits between different accessions, displaying high reliability. We found that that several shoot architecture traits such as plant height, and leaf and internode-related traits strongly influenced CC and LI. CONCLUSION: In conclusion, this study provides insight into the relationship between soybean shoot architecture, canopy coverage, and light interception. It demonstrates that novel shoot architecture traits we have defined here are genetically variable, impact CC and LI and contribute to our understanding of soybean morphology. Correlations between different architecture traits, CC and LI suggest that it is possible to optimize soybean growth without compromising on light transmission within the soybean canopy. In addition, the study underscores the utility of integrating low-cost 2D phenotyping as a practical and cost-effective alternative to more time-intensive 3D or high-tech low-throughput methods. This approach offers a feasible means of studying basic shoot architecture traits at the field level, facilitating a broader and efficient assessment of plant morphology.


Asunto(s)
Glycine max , Fotosíntesis , Dióxido de Carbono , Reproducibilidad de los Resultados , Productos Agrícolas , Hojas de la Planta , Luz
2.
Theor Appl Genet ; 129(9): 1725-38, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27282876

RESUMEN

KEY MESSAGE: Three adjacent and distinct sequence rearrangements were identified at a NAP1 locus in a soybean mutant. Genetic dissection and validation revealed the function of this gene in soybean trichome development. A soybean (Glycine max (L.) Merr.) gnarled trichome mutant, exhibiting stunted trichomes compared to wild-type, was identified in a fast neutron mutant population. Genetic mapping using whole genome sequencing-based bulked segregant analysis identified a 26.6 megabase interval on chromosome 20 that co-segregated with the phenotype. Comparative genomic hybridization analysis of the mutant indicated that the chromosome 20 interval included a small structural variant within the coding region of a soybean ortholog (Glyma.20G019300) of Arabidopsis Nck-Associated Protein 1 (NAP1), a regulator of actin nucleation during trichome morphogenesis. Sequence analysis of the candidate allele revealed multiple rearrangements within the coding region, including two deletions (approximately 1-2 kb each), a translocation, and an inversion. Further analyses revealed that the mutant allele perfectly co-segregated with the phenotype, and a wild-type soybean NAP1 transgene functionally complemented an Arabidopsis nap1 mutant. In addition, mapping and exon sequencing of NAP1 in a spontaneous soybean gnarled trichome mutant (T31) identified a frame shift mutation resulting in a truncation of the coding region. These data indicate that the soybean NAP1 gene is essential for proper trichome development and show the utility of the soybean fast neutron population for forward genetic approaches for identifying genes.


Asunto(s)
Glycine max/genética , Proteínas de Plantas/genética , Tricomas/crecimiento & desarrollo , Alelos , Arabidopsis/genética , Mapeo Cromosómico , Hibridación Genómica Comparativa , Neutrones Rápidos , Genes de Plantas , Genotipo , Fenotipo , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , Análisis de Secuencia de ARN , Eliminación de Secuencia , Glycine max/crecimiento & desarrollo
3.
New Phytol ; 207(1): 78-90, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25711411

RESUMEN

In this paper we describe PATTERN-TRIGGERED IMMUNITY (PTI) COMPROMISED RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (PCRK1) of Arabidopsis thaliana, an RLCK that is important for defense against the pathogen Pseudomonas syringae pv. maculicola ES4326 (Pma ES4326). We examined defense responses such as bacterial growth, production of reactive oxygen species (ROS) and callose deposition in pcrk1 mutant plants to determine the role of PCRK1 during pathogen infection. Expression of PCRK1 was induced following pathogen infection. Pathogen growth was significantly higher in pcrk1 mutant lines than in wild-type Col-0. Mutant pcrk1 plants showed reduced pattern-triggered immunity (PTI) against Pma ES4326 after pretreatment with peptides derived from flagellin (flg22), elongation factor-Tu (elf18), or an endogenous protein (pep1). Deposition of callose was reduced in pcrk1 plants, indicating a role of PCRK1 in activation of early immune responses. A PCRK1 transgene containing a mutation in a conserved lysine residue important for phosphorylation activity of kinases (K118E) failed to complement a pcrk1 mutant for the Pma ES4326 growth phenotype. Our study shows that PCRK1 plays an important role during PTI and that a conserved lysine residue in the putative kinase domain is important for PCRK1 function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Pseudomonas syringae/fisiología , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia Conservada , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucanos/metabolismo , Lisina/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Inmunidad de la Planta/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo
4.
Plant Physiol ; 164(2): 1093-107, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24367018

RESUMEN

Pectins, major components of dicot cell walls, are synthesized in a heavily methylesterified form in the Golgi and are partially deesterified by pectin methylesterases (PMEs) upon export to the cell wall. PME activity is important for the virulence of the necrotrophic fungal pathogen Botrytis cinerea. Here, the roles of Arabidopsis PMEs in pattern-triggered immunity and immune responses to the necrotrophic fungus Alternaria brassicicola and the bacterial hemibiotroph Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) were studied. Plant PME activity increased during pattern-triggered immunity and after inoculation with either pathogen. The increase of PME activity in response to pathogen treatment was concomitant with a decrease in pectin methylesterification. The pathogen-induced PME activity did not require salicylic acid or ethylene signaling, but was dependent on jasmonic acid signaling. In the case of induction by A. brassicicola, the ethylene response factor, but not the MYC2 branch of jasmonic acid signaling, contributed to induction of PME activity, whereas in the case of induction by Pma ES4326, both branches contributed. There are 66 PME genes in Arabidopsis, suggesting extensive genetic redundancy. Nevertheless, selected pme single, double, triple and quadruple mutants allowed significantly more growth of Pma ES4326 than wild-type plants, indicating a role of PMEs in resistance to this pathogen. No decreases in total PME activity were detected in these pme mutants, suggesting that the determinant of immunity is not total PME activity; rather, it is some specific effect of PMEs such as changes in the pattern of pectin methylesterification.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/inmunología , Hidrolasas de Éster Carboxílico/metabolismo , Inmunidad de la Planta/inmunología , Pseudomonas syringae/fisiología , Alternaria/patogenicidad , Alternaria/fisiología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Ciclopentanos/metabolismo , Esterificación , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Oxilipinas/metabolismo , Pectinas/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/patogenicidad , Receptores de Reconocimiento de Patrones/metabolismo , Regulación hacia Arriba/genética
5.
Plant Physiol ; 163(4): 1741-51, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24134885

RESUMEN

Two members of the eight-member CALMODULIN-BINDING PROTEIN60 (CBP60) gene family, CBP60g and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1 (SARD1), encode positive regulators of plant immunity that promote the production of salicylic acid (SA) and affect the expression of SA-dependent and SA-independent defense genes. Here, we investigated the other six family members in Arabidopsis (Arabidopsis thaliana). Only cbp60a mutations affected growth of the bacterial pathogen Pseudomonas syringae pv maculicola ES4326. In contrast to cbp60g and sard1 mutations, cbp60a mutations reduced pathogen growth, indicating that CBP60a is a negative regulator of immunity. Bacterial growth was increased by cbp60g only in the presence of CBP60a, while the increase in growth due to sard1 was independent of CBP60a, suggesting that the primary function of CBP60g may be to counter the repressive effect of CBP60a. In the absence of pathogen, levels of SA as well as of several SA-dependent and SA-independent pathogen-inducible genes were higher in cbp60a plants than in the wild type, suggesting that the enhanced resistance of cbp60a plants may result from the activation of immune responses prior to pathogen attack. CBP60a bound calmodulin, and the calmodulin-binding domain was defined at the C-terminal end of the protein. Transgenes encoding mutant versions of CBP60a lacking the ability to bind calmodulin failed to complement null cbp60a mutations, indicating that calmodulin-binding ability is required for the immunity-repressing function of CBP60a. Regulation at the CBP60 node involves negative regulation by CBP60a as well as positive regulation by CBP60g and SARD1, providing multiple levels of control over the activation of immune responses.


Asunto(s)
Arabidopsis/inmunología , Proteínas de Unión a Calmodulina/metabolismo , Familia de Multigenes , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/metabolismo , Proteínas de Unión a Calmodulina/química , Proteínas de Unión a Calmodulina/genética , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Prueba de Complementación Genética , Modelos Biológicos , Mutación/genética , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente , Unión Proteica , Estructura Terciaria de Proteína , Pseudomonas syringae/crecimiento & desarrollo , Ácido Salicílico/metabolismo , Transgenes
6.
Plant Genome ; 16(2): e20304, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36792954

RESUMEN

Early canopy coverage is a desirable trait that is a major determinant of yield in soybean (Glycine max). Variation in traits comprising shoot architecture can influence canopy coverage, canopy light interception, canopy-level photosynthesis, and source-sink partitioning efficiency. However, little is known about the extent of phenotypic diversity of shoot architecture traits and their genetic control in soybean. Thus, we sought to understand the contribution of shoot architecture traits to canopy coverage and to determine the genetic control of these traits. We examined the natural variation for shoot architecture traits in a set of 399 diverse maturity group I soybean (SoyMGI) accessions to identify relationships between traits, and to identify loci that are associated with canopy coverage and shoot architecture traits. Canopy coverage was correlated with branch angle, number of branches, plant height, and leaf shape. Using previously collected 50K single nucleotide polymorphism data, we identified quantitative trait locus (QTL) associated with branch angle, number of branches, branch density, leaflet shape, days to flowering, maturity, plant height, number of nodes, and stem termination. In many cases, QTL intervals overlapped with previously described genes or QTL. We also found QTL associated with branch angle and leaflet shape located on chromosomes 19 and 4, respectively, and these QTL overlapped with QTL associated with canopy coverage, suggesting the importance of branch angle and leaflet shape in determining canopy coverage. Our results highlight the role individual architecture traits play in canopy coverage and contribute information on their genetic control that could help facilitate future efforts in their genetic manipulation.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Fenotipo , Hojas de la Planta , Fotosíntesis
7.
Plant Signal Behav ; 10(10): e1063759, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26237268

RESUMEN

In Arabidopsis, defense signaling is triggered by the perception of conserved molecular patterns by pattern recognition receptors (PRRs). Signal transduction from the PRRs requires members of a family of Receptor-Like Cytoplasmic Kinases (RLCKs). Previously, we described one such RLCK, PTI Compromised Receptor-Like Cytoplasmic Kinase 1 (PCRK1) that is important for immunity induced by Microbe Associated Molecular Patterns (MAMPs) as well as Damage Associated Molecular Patterns (DAMPs). In this study, we measured the growth of Pma ES4326 in double mutants carrying pcrk1 together with the salicylic acid (SA) biosynthesis mutation sid2-2 or the jasmonic acid (JA) receptor mutation coi1-1, showing that the function of PCRK1 is SA independent but may be partially dependent on JA. Mutation of phosphorylated serine residues S232, S233 and S237 compromised the immune signaling function of PCRK1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Arabidopsis/microbiología , Ciclopentanos/metabolismo , Mutación , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA