Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 152(3): 453-66, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374342

RESUMEN

There are ~650,000 Alu elements in transcribed regions of the human genome. These elements contain cryptic splice sites, so they are in constant danger of aberrant incorporation into mature transcripts. Despite posing a major threat to transcriptome integrity, little is known about the molecular mechanisms preventing their inclusion. Here, we present a mechanism for protecting the human transcriptome from the aberrant exonization of transposable elements. Quantitative iCLIP data show that the RNA-binding protein hnRNP C competes with the splicing factor U2AF65 at many genuine and cryptic splice sites. Loss of hnRNP C leads to formation of previously suppressed Alu exons, which severely disrupt transcript function. Minigene experiments explain disease-associated mutations in Alu elements that hamper hnRNP C binding. Thus, by preventing U2AF65 binding to Alu elements, hnRNP C plays a critical role as a genome-wide sentinel protecting the transcriptome. The findings have important implications for human evolution and disease.


Asunto(s)
Elementos Alu , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Transcriptoma , Evolución Molecular , Exones , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoprecipitación , Sitios de Empalme de ARN , Análisis de Secuencia de ARN , Factor de Empalme U2AF
2.
Proc Natl Acad Sci U S A ; 121(13): e2314588121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502691

RESUMEN

During development, motor axons are guided toward muscle target by various extrinsic cues including extracellular matrix (ECM) proteins whose identities and cellular source remain poorly characterized. Here, using single-cell RNAseq of sorted GFP+ cells from smyhc1:gfp-injected zebrafish embryos, we unravel the slow muscle progenitors (SMP) pseudotemporal trajectory at the single-cell level and show that differentiating SMPs are a major source of ECM proteins. The SMP core-matrisome was characterized and computationally predicted to form a basement membrane-like structure tailored for motor axon guidance, including basement membrane-associated ECM proteins, as collagen XV-B, one of the earliest core-matrisome gene transcribed in differentiating SMPs and the glycoprotein Tenascin C. To investigate how contact-mediated guidance cues are organized along the motor path to exert their function in vivo, we used microscopy-based methods to analyze and quantify motor axon navigation in tnc and col15a1b knock-out fish. We show that motor axon shape and growth rely on the timely expression of the attractive cue Collagen XV-B that locally provides axons with a permissive soft microenvironment and separately organizes the repulsive cue Tenascin C into a unique functional dual topology. Importantly, bioprinted micropatterns that mimic this in vivo ECM topology were sufficient to drive directional motor axon growth. Our study offers evidence that not only the composition of ECM cues but their topology critically influences motor axon navigation in vertebrates with potential applications in regenerative medicine for peripheral nerve injury as regenerating nerves follow their original path.


Asunto(s)
Tenascina , Pez Cebra , Animales , Tenascina/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Axones/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo
3.
Trends Genet ; 35(5): 346-358, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30902461

RESUMEN

Sex determination is the process by which the bipotential gonads develop as either testes or ovaries. With two distinct potential outcomes, the gonadal primordium offers a unique model for the study of cell fate specification and how distinct cell populations diverge from multipotent progenitors. This review focuses on recent advances in our understanding of the genetic programs and epigenetic mechanisms that regulate gonadal sex determination and the regulation of cell fate commitment in the bipotential gonads. We rely primarily on mouse data to illuminate the complex and dynamic genetic programs controlling cell fate decision and sex-specific cell differentiation during gonadal formation and gonadal sex determination.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Gónadas/embriología , Gónadas/metabolismo , Organogénesis/genética , Procesos de Determinación del Sexo/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Desarrollo Embrionario/genética , Femenino , Humanos , Masculino , Ovario , Fenotipo , Testículo
4.
FASEB J ; 35(4): e21452, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749946

RESUMEN

Despite the importance of germ cell (GC) differentiation for sexual reproduction, the gene networks underlying their fate remain unclear. Here, we comprehensively characterize the gene expression dynamics during sex determination based on single-cell RNA sequencing of 14 914 XX and XY mouse GCs between embryonic days (E) 9.0 and 16.5. We found that XX and XY GCs diverge transcriptionally as early as E11.5 with upregulation of genes downstream of the bone morphogenic protein (BMP) and nodal/Activin pathways in XY and XX GCs, respectively. We also identified a sex-specific upregulation of genes associated with negative regulation of mRNA processing and an increase in intron retention consistent with a reduction in mRNA splicing in XY testicular GCs by E13.5. Using computational gene regulation network inference analysis, we identified sex-specific, sequential waves of putative key regulator genes during GC differentiation and revealed that the meiotic genes are regulated by positive and negative master modules acting in an antagonistic fashion. Finally, we found that rare adrenal GCs enter meiosis similarly to ovarian GCs but display altered expression of master genes controlling the female and male genetic programs, indicating that the somatic environment is important for GC function. Our data are available on a web platform and provide a molecular roadmap of GC sex determination at single-cell resolution, which will serve as a valuable resource for future studies of gonad development, function, and disease.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Procesos de Determinación del Sexo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas , Masculino , Ratones , Ratones Transgénicos , Análisis de la Célula Individual , Factores de Tiempo , Cromosoma X , Cromosoma Y
5.
Genomics ; 113(3): 1589-1604, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33812898

RESUMEN

Setmar is a gene specific to simian genomes. The function(s) of its isoforms are poorly understood and their existence in healthy tissues remains to be validated. Here we profiled SETMAR expression and its genome-wide binding landscape in colon tissue. We found isoforms V3 and V6 in healthy and tumour colon tissues as well as incell lines. In two colorectal cell lines SETMAR binds to several thousand Hsmar1 and MADE1 terminal ends, transposons mostly located in non-genic regions of active chromatin including in enhancers. It also binds to a 12-bp motifs similar to an inner motif in Hsmar1 and MADE1 terminal ends. This motif is interspersed throughout the genome and is enriched in GC-rich regions as well as in CpG islands that contain constitutive replication origins. It is also found in enhancers other than those associated with Hsmar1 and MADE1. The role of SETMAR in the expression of genes, DNA replication and in DNA repair are discussed.


Asunto(s)
Reparación del ADN , N-Metiltransferasa de Histona-Lisina , Secuencias Reguladoras de Ácidos Nucleicos , Colon/metabolismo , Elementos de Facilitación Genéticos , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Isoformas de Proteínas/genética
6.
Proc Natl Acad Sci U S A ; 115(21): 5474-5479, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735715

RESUMEN

Mammalian sex determination is controlled by the antagonistic interactions of two genetic pathways: The SRY-SOX9-FGF9 network promotes testis determination partly by opposing proovarian pathways, while RSPO1/WNT-ß-catenin/FOXL2 signals control ovary development by inhibiting SRY-SOX9-FGF9. The molecular basis of this mutual antagonism is unclear. Here we show that ZNRF3, a WNT signaling antagonist and direct target of RSPO1-mediated inhibition, is required for sex determination in mice. XY mice lacking ZNRF3 exhibit complete or partial gonadal sex reversal, or related defects. These abnormalities are associated with ectopic WNT/ß-catenin activity and reduced Sox9 expression during fetal sex determination. Using exome sequencing of individuals with 46,XY disorders of sex development, we identified three human ZNRF3 variants in very rare cases of XY female presentation. We tested two missense variants and show that these disrupt ZNRF3 activity in both human cell lines and zebrafish embryo assays. Our data identify a testis-determining function for ZNRF3 and indicate a mechanism of direct molecular interaction between two mutually antagonistic organogenetic pathways.


Asunto(s)
Trastornos del Desarrollo Sexual/genética , Diferenciación Sexual , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/fisiología , Proteínas Wnt/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores , Adolescente , Adulto , Animales , Células Cultivadas , Trastornos del Desarrollo Sexual/patología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Gónadas/patología , Humanos , Masculino , Ratones , Mutación Missense , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Testículo/metabolismo , Testículo/patología , Trombospondinas/genética , Trombospondinas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Adulto Joven , Pez Cebra , beta Catenina/genética , beta Catenina/metabolismo
7.
Bioinformatics ; 35(17): 3133-3139, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668675

RESUMEN

MOTIVATION: Recent advances in transcriptomics have enabled unprecedented insight into gene expression analysis at a single-cell resolution. While it is anticipated that the number of publications based on such technologies will increase in the next decade, there is currently no public resource to centralize and enable scientists to explore single-cell datasets published in the field of reproductive biology. RESULTS: Here, we present a major update of the ReproGenomics Viewer, a cross-species and cross-technology web-based resource of manually-curated sequencing datasets related to reproduction. The redesign of the ReproGenomics Viewer's architecture is accompanied by significant growth of the database content including several landmark single-cell RNA-sequencing datasets. The implementation of additional tools enables users to visualize and browse the complex, high-dimensional data now being generated in the reproductive field. AVAILABILITY AND IMPLEMENTATION: The ReproGenomics Viewer resource is freely accessible at http://rgv.genouest.org. The website is implemented in Python, JavaScript and MongoDB, and is compatible with all major browsers. Source codes can be downloaded from https://github.com/fchalmel/RGV. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Biología Computacional , Bases de Datos Factuales , Genómica , Análisis de Secuencia de ARN
8.
FASEB J ; 32(6): 3321-3335, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401624

RESUMEN

The insulin family of growth factors (insulin, IGF1, and IGF2) are critical in sex determination, adrenal differentiation, and testicular function. Notably, the IGF system has been reported to mediate the proliferation of steroidogenic cells. However, the precise role and contribution of the membrane receptors mediating those effects, namely, insulin receptor (INSR) and type-I insulin-like growth factor receptor (IGF1R), have not, to our knowledge, been investigated. We show here that specific deletion of both Insr and Igf1r in steroidogenic cells in mice leads to severe alterations of adrenocortical and testicular development. Double-mutant mice display drastic size reduction of both adrenocortex and testes, with impaired corticosterone, testosterone, and sperm production. Detailed developmental analysis of the testes revealed that fetal Leydig cell (LC) function is normal, but there is a failure of adult LC maturation and steroidogenic function associated with accumulation of progenitor LCs (PLCs). Cell-lineage tracing revealed PLC enrichment is secondary to Insr and Igf1r deletion in differentiated adult LCs, suggesting a feedback mechanism between cells at different steps of differentiation. Taken together, these data reveal the cell-autonomous and nonautonomous roles of the IGF system for proper development and maintenance of steroidogenic lineages.-Neirijnck, Y., Calvel, P., Kilcoyne, K. R., Kühne, F., Stévant, I., Griffeth, R. J., Pitetti, J.-L., Andric, S. A., Hu, M.-C., Pralong, F., Smith, L. B., Nef, S. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells.


Asunto(s)
Diferenciación Celular , Células Intersticiales del Testículo/metabolismo , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Células Madre/metabolismo , Corteza Suprarrenal/citología , Corteza Suprarrenal/metabolismo , Animales , Corticosterona/genética , Corticosterona/metabolismo , Células Intersticiales del Testículo/citología , Masculino , Ratones , Ratones Noqueados , Receptor de Insulina/genética , Receptores de Somatomedina/genética , Células Madre/citología , Testosterona/genética , Testosterona/metabolismo
9.
PLoS Genet ; 10(5): e1004340, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24784881

RESUMEN

The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation occurred in the conserved membrane bound O-acyltransferase (MBOAT) domain and experimentally disrupted the ability of HHAT to palmitoylate Hh proteins such as DHH and SHH. Consistent with the patient phenotype, HHAT was found to be expressed in the somatic cells of both XX and XY gonads at the time of sex determination, and Hhat loss of function in mice recapitulates most of the testicular, skeletal, neuronal and growth defects observed in humans. In the developing testis, HHAT is not required for Sertoli cell commitment but plays a role in proper testis cord formation and the differentiation of fetal Leydig cells. Altogether, these results shed new light on the mechanisms of action of Hh proteins. Furthermore, they provide the first clinical evidence of the essential role played by lipid modification of Hh proteins in human testicular organogenesis and embryonic development.


Asunto(s)
Aciltransferasas/genética , Trastorno del Desarrollo Sexual 46,XY/genética , Proteínas Hedgehog/metabolismo , Lipoilación/genética , Mutación Missense , Transducción de Señal/genética , Aciltransferasas/química , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Homocigoto , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Linaje , Homología de Secuencia de Aminoácido , Testículo/embriología
10.
Front Cell Dev Biol ; 11: 1327410, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283992

RESUMEN

Gonadal sex determination in mice is a complex and dynamic process, which is crucial for the development of functional reproductive organs. The expression of genes involved in this process is regulated by a variety of genetic and epigenetic mechanisms. Recently, there has been increasing evidence that transposable elements (TEs), which are a class of mobile genetic elements, play a significant role in regulating gene expression during embryogenesis and organ development. In this study, we aimed to investigate the involvement of TEs in the regulation of gene expression during mouse embryonic gonadal development. Through bioinformatics analysis, we aimed to identify and characterize specific TEs that operate as regulatory elements for sex-specific genes, as well as their potential mechanisms of regulation. We identified TE loci expressed in a time- and sex-specific manner along fetal gonad development that correlate positively and negatively with nearby gene expression, suggesting that their expression is integrated to the gonadal regulatory network. Moreover, chromatin accessibility and histone post-transcriptional modification analyses in differentiating supporting cells revealed that TEs are acquiring a sex-specific signature for promoter-, enhancer-, and silencer-like elements, with some of them being proximal to critical sex-determining genes. Altogether, our study introduces TEs as the new potential players in the gene regulatory network that controls gonadal development in mammals.

11.
Food Chem Toxicol ; 182: 114085, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37844793

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinylestradiol (EE2) are extensively used in human and veterinary medicine. Due to their partial removal by wastewater treatment plants, they are frequent environmental contaminants, particularly in drinking water. Here, we investigated the adverse outcomes of chronic exposure to mixtures of NSAIDs (ibuprofen, 2hydroxy-ibuprofen, diclofenac) and EE2 at two environmentally relevant doses in drinking water, on the reproductive organ development and fertility in F1-exposed male and female mice and in their F2 offspring. In male and female F1 mice, which were exposed to these mixtures, reproductive organ maturation, estrous cyclicity, and spermiogenesis were altered. These defects were observed also in F2 animals, in addition to some specific sperm parameter alterations in F2 males. Transcriptomic analysis revealed significant changes in gene expression patterns and associated pathways implicated in testis and ovarian physiology. Chronic exposure of mice to NSAID and EE2 mixtures at environmental doses intergenerationally affected male and female fertility (i.e. total number of pups and time between litters). Our study provides new insights into the adverse effects of these pharmaceuticals on the reproductive health and will facilitate the implementation of a future regulatory environmental risk assessment of NSAIDs and EE2 for human health.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Masculino , Animales , Ratones , Etinilestradiol/toxicidad , Reproducción , Ibuprofeno/farmacología , Semen , Fertilidad , Antiinflamatorios no Esteroideos/toxicidad , Contaminantes Químicos del Agua/toxicidad
12.
Sci Adv ; 9(1): eabn9793, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598988

RESUMEN

During embryonic development, mutually antagonistic signaling cascades determine gonadal fate toward a testicular or ovarian identity. Errors in this process result in disorders of sex development (DSDs), characterized by discordance between chromosomal, gonadal, and anatomical sex. The absence of an appropriate, accessible in vitro system is a major obstacle in understanding mechanisms of sex-determination/DSDs. Here, we describe protocols for differentiation of mouse and human pluripotent cells toward gonadal progenitors. Transcriptomic analysis reveals that the in vitro-derived murine gonadal cells are equivalent to embryonic day 11.5 in vivo progenitors. Using similar conditions, Sertoli-like cells derived from 46,XY human induced pluripotent stem cells (hiPSCs) exhibit sustained expression of testis-specific genes, secrete anti-Müllerian hormone, migrate, and form tubular structures. Cells derived from 46,XY DSD female hiPSCs, carrying an NR5A1 variant, show aberrant gene expression and absence of tubule formation. CRISPR-Cas9-mediated variant correction rescued the phenotype. This is a robust tool to understand mechanisms of sex determination and model DSDs.


Asunto(s)
Disgenesia Gonadal 46 XY , Células Madre Pluripotentes Inducidas , Masculino , Animales , Ratones , Humanos , Femenino , Reprogramación Celular/genética , Gónadas , Disgenesia Gonadal 46 XY/genética
13.
Science ; 382(6670): 600-606, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37917714

RESUMEN

Sex determination in mammals depends on the differentiation of the supporting lineage of the gonads into Sertoli or pregranulosa cells that govern testis and ovary development, respectively. Although the Y-linked testis-determining gene Sry has been identified, the ovarian-determining factor remains unknown. In this study, we identified -KTS, a major, alternatively spliced isoform of the Wilms tumor suppressor WT1, as a key determinant of female sex determination. Loss of -KTS variants blocked gonadal differentiation in mice, whereas increased expression, as found in Frasier syndrome, induced precocious differentiation of ovaries independently of their genetic sex. In XY embryos, this antagonized Sry expression, resulting in male-to-female sex reversal. Our results identify -KTS as an ovarian-determining factor and demonstrate that its time of activation is critical in gonadal sex differentiation.


Asunto(s)
Ovario , Procesos de Determinación del Sexo , Proteínas WT1 , Animales , Femenino , Masculino , Ratones , Ovario/crecimiento & desarrollo , Procesos de Determinación del Sexo/genética , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Testículo/crecimiento & desarrollo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Isoformas de Proteínas
14.
Cell Rep ; 39(11): 110935, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705036

RESUMEN

Leydig cells (LCs) are the major androgen-producing cells in the testis. They arise from steroidogenic progenitors (SPs), whose origins, maintenance, and differentiation dynamics remain largely unknown. Single-cell transcriptomics reveal that the mouse steroidogenic lineage is specified as early as embryonic day 12.5 (E12.5) and has a dual mesonephric and coelomic origin. SPs specifically express the Wnt5a gene and evolve rapidly. At E12.5 and E13.5, they give rise first to an intermediate population of pre-LCs, and finally to fetal LCs. At E16.5, SPs possess the characteristics of the dormant progenitors at the origin of adult LCs and are also transcriptionally closely related to peritubular myoid cells (PMCs). In agreement with our in silico analysis, in vivo lineage tracing indicates that Wnt5a-expressing cells are bona fide progenitors of PMCs as well as fetal and adult LCs, contributing to most of the LCs present in the fetal and adult testis.


Asunto(s)
Células Intersticiales del Testículo , Testículo , Andrógenos , Animales , Diferenciación Celular , Feto , Masculino , Ratones
15.
Sci Adv ; 8(21): eabm0972, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35613264

RESUMEN

Gonadal sex determination represents a unique model for studying cell fate decisions. However, a complete understanding of the different cell lineages forming the developing testis and ovary remains elusive. Here, we investigated the origin, specification, and subsequent sex-specific differentiation of a previously uncharacterized population of supporting-like cells (SLCs) in the developing mouse gonads. The SLC lineage is closely related to the coelomic epithelium and specified as early as E10.5, making it the first somatic lineage to be specified in the bipotential gonad. SLC progenitors are localized within the genital ridge at the interface with the mesonephros and initially coexpress Wnt4 and Sox9. SLCs become sexually dimorphic around E12.5, progressively acquire a more Sertoli- or pregranulosa-like identity and contribute to the formation of the rete testis and rete ovarii. Last, we found that WNT4 is a crucial regulator of the SLC lineage and is required for normal development of the rete testis.

16.
Front Cell Dev Biol ; 9: 695546, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262907

RESUMEN

Leydig cells (LC) are the main testicular androgen-producing cells. In eutherian mammals, two types of LCs emerge successively during testicular development, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs). Both display significant differences in androgen production and regulation. Using bulk RNA sequencing, we compared the transcriptomes of both LC populations to characterize their specific transcriptional and functional features. Despite similar transcriptomic profiles, a quarter of the genes show significant variations in expression between FLCs and ALCs. Non-transcriptional events, such as alternative splicing was also observed, including a high rate of intron retention in FLCs compared to ALCs. The use of single-cell RNA sequencing data also allowed the identification of nine FLC-specific genes and 50 ALC-specific genes. Expression of the corticotropin-releasing hormone 1 (Crhr1) receptor and the ACTH receptor melanocortin type 2 receptor (Mc2r) specifically in FLCs suggests a dual regulation of steroidogenesis. The androstenedione synthesis by FLCs is stimulated by luteinizing hormone (LH), corticotrophin-releasing hormone (CRH), and adrenocorticotropic hormone (ACTH) whereas the testosterone synthesis by ALCs is dependent exclusively on LH. Overall, our study provides a useful database to explore LC development and functions.

17.
Brief Funct Genomics ; 19(2): 92-100, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31796947

RESUMEN

Ever since Thomas Hunt Morgan's discovery of the chromosomal basis of inheritance by using Drosophila melanogaster as a model organism, the fruit fly has remained an essential model system in studies of genome biology, including chromatin organisation. Very much as in vertebrates, in Drosophila, the genome is organised in territories, compartments and topologically associating domains (TADs). However, these domains might be formed through a slightly different mechanism than in vertebrates due to the presence of a large and potentially redundant set of insulator proteins and the minor role of dCTCF in TAD boundary formation. Here, we review the different levels of chromatin organisation in Drosophila and discuss mechanisms and factors that might be involved in TAD formation. The dynamics of TADs and enhancer-promoter interactions in the context of transcription are covered in the light of currently conflicting results. Finally, we illustrate the value of polymer modelling approaches to infer the principles governing the three-dimensional organisation of the Drosophila genome.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Genoma de los Insectos/genética , Animales
18.
Genetics ; 214(2): 467-477, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31836612

RESUMEN

XY C57BL/6J (B6) mice harboring a Mus musculus domesticus-type Y chromosome (Y POS ), known as B6.Y POS mice, commonly undergo gonadal sex reversal and develop as phenotypic females. In a minority of cases, B6.Y POS males are identified and a proportion of these are fertile. This phenotypic variability on a congenic B6 background has puzzled geneticists for decades. Recently, a B6.Y POS colony was shown to carry a non-B6-derived region of chromosome 11 that protected against B6.Y POS sex reversal. Here. we show that a B6.Y POS colony bred and archived at the MRC Harwell Institute lacks the chromosome 11 modifier but instead harbors an ∼37 Mb region containing non-B6-derived segments on chromosome 13. This region, which we call Mod13, protects against B6.Y POS sex reversal in a proportion of heterozygous animals through its positive and negative effects on gene expression during primary sex determination. We discuss Mod13's influence on the testis determination process and its possible origin in light of sequence similarities to that region in other mouse genomes. Our data reveal that the B6.Y POS sex reversal phenomenon is genetically complex and the explanation of observed phenotypic variability is likely dependent on the breeding history of any local colony.


Asunto(s)
Disgenesia Gonadal 46 XY/genética , Procesos de Determinación del Sexo/genética , Cromosoma Y/genética , Animales , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 13/metabolismo , Proteínas de Unión al ADN/genética , Trastornos del Desarrollo Sexual/genética , Trastornos del Desarrollo Sexual/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Genoma , Disgenesia Gonadal 46 XY/metabolismo , Gónadas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Ovario/metabolismo , Testículo/metabolismo , Factores de Transcripción/genética
19.
Sci Adv ; 6(21): eaaz1261, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32494737

RESUMEN

In mammals, the timing of meiosis entry is regulated by signals from the gonadal environment. All-trans retinoic acid (ATRA) signaling is considered the key pathway that promotes Stra8 (stimulated by retinoic acid 8) expression and, in turn, meiosis entry. This model, however, is debated because it is based on analyzing the effects of exogenous ATRA on ex vivo gonadal cultures, which not accurately reflects the role of endogenous ATRA. Aldh1a1 and Aldh1a2, two retinaldehyde dehydrogenases synthesizing ATRA, are expressed in the mouse ovaries when meiosis initiates. Contrary to the present view, here, we demonstrate that ATRA-responsive cells are scarce in the ovary. Using three distinct gene deletion models for Aldh1a1;Aldh1a2;Aldh1a3, we show that Stra8 expression is independent of ATRA production by ALDH1A proteins and that germ cells progress through meiosis. Together, these data demonstrate that ATRA signaling is dispensable for instructing meiosis initiation in female germ cells.


Asunto(s)
Meiosis , Ovario , Animales , Femenino , Células Germinativas/metabolismo , Mamíferos/metabolismo , Ratones , Ovario/metabolismo , Proteínas/metabolismo , Tretinoina/farmacología
20.
Andrology ; 8(6): 1795-1804, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32609951

RESUMEN

BACKGROUND: The effects of PPIs on human sperm fertilizing capacity were poorly investigated although these drugs are widely over-used. Two publications retrospectively studied relationships between any PPI intake and sperm parameters from patients consulting at infertility clinics, but the conclusions of these reports were contradictory. Only two reports investigated the effects of lansoprazole and omeprazole on sperm motility and found lansoprazole to be deleterious and omeprazole to be neutral for sperm motility. The inconsistency of the PPI effect in the previous reports emphasizes the need for more basic research on human spermatozoa, taking into account the hypothesis that the different PPI drugs may have different effects on sperm physiology. OBJECTIVES: Do PPIs, which are among the most widely sold drug in the word, impact negatively human sperm capacitation and sperm motility? MATERIALS AND METHODS: The effects of PPIs on human sperm maturation and motility were analyzed by CASA, flow cytometry, and Western blot. RESULTS: We tested the impact of 6 different PPIs on human sperm motility and capacitation. We showed that pantoprazole, but not the other PPIs, decreased sperm progressive motility and capacitation-induced sperm hyperactivation. We therefore investigated further the effects of pantoprazole on sperm capacitation, and we observed that it had a significant deleterious effect on the capacitation-induced hyperpolarization of the membrane potential and capacitation-associated protein phosphorylation. DISCUSSION AND CONCLUSION: Our results indicate that exposure to pantoprazole has an adverse effect on the physiological competence of human spermatozoa. As the capacitation process takes place within the female tract, our results suggest that PPIs intake by the female partner may impair in vivo sperm maturation and possibly fertilization. Moreover, the absence of adverse effect by PPIs on mouse sperm emphasizes the need to develop reprotox assays using human material to better assess the effects of medication intake on sperm physiology.


Asunto(s)
Pantoprazol/efectos adversos , Inhibidores de la Bomba de Protones/efectos adversos , Análisis de Semen/métodos , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , 2-Piridinilmetilsulfinilbencimidazoles/efectos adversos , 2-Piridinilmetilsulfinilbencimidazoles/farmacología , Adulto , Fertilización/efectos de los fármacos , Humanos , Lansoprazol/efectos adversos , Lansoprazol/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Persona de Mediana Edad , Omeprazol/efectos adversos , Omeprazol/farmacología , Pantoprazol/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de la Bomba de Protones/farmacología , Rabeprazol/efectos adversos , Rabeprazol/farmacología , Estudios Retrospectivos , Maduración del Esperma/fisiología , Espermatozoides/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA