Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Curr Opin Cell Biol ; 5(4): 641-6, 1993 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8257606

RESUMEN

Studies of vacuolar protein sorting in yeast are revealing important new insights into the mechanisms of intracellular membrane trafficking. Recent work has raised questions about the prevailing view concerning membrane protein transport to the vacuole, and has indicated roles in vacuolar protein sorting for GTP-binding proteins, clathrin, a serine/threonine protein kinase and a phosphatidylinositol 3-kinase.


Asunto(s)
Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Clatrina/fisiología , Proteínas de Unión al GTP/fisiología , Proteínas de la Membrana/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Solubilidad
2.
Trends Cell Biol ; 2(12): 363-8, 1992 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14731957

RESUMEN

Yeast genetics has identified more than 40 genes involved in the biogenesis and maintenance of the yeast lysosome-like vacuole. Recent data on two of these genes, VPS15 and VPS34, are beginning to provide some fundamental insights into the mechanisms governing protein sorting within the eukaryotic secretory pathway. VPS15 and VPS34 encode a novel protein kinase and a phosphatidylinositol 3-kinase, respectively, that function together as components of a membrane-associated signal transduction complex. These studies of the VPS15-VPS34 complex indicate that intracellular protein trafficking decisions may be regulated by protein phosphorylation and phosphatidylinositol signalling events.

3.
J Cell Biol ; 105(3): 1405-16, 1987 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-3654759

RESUMEN

Analysis of the expression and assembly of the anion transporter by metabolic pulse-chase and steady-state protein and RNA measurements reveals that the extent of association of band 3 with the membrane cytoskeleton varies during chicken embryonic development. Pulse-chase studies have indicated that band 3 polypeptides do not associate with the membrane cytoskeleton until they have been transported to the plasma membrane. At this time, band 3 polypeptides are slowly recruited, over a period of hours, onto a preassembled membrane cytoskeletal network and the extent of this cytoskeletal assembly is developmentally regulated. Only 3% of the band 3 polypeptides are cytoskeletal-associated in 4-d erythroid cells vs. 93% in 10-d erythroid cells and 36% in 15-d erythroid cells. This observed variation appears to be regulated primarily at the level of recruitment onto the membrane cytoskeleton rather than by different transport kinetics to the membrane or differential turnover of the soluble and insoluble polypeptides and is not dependent upon the lineage or stage of differentiation of the erythroid cells. Steady-state protein and RNA analyses indicate that the low levels of cytoskeletal band 3 very early in development most likely result from limiting amounts of ankyrin and protein 4.1, the membrane cytoskeletal binding sites for band 3. As embryonic development proceeds, ankyrin and protein 4.1 levels increase with a concurrent rise in the level of cytoskeletal band 3 until, on day 10 of development, virtually all of the band 3 polypeptides are cytoskeletal bound. After day 10, the levels of total and cytoskeletal band 3 decline, whereas ankyrin and protein 4.1 continue to accumulate until day 18, indicating that the cytoskeletal association of band 3 is not regulated solely by the availability of membrane cytoskeletal binding sites at later stages of development. Thus, multiple mechanisms appear to regulate the recruitment of band 3 onto the erythroid membrane cytoskeleton during chicken embryonic development.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/biosíntesis , Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Embrión de Pollo , Desarrollo Embrionario y Fetal , Proteínas de la Membrana/sangre , Hibridación de Ácido Nucleico
4.
J Cell Biol ; 129(2): 321-34, 1995 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-7721937

RESUMEN

A membrane-associated complex composed of the Vps15 protein kinase and the Vps34 phosphatidylinositol 3-kinase (PtdIns 3-kinase) is essential for the delivery of proteins to the yeast vacuole. An active Vps15p is required for the recruitment of Vps34p to the membrane and subsequent stimulation of Vps34p PtdIns 3-kinase activity. Consistent with this, mutations altering highly conserved residues in the lipid kinase domain of Vps34p lead to a dominant-negative phenotype resulting from titration of activating Vps15 proteins. In contrast, catalytically inactive Vps15p mutants do not produce a dominant mutant phenotype because they are unable to associate with Vps34p in a wild-type manner. These data indicate that an intact Vps15p protein kinase domain is necessary for the association with and activation of Vps34p, and they demonstrate that a functional Vps15p-Vps34p complex is absolutely required for the efficient delivery of proteins to the vacuole. Analysis of a temperature-conditional allele of VPS15, in which a shift to the nonpermissive temperature leads to a decrease in cellular PtdIns(3)P levels, indicates that the loss of Vps15p function leads to a defect in activation of Vps34p. In addition, characterization of a temperature-sensitive allele of VPS34 demonstrates that inactivation of Vps34p leads to the immediate missorting of soluble vacuolar proteins (e.g., carboxypeptidase Y) without an apparent defect in the sorting of the vacuolar membrane protein alkaline phosphatase. This rapid block in vacuolar protein sorting appears to be the result of loss of PtdIns 3-kinase activity since cellular PtdIns(3)P levels decrease dramatically in vps34 temperature-sensitive mutant cells that have been incubated at the nonpermissive temperature. Finally, analysis of the defects in cellular PtdIns(3)P levels in various vps15 and vsp34 mutant strains has led to additional insights into the importance of PtdIns(3)P intracellular localization, as well as the roles of Vps15p and Vps34p in vacuolar protein sorting.


Asunto(s)
Carboxipeptidasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Vacuolas/metabolismo , Alelos , Transporte Biológico , Carboxipeptidasas/genética , Catepsina A , Complejos de Clasificación Endosomal Requeridos para el Transporte , Activación Enzimática , Prueba de Complementación Genética , Mutación/fisiología , Fenotipo , Fosfatidilinositol 3-Quinasas , Fosfatos de Fosfatidilinositol/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae , Transducción de Señal/fisiología , Temperatura , Proteína de Clasificación Vacuolar VPS15
5.
Science ; 260(5104): 88-91, 1993 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-8385367

RESUMEN

The VPS34 gene product (Vps34p) is required for protein sorting to the lysosome-like vacuole of the yeast Saccharomyces cerevisiae. Vps34p shares significant sequence similarity with the catalytic subunit of bovine phosphatidylinositol (PI) 3-kinase [the 110-kilodalton (p110) subunit of PI 3-kinase], which is known to interact with activated cell surface receptor tyrosine kinases. Yeast strains deleted for the VPS34 gene or carrying vps34 point mutations lacked detectable PI 3-kinase activity and exhibited severe defects in vacuolar protein sorting. Overexpression of Vps34p resulted in an increase in PI 3-kinase activity, and this activity was specifically precipitated with antisera to Vps34p. VPS34 encodes a yeast PI 3-kinase, and this enzyme appears to regulate intracellular protein trafficking decisions.


Asunto(s)
Proteínas Fúngicas/metabolismo , Genes Fúngicos , Fosfotransferasas/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Animales , Encéfalo/enzimología , Bovinos , Cromatografía Líquida de Alta Presión , Eliminación de Gen , Expresión Génica , Lisosomas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfatidilinositol 3-Quinasas , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Mutación Puntual , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Aminoácido , Transducción de Señal , Vacuolas/metabolismo
6.
Nat Biotechnol ; 18(12): 1298-302, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11101811

RESUMEN

Many biotechnology applications depend on the expression of exogenous proteins in a predictable and controllable manner. A key determinant of the intracellular concentration of a given protein is its stability or "half-life." We have developed a versatile and reliable system for producing short half-life forms of proteins expressed in mammalian cells. The system consists of a series of destabilization domains composed of varying numbers of a mutant form of ubiquitin (UbG76V) that cannot be cleaved by ubiquitin hydrolases. We show that increasing the number of UbG76V moieties within the destabilization domain results in a graded decrease in protein half-life and steady-state levels when fused to heterologous reporter proteins as well as cellular proteins. Cells expressing a destabilized beta-lactamase reporter act as a robust, high-throughput screening (HTS)-compatible assay for proteasome activity within cells.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Complejos Multienzimáticos/metabolismo , Ubiquitinas/química , Ubiquitinas/metabolismo , Biopolímeros/genética , Biopolímeros/metabolismo , Estabilidad de Enzimas , Genes Reporteros , Semivida , Humanos , Células Jurkat , Plásmidos/genética , Poliubiquitina , Complejo de la Endopetidasa Proteasomal , Conformación Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Ubiquitinas/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
7.
J Biol Chem ; 269(50): 31552-62, 1994 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-7989323

RESUMEN

The Vps15 protein kinase and the Vps34 phosphatidylinositol 3-kinase have been shown to function as a membrane-associated complex which facilitates the delivery of proteins to the vacuole in yeast. Biochemical characterization of the autophosphorylation reaction catalyzed by Vps15p demonstrates that it is a functional serine/threonine protein kinase. In addition, we show that the Vps34 phosphatidylinositol 3-kinase undergoes an autophosphorylation event both in vivo and in vitro, indicating that it represents a novel multiple specificity kinase capable of phosphorylating both protein and lipid substrates. Vps34p is phosphorylated predominately on serine in vivo and is able to phosphorylate serine, threonine, and tyrosine residues in vitro. Mutant Vps34 proteins containing alterations in conserved amino acids in the lipid kinase domain are severely defective for both PI 3-kinase activity and autophosphorylation. Characterization of the PI 3-kinase activity of Vps34p demonstrates that it, unlike the mammalian p110 PI 3-kinase, is highly resistant to the PI 3-kinase inhibitors wortmannin and LY294002. We also find that Vps34p is a phosphatidylinositol-specific 3-kinase, as it is able to utilize phosphatidylinositol (PtdIns) but not PtdIns(4)P or PtdIns(4,5)P2 as substrates in an in vitro PI kinase reaction. The substrate specificity, wortmannin resistance, and other biochemical characteristics of its PtdIns 3-kinase activity suggest that Vps34p is quite similar to a PtdIns-specific 3-kinase activity recently characterized from mammalian cells. These data indicate the existence of a family of PI 3-kinases composed of p110-like PI 3-kinases and Vps34p-like PtdIns-specific 3-kinases. On the basis of the role for Vps34p in vacuolar protein sorting, we propose that the production of a specific phosphoinositide, PtdIns(3)P, is involved in regulating intracellular protein sorting reactions in eukaryotic cells.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Androstadienos/farmacología , Compartimento Celular , Cromonas/farmacología , Complejos de Clasificación Endosomal Requeridos para el Transporte , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas , Fosfatidilinositoles/metabolismo , Fosforilación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato , Proteína de Clasificación Vacuolar VPS15 , Wortmanina
8.
Development ; 124(16): 3185-95, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9272959

RESUMEN

Previous work identified a developmental timer that controls the stability of cyclin A protein in interphase-arrested Xenopus embryos. It was shown that cyclins A1 and A2 abruptly become unstable in hydroxyurea-treated embryos at the time that untreated embryos are beginning gastrulation (early gastrulation transition; EGT). We have demonstrated here that cyclins A1 and A2 are degraded at the equivalent of the EGT by the ICE-like caspases that are responsible for programmed cell death or apoptosis. Analysis of embryos treated with hydroxyurea or cycloheximide showed widespread cellular apoptosis coincident with cyclin A cleavage. Our data further indicate that the apoptotic pathway is present in Xenopus embryos prior to the EGT; however, it is maintained in an inactive state in early cleaving embryos by maternally encoded inhibitors. Characterization of the timing of the activation of apoptosis implicates the initiation of zygotic transcription at the mid-blastula transition (MBT) in the suppression of apoptosis in normal embryos. The decreased biosynthetic capacity of embryos treated with hydroxyurea or cycloheximide most likely interferes with the ability to maintain sufficient levels of apoptotic inhibitors and results in widespread apoptosis. Our results suggest a scenario whereby the apoptotic pathway is suppressed in the early cleaving embryo by maternally contributed inhibitors. Degradation at the EGT of maternal RNAs encoding these inhibitors is compensated for by new zygotic transcription beginning at the MBT. This indicates that the interval between the MBT and the EGT represents a critical developmental period during which the regulation of embryonic cellular processes is transferred from maternal to zygotic control.


Asunto(s)
Apoptosis/fisiología , Caspasas , Ciclina A , Ciclinas/metabolismo , Gástrula/citología , Gástrula/metabolismo , Interfase/fisiología , Animales , Blastocisto/citología , Caspasa 3 , Fase de Segmentación del Huevo/citología , Cicloheximida/farmacología , Cisteína Endopeptidasas/fisiología , Inhibidores de Cisteína Proteinasa/farmacología , Grupo Citocromo c/farmacología , Hidroxiurea/farmacología , Mitosis , Inhibidores de la Síntesis de la Proteína/farmacología , Fase S/efectos de los fármacos , Transcripción Genética , Xenopus
9.
Annu Rev Cell Dev Biol ; 11: 1-33, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-8689553

RESUMEN

In this review we summarize the structural and functional characteristics of the VPS (vacuolar protein sorting) gene products that have provided insight into the regulatory interactions and molecular mechanisms underlying protein sorting pathways in eukaryotic cells. Genetic selections in yeast have resulted in the identification of more than 40 genes required for the vesicle-mediated sorting of proteins to the lysosome-like vacuole. Molecular characterization of these VPS gene products has revealed a number of biochemical activities involved in this process. Analogous to the mannose-6-phosphate receptors in mammalian cells, the VPS10 gene encodes a transmembrane sorting receptor for the yeast vacuolar hydrolase carboxypeptidase Y. The VPS15 and VPS34 genes encode components of a novel signal transduction complex essential for the delivery of soluble vacuolar hydrolases. VPS15 and VPS34 encode a serine/ threonine protein kinase and a phosphatidylinositol 3-kinase, respectively, that interact at the cytoplasmic face of an intracellular membrane compartment, most likely corresponding to the late Golgi. Other VPS gene products have homologues that are involved in membrane trafficking pathways: The VPSI and VPS21 genes encode GTPases of the dynamin and rab families, respectively, and the products of the VPS33, VPS45, and PEP12/VPS6 genes are homologues of proteins involved in regulated synaptic vesicle exocytosis. The VPS gene products constitute components of a molecular apparatus responsible for the recognition, packaging, and vesicular transport of proteins to the vacuole in yeast.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Animales , Clatrina/metabolismo , Proteínas Fúngicas/biosíntesis , Genes Fúngicos , Lisosomas/metabolismo , Mamíferos , Modelos Biológicos , Fosfatidilinositol 3-Quinasas , Procesamiento Proteico-Postraduccional , Receptor IGF Tipo 2/metabolismo , Saccharomyces cerevisiae/genética
10.
EMBO J ; 10(13): 4049-60, 1991 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1756716

RESUMEN

The yeast VPS15 gene encodes a novel protein kinase homolog that is required for the sorting of soluble hydrolases to the yeast vacuole. In this study, we extend our previous mutational analysis of the VPS15 gene and show that alterations of specific Gps15p residues, that are highly conserved among all protein kinase molecules, result in the biological inactivation of Vps15p. Furthermore, we demonstrate here that short C-terminal deletions of Vps15p result in a temperature-conditional defect in vacuolar protein sorting. Immediately following the temperature shift, soluble vacuolar hydrolases, such as carboxypeptidase Y and proteinase A, accumulate as Golgi-modified precursors within a saturable intracellular compartment distinct from the vacuole. This vacuolar protein sorting block is efficiently reversed when mutant cells are shifted back to the permissive temperature; the accumulated precursors are rapidly processed to their mature forms indicating that they have been delivered to the vacuole. This rapid and efficient reversal suggests that the accumulated vacuolar protein precursors were present within a normal transport intermediate in the vacuolar protein sorting pathway. In addition, this protein delivery block shows specificity for soluble vacuolar enzymes as the membrane protein, alkaline phosphatase, is efficiently delivered to the vacuole at the non-permissive temperature. Interestingly, the C-terminal Vps15p truncations are not phosphorylated in vivo suggesting that the phosphorylation of Vps15p may be critical for its biological activity at elevated temperatures. The rapid onset and high degree of specificity of the vacuolar protein delivery block in these mutants suggests that the primary role of Vps15p is to regulate the sorting of soluble hydrolases to the yeast vacuolar compartment.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Quinasas/genética , Saccharomyces cerevisiae/enzimología , Genes Fúngicos , Hidrolasas/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Ácido Mirístico , Ácidos Mirísticos/química , Fosforilación , Plásmidos , Pruebas de Precipitina , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Temperatura , Vacuolas/enzimología
11.
EMBO J ; 12(5): 2195-204, 1993 May.
Artículo en Inglés | MEDLINE | ID: mdl-8387919

RESUMEN

The Vps15 protein kinase and the Vps34 phosphatidylinositol 3-kinase (PI 3-kinase) are required for the sorting of soluble hydrolases to the yeast vacuole. Over-production of Vps34p suppresses the growth and vacuolar protein sorting defects associated with vps15 kinase domain mutants, suggesting that Vps15p and Vps34p functionally interact. Subcellular fractionation and sucrose density gradients indicate that Vps15p is responsible for the association of Vps34p with an intracellular membrane fraction. Chemical cross-linking and native immunoprecipitation experiments demonstrate that Vps15p and Vps34p interact as components of a hetero-oligomeric protein complex. In addition, we show that an intact Vps15 protein kinase domain is required for activation of the Vps34 PI 3-kinase, suggesting that the Vps34 lipid kinase is regulated by a Vps15p-mediated protein phosphorylation event. We propose that Vps15p and Vps34p function together as components of a membrane-associated signal transduction complex that regulates intracellular protein trafficking decisions through protein and lipid phosphorylation events.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fosfotransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Vacuolas/enzimología , Transporte Biológico , Fraccionamiento Celular , Membrana Celular/enzimología , Activación Enzimática , Lisosomas/enzimología , Complejos Multienzimáticos/metabolismo , Mutación , Ácido Mirístico , Ácidos Mirísticos/metabolismo , Fosfatidilinositol 3-Quinasas , Fosfotransferasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética
12.
Cell ; 64(2): 425-37, 1991 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-1988155

RESUMEN

The VPS15 gene encodes a novel protein kinase homolog that is essential for the efficient delivery of soluble hydrolases to the yeast vacuole. Point mutations altering highly conserved residues within the Vps15p kinase domain result in the secretion of multiple vacuolar proteases. In addition, the in vivo phosphorylation of Vps15p is defective in these kinase domain mutants, suggesting that Vps15p may regulate specific protein phosphorylation reactions required for protein sorting to the yeast vacuole. Subcellular fractionation studies further demonstrate that the 1455 amino acid Vps15p is peripherally associated with the cytoplasmic face of a late Golgi or vesicle compartment. This association may be mediated by myristate as Vps15p contains a consensus signal for N-terminal myristoylation. We propose that protein phosphorylation may act as a molecular "switch" within intracellular protein sorting pathways by actively diverting proteins from a default transit pathway (e.g., secretion) to an alternative pathway (e.g., to the vacuole).


Asunto(s)
Genes Fúngicos , Hidrolasas/metabolismo , Proteínas Quinasas/genética , Saccharomyces cerevisiae/enzimología , Vacuolas/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Cinética , Lisosomas/enzimología , Datos de Secuencia Molecular , Fosforilación , Proteínas Quinasas/metabolismo , Mapeo Restrictivo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Homología de Secuencia de Ácido Nucleico , Vacuolas/ultraestructura
13.
Proc Natl Acad Sci U S A ; 84(13): 4432-6, 1987 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-3474611

RESUMEN

Protein 4.1 is an extrinsic membrane protein that facilitates the interaction of spectrin and actin in the erythroid membrane skeleton and exists as several structurally related polypeptides in chickens. The ratio of protein 4.1 variants is developmentally regulated during terminal differentiation of chicken erythroid and lenticular cells. To examine the mechanisms by which multiple chicken protein 4.1 variants are differentially expressed, we have isolated cDNA clones specific for chicken erythroid protein 4.1. We show that a single protein 4.1 gene gives rise to multiple 6.6-kilobase mRNAs by differential RNA processing. Furthermore, the ratios of protein 4.1 mRNAs change during chicken embryonic erythropoiesis. We observe a quantitative difference in variant ratios when protein 4.1 is synthesized in vivo or in a rabbit reticulocyte lysate in vitro. Our results show that the expression of multiple protein 4.1 polypeptides is regulated at the levels of translation and RNA processing.


Asunto(s)
Proteínas Sanguíneas/biosíntesis , Proteínas del Citoesqueleto , Eritropoyesis , Regulación de la Expresión Génica , Proteínas de la Membrana , Neuropéptidos , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Sanguíneas/genética , Pollos , ADN/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA