Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 187(13): 3357-3372.e19, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38866018

RESUMEN

Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.


Asunto(s)
Archaea , Hidrógeno , Hidrogenasas , Filogenia , Archaea/genética , Archaea/enzimología , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Genoma Arqueal , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Hidrogenasas/genética , Hidrogenasas/química , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/química , Modelos Moleculares , Estructura Terciaria de Proteína
2.
Nature ; 618(7967): 992-999, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316666

RESUMEN

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Asunto(s)
Archaea , Eucariontes , Filogenia , Archaea/clasificación , Archaea/citología , Archaea/genética , Eucariontes/clasificación , Eucariontes/citología , Eucariontes/genética , Células Eucariotas/clasificación , Células Eucariotas/citología , Células Procariotas/clasificación , Células Procariotas/citología , Conjuntos de Datos como Asunto , Duplicación de Gen , Evolución Molecular
3.
Proc Natl Acad Sci U S A ; 120(49): e2306381120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38019867

RESUMEN

Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.


Asunto(s)
Inteínas , Empalme de Proteína , Inteínas/genética , Eucariontes/genética , Proteínas/genética , Genoma
4.
PLoS Pathog ; 19(10): e1010773, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792908

RESUMEN

Mitochondrial metabolism is entirely dependent on the biosynthesis of the [4Fe-4S] clusters, which are part of the subunits of the respiratory chain. The mitochondrial late ISC pathway mediates the formation of these clusters from simpler [2Fe-2S] molecules and transfers them to client proteins. Here, we characterized the late ISC pathway in one of the simplest mitochondria, mitosomes, of the anaerobic protist Giardia intestinalis that lost the respiratory chain and other hallmarks of mitochondria. In addition to IscA2, Nfu1 and Grx5 we identified a novel BolA1 homologue in G. intestinalis mitosomes. It specifically interacts with Grx5 and according to the high-affinity pulldown also with other core mitosomal components. Using CRISPR/Cas9 we were able to establish full bolA1 knock out, the first cell line lacking a mitosomal protein. Despite the ISC pathway being the only metabolic role of the mitosome no significant changes in the mitosome biology could be observed as neither the number of the mitosomes or their capability to form [2Fe-2S] clusters in vitro was affected. We failed to identify natural client proteins that would require the [2Fe-2S] or [4Fe-4S] cluster within the mitosomes, with the exception of [2Fe-2S] ferredoxin, which is itself part of the ISC pathway. The overall uptake of iron into the cellular proteins remained unchanged as also observed for the grx5 knock out cell line. The pull-downs of all late ISC components were used to build the interactome of the pathway showing specific position of IscA2 due to its interaction with the outer mitosomal membrane proteins. Finally, the comparative analysis across Metamonada species suggested that the adaptation of the late ISC pathway identified in G. intestinalis occurred early in the evolution of this supergroup of eukaryotes.


Asunto(s)
Giardia lamblia , Proteínas Hierro-Azufre , Humanos , Giardia lamblia/genética , Giardia lamblia/metabolismo , Anaerobiosis , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
5.
PLoS Biol ; 19(4): e3001126, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33891594

RESUMEN

The overarching trend in mitochondrial genome evolution is functional streamlining coupled with gene loss. Therefore, gene acquisition by mitochondria is considered to be exceedingly rare. Selfish elements in the form of self-splicing introns occur in many organellar genomes, but the wider diversity of selfish elements, and how they persist in the DNA of organelles, has not been explored. In the mitochondrial genome of a marine heterotrophic katablepharid protist, we identify a functional type II restriction modification (RM) system originating from a horizontal gene transfer (HGT) event involving bacteria related to flavobacteria. This RM system consists of an HpaII-like endonuclease and a cognate cytosine methyltransferase (CM). We demonstrate that these proteins are functional by heterologous expression in both bacterial and eukaryotic cells. These results suggest that a mitochondrion-encoded RM system can function as a toxin-antitoxin selfish element, and that such elements could be co-opted by eukaryotic genomes to drive biased organellar inheritance.


Asunto(s)
Bacterias/genética , Enzimas de Restricción-Modificación del ADN/genética , Eucariontes/genética , Evolución Molecular , Mitocondrias/genética , Secuencia de Bases , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Escherichia coli/genética , Eucariontes/clasificación , Transferencia de Gen Horizontal , Genoma Mitocondrial/genética , Organismos Modificados Genéticamente , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos/genética , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
6.
Mol Biol Evol ; 38(6): 2240-2259, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33528570

RESUMEN

The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host-parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).


Asunto(s)
Archamoebae/genética , Evolución Biológica , Entamoeba histolytica/genética , Genoma de Protozoos , Parásitos/genética , Adaptación Biológica/genética , Anaerobiosis/genética , Animales , Archamoebae/metabolismo , Transferencia de Gen Horizontal , Tamaño del Genoma , Transcriptoma
7.
Nature ; 534(7606): 254-8, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279223

RESUMEN

Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle. Here we report the cultivation of Lenisia limosa, gen. et sp. nov., a newly discovered breviate colonized by relatives of animal-associated Arcobacter. Physiological experiments show that the association of L. limosa with Arcobacter is driven by the transfer of hydrogen and is mutualistic, providing benefits to both partners. With whole-genome sequencing and differential proteomics, we show that an experimentally observed fitness gain of L. limosa could be explained by the activity of a so far unknown type of NAD(P)H-accepting hydrogenase, which is expressed in the presence, but not in the absence, of Arcobacter. Differential proteomics further reveal that the presence of Lenisia stimulates expression of known 'virulence' factors by Arcobacter. These proteins typically enable colonization of animal cells during infection, but may in the present case act for mutual benefit. Finally, re-investigation of two currently available transcriptomic data sets of other Breviatea reveals the presence and activity of related hydrogen-consuming Arcobacter, indicating that mutualistic interaction between these two groups of microbes might be pervasive. Our results support the notion that molecular mechanisms involved in virulence can also support mutualism, as shown here for Arcobacter and Breviatea.


Asunto(s)
Arcobacter/fisiología , Eucariontes/fisiología , Hidrógeno/metabolismo , Simbiosis , Arcobacter/genética , Eucariontes/enzimología , Eucariontes/genética , Aptitud Genética , Hidrogenasas/genética , Hidrogenasas/metabolismo , NADP/metabolismo , Proteómica , Simbiosis/genética , Transcriptoma , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
8.
BMC Biol ; 18(1): 77, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605621

RESUMEN

BACKGROUND: Eukaryotic gene expression is controlled by a number of RNA-binding proteins (RBP), such as the proteins from the Puf (Pumilio and FBF) superfamily (PufSF). These proteins bind to RNA via multiple Puf repeat domains, each of which specifically recognizes a single RNA base. Recently, three diversified PufSF proteins have been described in model organisms, each of which is responsible for the maturation of ribosomal RNA or the translational regulation of mRNAs; however, less is known about the role of these proteins across eukaryotic diversity. RESULTS: Here, we investigated the distribution and function of PufSF RBPs in the tree of eukaryotes. We determined that the following PufSF proteins are universally conserved across eukaryotes and can be broadly classified into three groups: (i) Nop9 orthologues, which participate in the nucleolar processing of immature 18S rRNA; (ii) 'classical' Pufs, which control the translation of mRNA; and (iii) PUM3 orthologues, which are involved in the maturation of 7S rRNA. In nearly all eukaryotes, the rRNA maturation proteins, Nop9 and PUM3, are retained as a single copy, while mRNA effectors ('classical' Pufs) underwent multiple lineage-specific expansions. We propose that the variation in number of 'classical' Pufs relates to the size of the transcriptome and thus the potential mRNA targets. We further distinguished full set of PufSF proteins in divergent metamonad Giardia intestinalis and initiated their cellular and biochemical characterization. CONCLUSIONS: Our data suggest that the last eukaryotic common ancestor (LECA) already contained all three types of PufSF proteins and that 'classical' Pufs then underwent lineage-specific expansions.


Asunto(s)
Eucariontes/genética , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN Ribosómico 18S/metabolismo , Proteínas de Unión al ARN/genética , Secuencia de Aminoácidos , Eucariontes/metabolismo , Filogenia , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia
9.
Mol Biol Evol ; 36(10): 2292-2312, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31387118

RESUMEN

The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.


Asunto(s)
Genoma de Protozoos , Membranas Intracelulares , Oxymonadida/genética , Citoesqueleto de Actina , Intrones , Dinámicas Mitocondriales , Oxymonadida/enzimología , Oxymonadida/ultraestructura , Proteoma
10.
PLoS Biol ; 15(9): e2003769, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28892507

RESUMEN

Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than ß-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.


Asunto(s)
Blastocystis/genética , Genoma de Protozoos , Blastocystis/metabolismo , Metabolismo de los Hidratos de Carbono , Codón de Terminación , Microbioma Gastrointestinal , Humanos , Intrones , Especificidad de la Especie
11.
Bioessays ; 40(5): e1700242, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29543982

RESUMEN

In a recent BioEssays paper [W. F. Martin, BioEssays 2017, 39, 1700115], William Martin sharply criticizes evolutionary interpretations that involve lateral gene transfer (LGT) into eukaryotic genomes. Most published examples of LGTs in eukaryotes, he suggests, are in fact contaminants, ancestral genes that have been lost from other extant lineages, or the result of artefactual phylogenetic inferences. Martin argues that, except for transfers that occurred from endosymbiotic organelles, eukaryote LGT is insignificant. Here, in reviewing this field, we seek to correct some of the misconceptions presented therein with regard to the evidence for LGT in eukaryotes.


Asunto(s)
Eucariontes , Transferencia de Gen Horizontal , Células Eucariotas , Evolución Molecular , Filogenia
12.
BMC Biol ; 17(1): 19, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30823887

RESUMEN

BACKGROUND: Spironucleus salmonicida is an anaerobic parasite that can cause systemic infections in Atlantic salmon. Unlike other diplomonad parasites, such as the human pathogen Giardia intestinalis, Spironucleus species can infiltrate the blood stream of their hosts eventually colonizing organs, skin and gills. How this presumed anaerobe can persist and invade oxygenated tissues, despite having a strictly anaerobic metabolism, remains elusive. RESULTS: To investigate how S. salmonicida response to oxygen stress, we performed RNAseq transcriptomic analyses of cells grown in the presence of oxygen or antioxidant-free medium. We found that over 20% of the transcriptome is differentially regulated in oxygen (1705 genes) and antioxidant-depleted (2280 genes) conditions. These differentially regulated transcripts encode proteins related to anaerobic metabolism, cysteine and Fe-S cluster biosynthesis, as well as a large number of proteins of unknown function. S. salmonicida does not encode genes involved in the classical elements of oxygen metabolism (e.g., catalases, superoxide dismutase, glutathione biosynthesis, oxidative phosphorylation). Instead, we found that genes encoding bacterial-like oxidoreductases were upregulated in response to oxygen stress. Phylogenetic analysis revealed some of these oxygen-responsive genes (e.g., nadh oxidase, rubrerythrin, superoxide reductase) are rare in eukaryotes and likely derived from lateral gene transfer (LGT) events into diplomonads from prokaryotes. Unexpectedly, we observed that many host evasion- and invasion-related genes were also upregulated under oxidative stress suggesting that oxygen might be an important signal for pathogenesis. CONCLUSION: While oxygen is toxic for related organisms, such as G. intestinalis, we find that oxygen is likely a gene induction signal for host invasion- and evasion-related pathways in S. salmonicida. These data provide the first molecular evidence for how S. salmonicida could tolerate oxic host environments and demonstrate how LGT can have a profound impact on the biology of anaerobic parasites.


Asunto(s)
Anaerobiosis/genética , Diplomonadida/genética , Oxígeno/administración & dosificación , Estrés Fisiológico/genética , Animales , Diplomonadida/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Salmón/parasitología
13.
BMC Evol Biol ; 16(1): 197, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716026

RESUMEN

BACKGROUND: Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. RESULTS: We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. CONCLUSIONS: Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.


Asunto(s)
Eucariontes/metabolismo , Evolución Molecular , Hidrolasas/metabolismo , Redes y Vías Metabólicas , Archaea/metabolismo , Arginina/metabolismo , Diplomonadida/enzimología , Eucariontes/clasificación , Eucariontes/genética , Filogenia
14.
Mol Biol Evol ; 32(4): 1039-55, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25573905

RESUMEN

Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition.


Asunto(s)
Archamoebae/genética , Metabolismo Energético/genética , Evolución Molecular , Duplicación de Gen , Transferencia de Gen Horizontal , Orgánulos/genética , Anaerobiosis/genética , Archamoebae/enzimología , Archamoebae/metabolismo , Estructuras de la Membrana Celular/genética , Estructuras de la Membrana Celular/metabolismo , Enzimas/genética , Enzimas/aislamiento & purificación , Orgánulos/enzimología , Orgánulos/metabolismo
15.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36790104

RESUMEN

Ascetosporea are endoparasites of marine invertebrates that include economically important pathogens of aquaculture species. Owing to their often-minuscule cell sizes, strict intracellular lifestyle, lack of cultured representatives and minimal availability of molecular data, these unicellular parasites remain poorly studied. Here, we sequenced and assembled the genome and transcriptome of Paramikrocytos canceri, an endoparasite isolated from the European edible crab Cancer pagurus. Using bioinformatic predictions, we show that P. canceri likely possesses a mitochondrion-related organelle (MRO) with highly reduced metabolism, resembling the mitosomes of other parasites but with key differences. Like other mitosomes, this MRO is predicted to have reduced metabolic capacity and lack an organellar genome and function in iron-sulfur cluster (ISC) pathway-mediated Fe-S cluster biosynthesis. However, the MRO in P. canceri is uniquely predicted to produce ATP via a partial glycolytic pathway and synthesize phospholipids de novo through the CDP-DAG pathway. Heterologous gene expression confirmed that proteins from the ISC and CDP-DAG pathways retain mitochondrial targeting sequences that are recognized by yeast mitochondria. This represents a unique combination of metabolic pathways in an MRO, including the first reported case of a mitosome-like organelle able to synthesize phospholipids de novo. Some of these phospholipids, such as phosphatidylserine, are vital in other protist endoparasites that invade their host through apoptotic mimicry.


Asunto(s)
Parásitos , Rhizaria , Animales , Rhizaria/genética , Orgánulos , Mitocondrias/genética , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo
16.
Microb Genom ; 9(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37994879

RESUMEN

Archamoebae comprises free-living or endobiotic amoebiform protists that inhabit anaerobic or microaerophilic environments and possess mitochondrion-related organelles (MROs) adapted to function anaerobically. We compared in silico reconstructed MRO proteomes of eight species (six genera) and found that the common ancestor of Archamoebae possessed very few typical components of the protein translocation machinery, electron transport chain and tricarboxylic acid cycle. On the other hand, it contained a sulphate activation pathway and bacterial iron-sulphur (Fe-S) assembly system of MIS-type. The metabolic capacity of the MROs, however, varies markedly within this clade. The glycine cleavage system is widely conserved among Archamoebae, except in Entamoeba, probably owing to its role in catabolic function or one-carbon metabolism. MRO-based pyruvate metabolism was dispensed within subgroups Entamoebidae and Rhizomastixidae, whereas sulphate activation could have been lost in isolated cases of Rhizomastix libera, Mastigamoeba abducta and Endolimax sp. The MIS (Fe-S) assembly system was duplicated in the common ancestor of Mastigamoebidae and Pelomyxidae, and one of the copies took over Fe-S assembly in their MRO. In Entamoebidae and Rhizomastixidae, we hypothesize that Fe-S cluster assembly in both compartments may be facilitated by dual localization of the single system. We could not find evidence for changes in metabolic functions of the MRO in response to changes in habitat; it appears that such environmental drivers do not strongly affect MRO reduction in this group of eukaryotes.


Asunto(s)
Eucariontes , Mitocondrias , Anaerobiosis , Mitocondrias/genética , Hierro , Sulfatos
17.
Mol Biol Evol ; 28(7): 2087-99, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21293046

RESUMEN

Most of the major groups of eukaryotes have microbial representatives that thrive in low oxygen conditions. Those that have been studied in detail generate ATP via pathways involving anaerobically functioning enzymes of pyruvate catabolism that are typically absent in aerobic eukaryotes and whose origins remain controversial. These enzymes include pyruvate:ferredoxin oxidoreductase, pyruvate:NADP(+) oxidoreductase, and pyruvate formate lyase (Pfl). Pfl catalyzes the nonoxidative generation of formate and acetyl-Coenzyme A (CoA) from pyruvate and CoA and is activated by Pfl activating enzyme (Pfla). Within eukaryotes, this extremely oxygen-sensitive pathway was first described in the hydrogenosomes of anaerobic chytrid fungi and has more recently been characterized in the mitochondria and chloroplasts of the chlorophyte alga Chlamydomonas reinhardtii. To clarify the origins of this pathway, we have comprehensively searched for homologs of Pfl and Pfla in publicly available large-scale eukaryotic genomic and cDNA sequencing data, including our own from the anaerobic amoebozoan Mastigamoeba balamuthi. Surprisingly, we find that these enzymes are widely distributed and are present in diverse facultative or obligate anaerobic eukaryotic representatives of the archaeplastidan, metazoan, amoebozoan, and haptophyte lineages. Using maximum likelihood and Bayesian phylogenetic methods, we show that the eukaryotic Pfl and Pfla sequences each form monophyletic groups that are most closely related to homologs in firmicute gram-positive bacteria. Topology tests exclude both α-proteobacterial and cyanobacterial affinities for these genes suggesting that neither originated from the endosymbiotic ancestors of mitochondria or chloroplasts. Furthermore, the topologies of the eukaryote portion of the Pfl and Pfla trees significantly differ from well-accepted eukaryote relationships. Collectively, these results indicate that the Pfl pathway was first acquired by lateral gene transfer into a eukaryotic lineage most probably from a firmicute bacterial lineage and that it has since been spread across diverse eukaryotic groups by more recent eukaryote-to-eukaryote transfer events.


Asunto(s)
Acetiltransferasas/genética , Enzimas/genética , Eucariontes/genética , Evolución Molecular , Transferencia de Gen Horizontal , Bacterias Grampositivas/genética , Archamoebae/enzimología , Archamoebae/genética , Proteínas Bacterianas/genética , Teorema de Bayes , Simulación por Computador , Eucariontes/enzimología , Bacterias Grampositivas/enzimología , Filogenia
18.
Curr Biol ; 32(1): R49-R51, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35015998

RESUMEN

The ability to harvest reducing power from molecular hydrogen was once considered a prokaryotic trait. New research challenges this notion by finding the first eukaryotic organism capable of oxidizing hydrogen.


Asunto(s)
Electrones , Eucariontes , Células Eucariotas , Hidrógeno , Células Procariotas
19.
Genome Biol Evol ; 14(6)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35218347

RESUMEN

The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.


Asunto(s)
Archaea , Virus , Evolución Biológica , Eucariontes , Filogenia , Virus/genética
20.
Biochim Biophys Acta Bioenerg ; 1862(1): 148334, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33159845

RESUMEN

Eukaryotic microbes (protists) that occupy low-oxygen environments often have drastically different mitochondrial metabolism compared to their aerobic relatives. A common theme among many anaerobic protists is the serial loss of components of the electron transport chain (ETC). Here, we discuss the diversity of the ETC across the tree of eukaryotes and review hypotheses for how ETCs are modified, and ultimately lost, in protists. We find that while protists have converged to some of the same metabolism as anaerobic animals, there are clear protist-specific strategies to thrive without oxygen.


Asunto(s)
Evolución Biológica , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Eucariontes/enzimología , Proteínas Mitocondriales/metabolismo , Anaerobiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA