Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 30(Pt 3): 634-642, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37067259

RESUMEN

Nucleation and growth of minerals has broad implications in the geological, environmental and materials sciences. Recent developments in fast X-ray nanotomography have enabled imaging of crystal growth in solutions in situ with a resolution of tens of nanometres, far surpassing optical microscopy. Here, a low-cost, custom-designed aqueous flow cell dedicated to the study of heterogeneous nucleation and growth of minerals in aqueous environments is shown. To gauge the effects of radiation damage from the imaging process on growth reactions, radiation-induced morphological changes of barite crystals (hundreds of nanometres to ∼1 µm) that were pre-deposited on the wall of the flow cell were investigated. Under flowing solution, minor to major crystal dissolution was observed when the tomography scan frequency was increased from every 30 min to every 5 min (with a 1 min scan duration). The production of reactive radicals from X-ray induced water radiolysis and decrease of pH close to the surface of barite are likely responsible for the observed dissolution. The flow cell shown here can possibly be adopted to study a wide range of other chemical reactions in solutions beyond crystal nucleation and growth where the combination of fast flow and fast scan can be used to mitigate the radiation effects.

2.
Environ Sci Technol ; 57(40): 14929-14937, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37737106

RESUMEN

It has been proposed to use magnesium oxide (MgO) to separate carbon dioxide directly from the atmosphere at the gigaton level. We show experimental results on MgO single crystals reacting with the atmosphere for longer (decades) and shorter (days to months) periods with the goal of gauging reaction rates. Here, we find a substantial slowdown of an initially fast reaction as a result of mineral armoring by reaction products (surface passivation). In short-term experiments, we observe fast hydroxylation, carbonation, and formation of amorphous hydrated magnesium carbonate at early stages, leading to the formation of crystalline hydrated Mg carbonates. The preferential location of Mg carbonates along the atomic steps on the crystal surface of MgO indicates the importance of the reactive site density for carbonation kinetics. The analysis of 27-year-old single-crystal MgO samples demonstrates that the thickness of the reacted layer is limited to ∼1.5 µm on average, which is thinner than expected and indicates surface passivation. Thus, if MgO is to be employed for direct air capture of CO2, surface passivation must be circumvented.


Asunto(s)
Dióxido de Carbono , Óxido de Magnesio , Óxido de Magnesio/química , Dióxido de Carbono/química , Minerales , Carbonatos/química
3.
Phys Rev Lett ; 129(23): 235701, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563221

RESUMEN

Understanding the behavior of defects in the complex oxides is key to controlling myriad ionic and electronic properties in these multifunctional materials. The observation of defect dynamics, however, requires a unique probe-one sensitive to the configuration of defects as well as its time evolution. Here, we present measurements of oxygen vacancy ordering in epitaxial thin films of SrCoO_{x} and the brownmillerite-perovskite phase transition employing x-ray photon correlation spectroscopy. These and associated synchrotron measurements and theory calculations reveal the close interaction between the kinetics and the dynamics of the phase transition, showing how spatial and temporal fluctuations of heterointerface evolve during the transformation process. The energetics of the transition are correlated with the behavior of oxygen vacancies, and the dimensionality of the transformation is shown to depend strongly on whether the phase is undergoing oxidation or reduction. The experimental and theoretical methods described here are broadly applicable to in situ measurements of dynamic phase behavior and demonstrate how coherence may be employed for novel studies of the complex oxides as enabled by the arrival of fourth-generation hard x-ray coherent light sources.

4.
Adv Mater ; : e2401809, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717569

RESUMEN

Realizing topological superconductivity by integrating high-transition-temperature (TC) superconductors with topological insulators can open new paths for quantum computing applications. Here, a new approach is reported for increasing the superconducting transition temperature ( T C onset ) $( {T_{\mathrm{C}}^{{\mathrm{onset}}}} )$ by interfacing the unconventional superconductor Fe(Te,Se) with the topological insulator Bi-Te system in the low-Se doping regime, near where superconductivity vanishes in the bulk. The critical finding is that the T C onset $T_{\mathrm{C}}^{{\mathrm{onset}}}$ of Fe(Te,Se) increases from nominally non-superconducting to as high as 12.5 K when Bi2Te3 is replaced with the topological phase Bi4Te3. Interfacing Fe(Te,Se) with Bi4Te3 is also found to be critical for stabilizing superconductivity in monolayer films where T C onset $T_{\mathrm{C}}^{{\mathrm{onset}}}$ can be as high as 6 K. Measurements of the electronic and crystalline structure of the Bi4Te3 layer reveal that a large electron transfer, epitaxial strain, and novel chemical reduction processes are critical factors for the enhancement of superconductivity. This novel route for enhancing TC in an important epitaxial system provides new insight on the nature of interfacial superconductivity and a platform to identify and utilize new electronic phases.

5.
Sci Rep ; 13(1): 4581, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941285

RESUMEN

The microstructure of minerals and rocks can significantly alter reaction rates. This study focuses on identifying transport paths in low porosity rocks based on the hypothesis that grain boundary widening accelerates reactions in which one mineral is replaced by another (replacement reaction). We conducted a time series of replacement experiments of three limestones (CaCO3) of different microstructures and solid impurity contents using FeCl2. Reacted solids were analyzed using chemical imaging, small angle X-ray and neutron scattering and Raman spectroscopy. In high porosity limestones replacement is reaction controlled and complete replacement was observed within 2 days. In low porosity limestones that contain 1-2% dolomite impurities and are dominated by grain boundaries, a reaction rim was observed whose width did not change with reaction time. Siderite (FeCO3) nucleation was observed in all parts of the rock cores indicating the percolation of the solution throughout the complete core. Dolomite impurities were identified to act as nucleation sites leading to growth of crystals that exert force on the CaCO3 grains. Widening of grain boundaries beyond what is expected based on dissolution and thermal grain expansion was observed in the low porosity marble containing dolomite impurities. This leads to a self-perpetuating cycle of grain boundary widening and reaction acceleration instead of reaction front propagation.

6.
Adv Mater ; 35(42): e2305383, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37578079

RESUMEN

The heterogeneous nature, local presence, and dynamic evolution of defects typically govern the ionic and electronic properties of a wide variety of functional materials. While the last 50 years have seen considerable efforts into development of new methods to identify the nature of defects in complex materials, such as the perovskite oxides, very little is known about defect dynamics and their influence on the functionality of a material. Here, the discovery of the intermittent behavior of point defects (oxygen vacancies) in oxide heterostructures employing X-ray photon correlation spectroscopy is reported. Local fluctuations between two ordered phases in strained SrCoOx with different degrees of stability of the oxygen vacancies are observed. Ab-initio-informed phase-field modeling reveals that fluctuations between the competing ordered phases are modulated by the oxygen ion/vacancy interaction energy and epitaxial strain. The results demonstrate how defect dynamics, evidenced by measurement and modeling of their temporal fluctuations, give rise to stochastic properties that now can be fully characterized using coherent X-rays, coupled for the first time to multiscale modeling in functional complex oxide heterostructures. The study and its findings open new avenues for engineering the dynamical response of functional materials used in neuromorphic and electrochemical applications.

7.
Sci Rep ; 11(1): 3495, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568693

RESUMEN

Rates and extents of mineral precipitation in porous media are difficult to predict, in part because laboratory experiments are problematic. It is similarly challenging to implement numerical methods that model this process due to the need to dynamically evolve the interface of solid material. We developed a multiphase solver that implements a micro-continuum simulation approach based on the Darcy-Brinkman-Stokes equation to study mineral precipitation. We used the volume-of-fluid technique in sharp interface implementation to capture the propagation of the solid mineral surface. Additionally, we utilize an adaptive mesh refinement method to improve the resolution of near interface simulation domain dynamically. The developed solver was validated against both analytical solution and Arbitrary Lagrangian-Eulerian approach to ensure its accuracy on simulating the propagation of the solid interface. The precipitation of barite (BaSO4) was chosen as a model system to test the solver using variety of simulation parameters: different geometrical constraints, flow conditions, reaction rate and ion diffusion. The growth of a single barite crystal was simulated to demonstrate the solver's capability to capture the crystal face specific directional growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA