Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 300(5): 107293, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636660

RESUMEN

Unsaturated fatty acid ketones with αß,γδ conjugation are susceptible to Michael addition of thiols, with unresolved issues on the site of adduction and precise structures of the conjugates. Herein we reacted 13-keto-octadecadienoic acid (13-oxo-ODE or 13-KODE) with glutathione (GSH), N-acetyl-cysteine, and ß-mercaptoethanol and identified the adducts. HPLC-UV analyses indicated none of the products exhibit a conjugated enone UV chromophore, a result that conflicts with the literature and is relevant to the mass spectral interpretation of 1,4 versus 1,6 thiol adduction. Aided by the development of an HPLC solvent system that separates the GSH diastereomers and thus avoids overlap of signals in proton NMR experiments, we established the two major conjugates are formed by 1,6 addition of GSH at the 9-carbon of 13-oxo-ODE with the remaining double bond α to the thiol in the 10,11 position. N-acetyl cysteine reacts similarly, while ß-mercaptoethanol gives equal amounts of 1,4 and 1,6 addition products. Equine glutathione transferase catalyzed 1,6 addition of GSH to the two major diastereomers in 44:56 proportions. LC-MS in positive ion mode gives a product ion interpreted before as evidence of 1,4-thiol adduction, whereas here we find this ion using the authentic 1,6 adduct. LC-MS with negative ion APCI gave a fragment selective for 1,4 adduction. These results clarify the structures of thiol conjugates of a prototypical unsaturated keto-fatty acid and have relevance to the application of LC-MS for the structural analysis of keto-fatty acid glutathione conjugation.


Asunto(s)
Glutatión , Compuestos de Sulfhidrilo , Glutatión/química , Glutatión/metabolismo , Compuestos de Sulfhidrilo/química , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Mercaptoetanol/química , Cromatografía Líquida con Espectrometría de Masas
2.
J Biol Chem ; 299(6): 104739, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086788

RESUMEN

A key requirement in forming the water permeability barrier in the mammalian epidermis is the oxidation of linoleate esterified in a skin-specific acylceramide by the sequential actions of 12R-lipoxygenase, epidermal lipoxygenase-3, and the epoxyalcohol dehydrogenase SDR9C7 (short-chain dehydrogenase-reductase family 7 member 9). By mechanisms that remain unclear, this oxidation pathway promotes the covalent binding of ceramides to protein, forming a critical structure of the epidermal barrier, the corneocyte lipid envelope. Here, we detected, in porcine, mouse, and human epidermis, two novel fatty acid derivatives formed by KOH treatment from precursors covalently bound to protein: a "polar" lipid chromatographing on normal-phase HPLC just before omega-hydroxy ceramide and a "less polar" lipid nearer the solvent front. Approximately 100 µg of the novel lipids were isolated from porcine epidermis, and the structures were established by UV-spectroscopy, LC-MS, GC-MS, and NMR. Each is a C18 fatty acid and hydroxy-cyclohexenone with the ring on carbons C9-C14 in the polar lipid and C8-C13 in the less polar lipid. Overnight culture of [14C]linoleic acid with whole mouse skin ex vivo led to recovery of the 14C-labeled hydroxy-cyclohexenones. We deduce they are formed from covalently bound precursors during the KOH treatment used to release esterified lipids. KOH-induced intramolecular aldol reactions from a common precursor can account for their formation. Discovery of these hydroxy-cyclohexenones presents an opportunity for a reverse pathway analysis, namely to work back from these structures to identify their covalently bound precursors and relationship to the linoleate oxidation pathway.


Asunto(s)
Ceramidas , Epidermis , Ácido Linoleico , Lipooxigenasa , Animales , Humanos , Ratones , Ceramidas/metabolismo , Epidermis/metabolismo , Ácidos Grasos/metabolismo , Ácido Linoleico/metabolismo , Ácidos Linoleicos , Porcinos
3.
Chirality ; 35(1): 49-57, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367323

RESUMEN

Methyl esters of [5]-ladderanoic acid and [3]-ladderanoic acid were prepared by esterification of the acids isolated from biomass at a wastewater treatment plant. Optical rotations at six different wavelengths (633, 589, 546, 436, 405 and 365 nm) and vibrational circular dichroism (VCD) spectra in the 1800-900 cm-1 region were measured in CDCl3 solvent and compared with quantum chemical (QC) predictions using B3LYP functional and 6-311++G(2d,2p) basis set with polarizing continuum model representing the solvent. QC predictions gave negative optical rotations at all six wavelengths for (R)-methyl [5]-ladderanoate and positive optical rotations for (R)-methyl [3]-ladderanoate, the same signs as previously reported for the corresponding acids. The crystal structure of (-)-methyl [5]-ladderanoate independently confirmed (R) configuration. The QC-predicted VCD spectra using Boltzmann population weighted spectra of individual conformers did not provide satisfactory quantitative agreement with the experimental VCD spectra. An improved quantitative agreement for VCD spectra could be obtained when conformer populations were optimized to maximize the similarity between experimental and predicted VCD spectra, but more improvements in VCD predictions are needed.


Asunto(s)
Ésteres , Estereoisomerismo , Dicroismo Circular , Rotación Óptica , Solventes
4.
J Lipid Res ; 63(1): 100159, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863863

RESUMEN

In light of the importance of epoxyeicosatrienoic acids (EETs) in mammalian pathophysiology, a nonenzymatic route that might form these monoepoxides in cells is of significant interest. In the late 1970s, a simple system of arranging linoleic acid molecules on a monolayer on silica was devised and shown to yield monoepoxides as the main autoxidation products. Here, we investigated this system with arachidonic acid and characterized the primary products. By the early stages of autoxidation (∼10% conversion of arachidonic acid), the major products detected by LC-MS and HPLC-UV were the 14,15-, 11,12-, and 8,9-EETs, with the 5,6-EET mainly represented as the 5-δ-lactone-6-hydroxyeicosatrienoate as established by 1H-NMR. The EETs were mainly the cis epoxides as expected, with minor trans configuration EETs among the products. 1H-NMR analysis in four deuterated solvents helped clarify the epoxide configurations. EET formation in monolayers involves intermolecular reaction with a fatty acid peroxyl radical, producing the EET and leaving an incipient and more reactive alkoxyl radical, which in turn gives rise to epoxy-hydro(pero)xides and other polar products. The monolayer alignment of fatty acid molecules resembles the arrangements of fatty acids in cell membranes and, under conditions of lipid peroxidation, this intermolecular mechanism might contribute to EET formation in biological membranes.


Asunto(s)
Ácido Araquidónico
5.
J Nat Prod ; 84(9): 2554-2567, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34520205

RESUMEN

Goniodomin A (GDA, 1) is a phycotoxin produced by at least four species of Alexandrium dinoflagellates that are found globally in brackish estuaries and lagoons. It is a linear polyketide with six oxygen heterocyclic rings that is cyclized into a macrocyclic structure via lactone formation. Two of the oxygen heterocycles in 1 comprise a spiro-bis-pyran, whereas goniodomin B (GDB) contains a 2,7-dioxabicyclo[3.3.1]nonane ring system fused to a pyran. When H2O is present, 1 undergoes facile conversion to isomer GDB and to an α,ß-unsaturated ketone, goniodomin C (GDC, 7). GDB and GDC can be formed from GDA by cleavage of the spiro-bis-pyran ring system. GDA, but not GDB or GDC, forms a crown ether-type complex with K+. Equilibration of GDA with GDB and GDC is observed in the presence of H+ and of Na+, but the equilibrated mixtures revert to GDA upon addition of K+. Structural differences have been found between the K+ and Na+ complexes. The association of GDA with K+ is strong, while that with Na+ is weak. The K+ complex has a compact, well-defined structure, whereas Na+ complexes are an ill-defined mixture of species. Analyses of in vitro A. monilatum and A. hiranoi cultures indicate that only GDA is present in the cells; GDB and GDC appear to be postharvest transformation products.


Asunto(s)
Ácidos/química , Éteres/química , Macrólidos/química , Metales Alcalinos/química , Catálisis , Dinoflagelados/química , Simulación de Dinámica Molecular , Estructura Molecular
7.
J Nat Prod ; 83(4): 1069-1081, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32083860

RESUMEN

The marine toxin goniodomin A (GDA) is a polycyclic macrolide containing a spiroacetal and three cyclic ethers as part of the macrocycle backbone. GDA is produced by three species of the Alexandrium genus of dinoflagellates, blooms of which are associated with "red tides", which are widely dispersed and can cause significant harm to marine life. The toxicity of GDA has been attributed to stabilization of the filamentous form of the actin group of structural proteins, but the structural basis for its binding is not known. Japanese workers, capitalizing on the assumed rigidity of the heavily substituted macrolide ring, assigned the relative configuration and conformation by relying on NMR coupling constants and NOEs; the absolute configuration was assigned by degradation to a fragment that was compared with synthetic material. We have confirmed the absolute structure and broad features of the conformation by X-ray crystallography but have found GDA to complex with alkali metal ions in spite of two of the heterocyclic rings facing outward. Such an arrangement would have been expected to impair the ability of GDA to form a crown-ether-type multidentate complex. GDA shows preference for K+, Rb+, and Cs+ over Li+ and Na+ in determinations of relative affinities by TLC on metal-ion-impregnated silica gel plates and by electrospray mass spectrometry. NMR studies employing the K+ complex of GDA, formed from potassium tetrakis[pentafluorophenyl]borate (KBArF20), reveal a major alteration of the conformation of the macrolide ring. These observations argue against the prior assumption of rigidity of the ring. Alterations in chemical shifts, coupling constants, and NOEs indicate the involvement of most of the molecule other than ring F. Molecular mechanics simulations suggest K+ forms a heptacoordinate complex involving OA, OB, OC, OD, OE, and the C-26 and C-27 hydroxy groups. We speculate that complexation of K+ with GDA electrostatically stabilizes the complex of GDA with filamentous actin in marine animals due to the protein being negatively charged at physiological pH. GDA may also cause potassium leakage through cell membranes. This study provides insight into the structural features and chemistry of GDA that may be responsible for significant ecological damage associated with the GDA-producing algal blooms.


Asunto(s)
Dinoflagelados/química , Éteres Cíclicos/clasificación , Éteres/química , Macrólidos/química , Potasio/química , Citoesqueleto de Actina , Actinas/química , Animales , Éteres Cíclicos/química , Humanos , Iones , Espectroscopía de Resonancia Magnética , Estructura Molecular
8.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R733-R745, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483154

RESUMEN

Agonists for PPARα are used clinically to reduce triglycerides and improve high-density lipoprotein (HDL) cholesterol levels in patients with hyperlipidemia. Whether the mechanism of PPARα activation to lower serum lipids occurs in the liver or other tissues is unknown. To determine the function of hepatic PPARα on lipid profiles in diet-induced obese mice, we placed hepatocyte-specific peroxisome proliferator-activated receptor-α (PPARα) knockout (PparaHepKO) and wild-type (Pparafl/fl) mice on high-fat diet (HFD) or normal fat diet (NFD) for 12 wk. There was no significant difference in weight gain, percent body fat mass, or percent body lean mass between the groups of mice in response to HFD or NFD. Interestingly, the PparaHepKO mice on HFD had worsened hepatic inflammation and a significant shift in the proinflammatory M1 macrophage population. These changes were associated with higher hepatic fat mass and decreased hepatic lean mass in the PparαHepKO on HFD but not in NFD as measured by Oil Red O and noninvasive EchoMRI analysis (31.1 ± 2.8 vs. 20.2 ± 1.5, 66.6 ± 2.5 vs. 76.4 ± 1.5%, P < 0.05). We did find that this was related to significantly reduced peroxisomal gene function and lower plasma ß-hydroxybutyrate in the PparaHepKO on HFD, indicative of reduced metabolism of fats in the liver. Together, these provoked higher plasma triglyceride and apolipoprotein B100 levels in the PparaHepKO mice compared with Pparafl/fl on HFD. These data indicate that hepatic PPARα functions to control inflammation and liver triglyceride accumulation that prevent hyperlipidemia.


Asunto(s)
Hígado Graso/metabolismo , Hepatocitos/metabolismo , Hiperlipidemias/metabolismo , Inflamación/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Obesidad/metabolismo , PPAR alfa/deficiencia , Adiposidad , Animales , Apolipoproteína B-100/sangre , Citocinas/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado Graso/sangre , Hígado Graso/genética , Hígado Graso/patología , Hepatocitos/patología , Hiperlipidemias/sangre , Hiperlipidemias/genética , Hiperlipidemias/patología , Inflamación/sangre , Inflamación/genética , Inflamación/patología , Mediadores de Inflamación/metabolismo , Hígado/patología , Ratones Noqueados , Obesidad/sangre , Obesidad/genética , Obesidad/patología , PPAR alfa/genética , Triglicéridos/sangre
9.
Bioorg Med Chem Lett ; 29(16): 2224-2228, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31248774

RESUMEN

This letter describes progress towards an M4 PAM preclinical candidate inspired by an unexpected aldehyde oxidase (AO) metabolite of a novel, CNS penetrant thieno[2,3-c]pyridine core to an equipotent, non-CNS penetrant thieno[2,3-c]pyrdin-7(6H)-one core. Medicinal chemistry design efforts yielded two novel tricyclic cores that enhanced M4 PAM potency, regained CNS penetration, displayed favorable DMPK properties and afforded robust in vivo efficacy in reversing amphetamine-induced hyperlocomotion in rats.


Asunto(s)
Aldehído Oxidasa/metabolismo , Miotonía Congénita/metabolismo , Receptor Muscarínico M4/metabolismo , Animales , Descubrimiento de Drogas , Humanos , Ratas , Relación Estructura-Actividad
10.
J Nat Prod ; 81(12): 2654-2666, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30562024

RESUMEN

We have isolated mixtures of [5]- and [3]-ladderanoic acids 1a and 2a from the biomass of an anammox bioreactor and have separated the acids and their phenacyl esters for the first time by HPLC. The absolute configurations of the naturally occurring acids and their phenacyl esters are assigned as R at the site of side-chain attachment by comparison of experimental specific rotations with corresponding values predicted using quantum chemical (QC) methods. The absolute configurations for 1a and 2a were independently verified by comparison of experimental Raman optical activity spectra with corresponding spectra predicted using QC methods. The configurational assignments of 1a and 2a and of the phenacyl ester of 1a were also confirmed by X-ray crystallography.


Asunto(s)
Lípidos/química , Biomasa , Reactores Biológicos , Dicroismo Circular , Cristalografía por Rayos X , Ésteres , Lípidos/aislamiento & purificación , Conformación Molecular , Estructura Molecular , Espectrometría Raman , Estereoisomerismo
11.
Biochem Biophys Res Commun ; 456(2): 610-4, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25499815

RESUMEN

Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelial nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS(-/-) C57BLKS and eNOS(-/-) C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS(-/-) C57BLKS and eNOS(-/-) C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can be useful new tools in metabolomic studies relevant to human pathology.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/orina , Ácido Aconítico/metabolismo , Ácido Aconítico/orina , Animales , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/orina , Hipuratos/metabolismo , Hipuratos/orina , Indicán/metabolismo , Indicán/orina , Cetoácidos/metabolismo , Cetoácidos/orina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/genética , Fenilacetatos/metabolismo , Fenilacetatos/orina
12.
Chem Res Toxicol ; 28(7): 1469-75, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26046387

RESUMEN

Pyridoxamine (PM) is a prospective drug for the treatment of diabetic complications. In order to make zwitterionic PM more lipophilic and improve its tissue distribution, PM derivatives containing medium length alkyl groups on the hydroxymethyl side chain were prepared. The synthesis of these alkylpyridoxamines (alkyl-PMs) starting from pyridoxine offers high yields and is amenable to bulk preparations. Interestingly, alkyl-PMs were found to react with methylglyoxal (MGO), a major toxic product of glucose metabolism and autoxidation, several orders of magnitude faster than PM. This suggests the formation of nonionic pyrido-1,3-oxazine as the key step in the reaction of PM with MGO. Since the primary target of MGO in proteins is the guanidine side chain of arginine, alkyl-PMs were shown to be more effective than PM in reducing the modification of N-α-benzoylarginine by MGO. Alkyl-PMs in the presence of MGO also protected the enzymatic activity of lysozyme that contains several arginine residues next to its active site. Alkyl-PMs can be expected to trap MGO and other toxic 1,2-carbonyl compounds more effectively than PM, especially in lipophilic tissue environments, thus protecting macromolecules from functional damage. This suggests potential therapeutic uses for alkyl-PMs in diabetes and other diseases characterized by the elevated levels of toxic dicarbonyl compounds.


Asunto(s)
Depuradores de Radicales Libres/química , Piridoxamina/química , Piruvaldehído/química , Biocatálisis , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Glucosa/química , Peroxidasa de Rábano Silvestre/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Conformación Molecular , Muramidasa/metabolismo , Piridoxamina/síntesis química , Piruvaldehído/metabolismo , Espectrofotometría Ultravioleta , Superóxido Dismutasa/metabolismo
13.
J Biol Chem ; 288(29): 20797-20806, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23709224

RESUMEN

Specialized cytochromes P450 or catalase-related hemoproteins transform fatty acid hydroperoxides to allene oxides, highly reactive epoxides leading to cyclopentenones and other products. The stereochemistry of the natural allene oxides is incompletely defined, as are the structural features required for their cyclization. We investigated the transformation of 9S-hydroperoxylinoleic acid with the allene oxide synthase CYP74C3, a reported reaction that unexpectedly produces an allene oxide-derived cyclopentenone. Using biphasic reaction conditions at 0 °C, we isolated the initial products and separated two allene oxide isomers by HPLC at -15 °C. One matched previously described allene oxides in its UV spectrum (λmax 236 nm) and NMR spectrum (defining a 9,10-epoxy-octadec-10,12Z-dienoate). The second was a novel stereoisomer (UV λmax 239 nm) with distinctive NMR chemical shifts. Comparison of NOE interactions of the epoxy proton at C9 in the two allene oxides (and the equivalent NOE experiment in 12,13-epoxy allene oxides) allowed assignment at the isomeric C10 epoxy-ene carbon as Z in the new isomer and the E configuration in all previously characterized allene oxides. The novel 10Z isomer spontaneously formed a cis-cyclopentenone at room temperature in hexane. These results explain the origin of the cyclopentenone, provide insights into the mechanisms of allene oxide cyclization, and define the double bond geometry in naturally occurring allene oxides.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Compuestos Epoxi/química , Compuestos Epoxi/aislamiento & purificación , Lino/enzimología , Ácidos Linoleicos/química , Ácidos Linoleicos/aislamiento & purificación , Ácidos Linoleicos/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Ciclización , Ciclopentanos/química , Ciclopentanos/metabolismo , Espectroscopía de Resonancia Magnética , Conformación Molecular , Oxilipinas/química , Oxilipinas/metabolismo , Estereoisomerismo
14.
Chem Res Toxicol ; 27(6): 1019-29, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24801980

RESUMEN

Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA-protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Desoxiguanosina/química , Lisina/química , Piruvaldehído/química , Estructura Molecular , Estereoisomerismo
15.
Chem Res Toxicol ; 27(10): 1757-68, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25185119

RESUMEN

Cholesterol undergoes ozonolysis to afford a variety of oxysterol products, including cholesterol-5,6-epoxide (CholEp) and the isomeric aldehydes secosterol A (seco A) and secosterol B (seco B). These oxysterols display numerous important biological activities, including protein adduction; however, much remains to be learned about the identity of the reactive species and the range of proteins modified by these oxysterols. Here, we synthesized alkynyl derivatives of cholesterol-derived oxysterols and employed a straightforward detection method to establish secosterols A and B as the most protein-reactive of the oxysterols tested. Model adduction studies with an amino acid, peptides, and proteins provide evidence for the potential role of secosterol dehydration products in protein adduction. Hydrophobic separation methods-Folch extraction and solid phase extraction (SPE)-were successfully applied to enrich oxysterol-adducted peptide species, and LC-MS/MS analysis of a model peptide-seco adduct revealed a unique fragmentation pattern (neutral loss of 390 Da) for that species. Coupling a hydrophobic enrichment method with proteomic analysis utilizing characteristic fragmentation patterns facilitates the identification of secosterol-modified peptides and proteins in an adducted protein. More broadly, these improved enrichment methods may give insight into the role of oxysterols and ozone exposure in the pathogenesis of a variety of diseases, including atherosclerosis, Alzheimer's disease, Parkinson's disease, and asthma.


Asunto(s)
Colesterol/química , Ozono/química , Péptidos/química , Proteínas/química , Aldehídos/química , Secuencia de Aminoácidos , Biotina/química , Colesterol/análogos & derivados , Cromatografía Líquida de Alta Presión , Química Clic , Citocromos c/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Datos de Secuencia Molecular , Péptidos/análisis , Albúmina Sérica/química , Extracción en Fase Sólida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Estreptavidina/química
16.
Artículo en Inglés | MEDLINE | ID: mdl-37336389

RESUMEN

ω-Alkynyl-fatty acids can be used as probes for covalent binding to intracellular macromolecules. To inform future in vivo studies, we determined the rates of reaction of ω-alkynyl-labeled linoleate with recombinant enzymes of the skin 12R-lipoxygenase (12R-LOX) pathway involved in epidermal barrier formation (12R-LOX, epidermal lipoxygenase-3 (eLOX3), and SDR9C7). We also examined the reactivity of ω-alkynyl-arachidonic acid with representative lipoxygenase enzymes employing either "carboxyl end-first" substrate binding (5S-LOX) or "tail-first" (platelet-type 12S-LOX). ω-Alkynyl-linoleic acid was oxygenated by 12R-LOX at 62 ± 9 % of the rate compared to linoleic acid, the alkynyl-9R-HPODE product was isomerized by eLOX3 at only 43 ± 1 % of the natural substrate, whereas its epoxy alcohol product was converted to epoxy ketone linoleic by an NADH-dependent dehydrogenase (SDR9C7) with 91 ± 1 % efficiency. The results suggest the optimal approach will be application of the 12R-LOX/eLOX3-derived epoxyalcohol, which should be most efficiently incorporated into the pathway and allow subsequent analysis of covalent binding to epidermal proteins. Regarding the orientation of substrate binding in LOX catalysis, our results and previous reports suggest the ω-alkynyl group has a stronger inhibitory effect on tail-first binding, as might be expected. Beyond slowing the reaction, however, we found that the tail-first binding and transformation of ω-alkynyl-arachidonic acid by platelet-type 12S-LOX results in almost complete enzyme inactivation, possibly due to reactive intermediates blocking the enzyme active site. Overall, the results reinforce the conclusion that ω-alkynyl-fatty acids are suitable for selected applications after appropriate reactivity is established.


Asunto(s)
Ácidos Araquidónicos , Piel , Piel/metabolismo , Lipooxigenasa/metabolismo , Ácido Linoleico/química , Ácidos Linoleicos/metabolismo , Ácidos Grasos , Ácido Araquidónico
17.
Biochemistry ; 51(11): 2348-56, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22356188

RESUMEN

Microsomal prostaglandin E synthase 1 (MPGES1) is an enzyme that produces the pro-inflammatory molecule prostaglandin E(2) (PGE(2)). Effective inhibitors of MPGES1 are of considerable pharmacological interest for the selective control of pain, fever, and inflammation. The isoprostane, 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), a naturally occurring degradation product of prostaglandin D(2), is known to have anti-inflammatory properties. In this paper, we demonstrate that 15d-PGJ(2) can inhibit MPGES1 by covalent modification of residue C59 and by noncovalent inhibition through binding at the substrate (PGH(2)) binding site. The mechanism of inhibition is dissected by analysis of the native enzyme and the MPGES1 C59A mutant in the presence of glutathione (GSH) and glutathione sulfonate. The location of inhibitor adduction and noncovalent binding was determined by triple mass spectrometry sequencing and with backbone amide H/D exchange mass spectrometry. The kinetics, regiochemistry, and stereochemistry of the spontaneous reaction of GSH with 15d-PGJ(2) were determined. The question of whether the anti-inflammatory properties of 15d-PGJ(2) are due to inhibition of MPGES1 is discussed.


Asunto(s)
Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Microsomas/enzimología , Prostaglandina D2/análogos & derivados , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Sitios de Unión , Glutatión/análogos & derivados , Glutatión/química , Glutatión/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/metabolismo , Espectrometría de Masas , Microsomas/metabolismo , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacología , Prostaglandina-E Sintasas
18.
Tetrahedron ; 68(48): 10049-10058, 2012 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-23204595

RESUMEN

A library of approximately 40 N(1)-acylated (aza)indole alkanoic esters and acids was prepared employing a microwave-assisted approach. The optimized synthetic route allows for parallel synthesis, variation of the indole substitution pattern and high overall yield. Additionally, the procedure has been scaled up to yield multi-gram amounts of preferred indole compounds, e.g.: 2'-des-methyl indomethacin 2. The reported compounds were designed as biomedical tools for primary and secondary in vitro and in vivo studies at relevant molecular targets.

19.
Mol Microbiol ; 75(6): 1529-38, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20180905

RESUMEN

Enzymatic haem catabolism by haem oxygenases is conserved from bacteria to humans and proceeds through a common mechanism leading to the formation of iron, carbon monoxide and biliverdin. The first members of a novel class of haem oxygenases were recently identified in Staphylococcus aureus (IsdG and IsdI) and were termed the IsdG-family of haem oxygenases. Enzymes of the IsdG-family form tertiary structures distinct from those of the canonical haem oxygenase family, suggesting that IsdG-family members degrade haem via a unique reaction mechanism. Herein we report that the IsdG-family of haem oxygenases degrade haem to the oxo-bilirubin chromophore staphylobilin. We also present the crystal structure of haem-bound IsdI in which haem ruffling and constrained binding of oxygen is consistent with cleavage of the porphyrin ring at the beta- or delta-meso carbons. Combined, these data establish that the IsdG-family of haem oxygenases degrades haem to a novel chromophore distinct from biliverdin.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Oxigenasas/química , Oxigenasas/metabolismo , Staphylococcus aureus/enzimología , Cristalografía por Rayos X , Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/metabolismo , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Estructura Terciaria de Proteína
20.
Chem Res Toxicol ; 24(11): 1944-56, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-21972945

RESUMEN

Benzene is employed in large quantities in the chemical industry and is an ubiquitous contaminant in the environment. There is strong epidemiological evidence that benzene exposure induces hematopoietic malignancies, especially acute myeloid leukemia, in humans, but the chemical mechanisms remain obscure. E,E-Muconaldehyde is one of the products of metabolic oxidation of benzene. This paper explores the proposition that E,E-muconaldehyde is capable of forming Gua-Gua cross-links. If formed in DNA, the replication and repair of such cross-links might introduce structural defects that could be the origin of the carcinogenicity. We have investigated the reaction of E,E-muconaldehyde with dGuo and found that the reaction yields two pairs of interconverting diastereomers of a novel heptacyclic bis-adduct having a spiro ring system linking the two Gua residues. The structures of the four diastereomers have been established by NMR spectroscopy and their absolute configurations by comparison of CD spectra with those of model compounds having known configurations. The final two steps in the formation of the bis-nucleoside (5-ring → 6-ring → 7-ring) have significant reversibility, which is the basis for the observed epimerization. The 6-ring precursor was trapped from the equilibrating mixture by reduction with NaBH(4). The anti relationship of the two Gua residues in the heptacyclic bis-adduct precludes it from being formed in B DNA, but the 6-ring precursor could readily be accommodated as an interchain or intrachain cross-link. It should be possible to form similar cross-links of dCyt, dAdo, the ε-amino group of lysine, the imidazole NH of histidine, and N termini of peptides with the dGuo-muconaldehyde monoadduct.


Asunto(s)
Aldehídos/metabolismo , Benceno/metabolismo , Carcinógenos/metabolismo , Aductos de ADN/metabolismo , Desoxiguanosina/metabolismo , Contaminación Ambiental , Aldehídos/química , Aminoácidos/química , Aminoácidos/metabolismo , Benceno/química , Biotransformación , Carcinógenos/química , Dicroismo Circular , ADN/química , ADN/metabolismo , Aductos de ADN/química , Desoxiguanosina/química , Humanos , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , Oxidación-Reducción , Péptidos/química , Péptidos/metabolismo , Soluciones , Compuestos de Espiro/química , Compuestos de Espiro/metabolismo , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA