Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Plant Cell ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657116

RESUMEN

Plants continuously remodel and degrade their organelles due to damage from their metabolic activities and environmental stressors, as well as an integral part of their cell differentiation programs. Whereas certain organelles use local hydrolytic enzymes for limited remodeling, most of pathways that control the partial or complete dismantling of organelles rely on vacuolar degradation. Specifically, selective autophagic pathways play a crucial role in recognizing and sorting plant organelle cargo for vacuolar clearance, especially under cellular stress conditions induced by factors like heat, drought, and damaging light. In these short reviews, we discuss the mechanisms that control the vacuolar degradation of chloroplasts, mitochondria, endoplasmic reticulum, Golgi, and peroxisomes, with an emphasis on autophagy, recently discovered selective autophagy receptors for plant organelles, and crosstalk with other catabolic pathways.

2.
Planta ; 252(3): 36, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32767124

RESUMEN

MAIN CONCLUSION: The oxidant/antioxidant balance affects the ripening time of tomato fruit. Ripening of tomato fruit is associated with several modifications such as loss of cell wall firmness and transformation of chloroplasts to chromoplasts. Besides a peak in H2O2, reactive oxygen species (ROS) are observed at the transition stage. However, the role of different components of oxidative stress metabolism in fruit ripening has been scarcely addressed. Two GDP-L-galactose phosphorylase (GGP) Solanum lycopersicum L. cv Micro-Tom mutants which have fruit with low ascorbic acid content (30% of wild type) were used in this work to unravel the participation of ascorbic acid and H2O2 in fruit maturation. Both GGP mutants show delayed fruit maturation with no peak of H2O2; treatment with ascorbic acid increases its own concentration and accelerates ripening only in mutants to become like wild type plants. Unexpectedly, the treatment with ascorbic acid increases H2O2 synthesis in both mutants resembling what is observed in wild type fruit. Exogenous supplementation with H2O2 decreases its own synthesis delaying fruit maturation in plants with low ascorbic acid content. The site of ROS production is localized in the chloroplasts of fruit of all genotypes as determined by confocal microscopy analysis. The results presented here demonstrate that both ascorbic acid and H2O2 actively participate in tomato fruit ripening.


Asunto(s)
Ácido Ascórbico/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Ácido Ascórbico/genética , Frutas/genética , Variación Genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética
3.
Planta ; 251(2): 54, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31970534

RESUMEN

MAIN CONCLUSION: Reduced GDP-L-galactose phosphorylase expression and deficiency of ascorbic acid content lead to decreased fruit set and yield in tomato plants. Reduced GDP-L-galactose phosphorylase expression and deficiency of ascorbic acid content lead to decreased fruit set and yield in tomato plants. GDP-L-galactose phosphorylase (GGP) catalyzes the first step committed to ascorbic acid synthesis. The participation of GDP-L-galactose phosphorylase and ascorbate in tomato fruit production and quality was studied in this work using two SlGGP1 deficient EMS Micro-Tom mutants. The SlGGP1 mutants display decreased concentrations of ascorbate in roots, leaves, flowers, and fruit. The initiation of anthesis is delayed in ggp1 plants but the number of flowers is similar to wild type. The number of fruits is reduced in ggp1 mutants with an increased individual weight. However, the whole fruit biomass accumulation is reduced in both mutant lines. Fruits of the ggp1 plants produce more ethylene and show higher firmness and soluble solids content than the wild type after the breaker stage. Leaf CO2 uptake decreases about 50% in both ggp1 mutants at saturating light conditions; however, O2 production in an enriched CO2 atmosphere is only 19% higher in wild type leaves. Leaf conductance that is largely reduced in both mutants may be the main limitation for photosynthesis. Sink-source assays and hormone concentration were measured to determine restrictions to fruit yield. Manipulation of leaf area/fruit number relationship demonstrates that the number of fruits and not the provision of photoassimilates from the source restricts biomass accumulation in the ggp1 lines. The lower gibberellins concentration measured in the flowers would contribute to the lower fruit set, thus impacting in tomato yield. Taken as a whole these results demonstrate that ascorbate biosynthetic pathway critically participates in tomato development and fruit production.


Asunto(s)
Ácido Ascórbico/biosíntesis , Frutas/enzimología , Frutas/crecimiento & desarrollo , Galactosa/metabolismo , Guanosina Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/deficiencia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Biomasa , Gases/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Mutación/genética , Fotosíntesis , Hojas de la Planta/metabolismo , Análisis de Componente Principal
4.
Plant Sci ; 322: 111348, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35750294

RESUMEN

Increased synthesis of H2O2 is observed during the initiation of fruit ripening. However, its association with plant cell processes triggering the maturation of fruit has not yet been demonstrated. The aim of this work is to investigate whether H2O2 participates in the tomato ripening process and particularly through its association with the ethylene signaling pathway. The experiments were carried out with two ethyl methanesulfonate mutant lines of Micro-Tom tomato deficient in GDP-L-galactose phosphorylase activity and displaying lower ascorbic acid content than the corresponding parental genotype (i.e. wild type). Plants were subjected to a high irradiance (HI) treatment to stimulate H2O2 synthesis. HI treatment enhanced H2O2 production and reduced the timing of fruit ripening in both mutants and wild-type fruits. These results could be linked to an increase of the expression of H2O2-related genes and changes in the expression of ethylene-related genes. The fruit H2O2 production increased or decreased after applying the treatments that induced ethylene synthesis or blocked its action, respectively. The results presented in this work give an evidence of the association of redox and hormonal components during fruit ripening in which H2O2 participates downstream in the events regulated by ethylene.


Asunto(s)
Solanum lycopersicum , Etilenos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Cell Biol ; 221(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34817556

RESUMEN

Ferroptosis is an oxidative and iron-dependent form of regulated cell death (RCD) recently described in eukaryotic organisms like animals, plants, and parasites. Here, we report that a similar process takes place in the photosynthetic prokaryote Synechocystis sp. PCC 6803 in response to heat stress. After a heat shock, Synechocystis sp. PCC 6803 cells undergo a cell death pathway that can be suppressed by the canonical ferroptosis inhibitors, CPX, vitamin E, Fer-1, liproxstatin-1, glutathione (GSH), or ascorbic acid (AsA). Moreover, as described for eukaryotic ferroptosis, this pathway is characterized by an early depletion of the antioxidants GSH and AsA, and by lipid peroxidation. These results indicate that all of the hallmarks described for eukaryotic ferroptosis are conserved in photosynthetic prokaryotes and suggest that ferroptosis might be an ancient cell death program.


Asunto(s)
Cianobacterias/citología , Cianobacterias/metabolismo , Ferroptosis , Hierro/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Calcio/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Citosol/metabolismo , Glutatión/metabolismo , Respuesta al Choque Térmico , Lipidómica , Lípidos/química , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Synechocystis/metabolismo , Tilacoides/metabolismo
6.
Bio Protoc ; 10(20): e3800, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659454

RESUMEN

Ascorbic acid (AsA) and gluthathione (GSH) are two key components of the antioxidant machinery of eukaryotic and prokaryotic cells. The cyanobacterium Synechocystis sp. PCC 6803 presents both compounds in different concentrations (AsA, 20-100 µM and GSH, 2-5 mM). Therefore, it is important to have precise and sensitive methods to determine the redox status in the cell and to detect variations in this antioxidants. In this protocol, we describe an improved method to estimate the content of both antioxidants (in their reduced and oxidized forms) from the same sample obtained from liquid cultures of Synechocystis sp. PCC 6803.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA