Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(12): 2285-2299.e7, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36272416

RESUMEN

Intravascular neutrophils and platelets collaborate in maintaining host integrity, but their interaction can also trigger thrombotic complications. We report here that cooperation between neutrophil and platelet lineages extends to the earliest stages of platelet formation by megakaryocytes in the bone marrow. Using intravital microscopy, we show that neutrophils "plucked" intravascular megakaryocyte extensions, termed proplatelets, to control platelet production. Following CXCR4-CXCL12-dependent migration towards perisinusoidal megakaryocytes, plucking neutrophils actively pulled on proplatelets and triggered myosin light chain and extracellular-signal-regulated kinase activation through reactive oxygen species. By these mechanisms, neutrophils accelerate proplatelet growth and facilitate continuous release of platelets in steady state. Following myocardial infarction, plucking neutrophils drove excessive release of young, reticulated platelets and boosted the risk of recurrent ischemia. Ablation of neutrophil plucking normalized thrombopoiesis and reduced recurrent thrombosis after myocardial infarction and thrombus burden in venous thrombosis. We establish neutrophil plucking as a target to reduce thromboischemic events.


Asunto(s)
Enfermedades Cardiovasculares , Infarto del Miocardio , Trombosis , Humanos , Megacariocitos , Trombopoyesis , Neutrófilos , Plaquetas/fisiología
2.
Blood ; 143(3): 272-278, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37879046

RESUMEN

ABSTRACT: Megakaryocytes (MKs) generate thousands of platelets over their lifespan. The roles of platelets in infection and inflammation has guided an interest to the study of extramedullary thrombopoiesis and therefore MKs have been increasingly reported within the spleen and lung. However, the relative abundance of MKs in these organs compared to the bone marrow and the scale of their contribution to the platelet pool in a steady state remain controversial. We investigated the relative abundance of MKs in the adult murine bone marrow, spleen, and lung using whole-mount light-sheet and quantitative histological imaging, flow cytometry, intravital imaging, and an assessment of single-cell RNA sequencing (scRNA-seq) repositories. Flow cytometry revealed significantly higher numbers of hematopoietic stem and progenitor cells and MKs in the murine bone marrow than in spleens or perfused lungs. Two-photon intravital and light-sheet microscopy, as well as quantitative histological imaging, confirmed these findings. Moreover, ex vivo cultured MKs from the bone marrow subjected to static or microfluidic platelet production assays had a higher capacity for proplatelet formation than MKs from other organs. Analysis of previously published murine and human scRNA-seq data sets revealed that only a marginal fraction of MK-like cells can be found within the lung and most likely only marginally contribute to platelet production in the steady state.


Asunto(s)
Médula Ósea , Trombopoyesis , Ratones , Humanos , Animales , Trombopoyesis/genética , Plaquetas , Megacariocitos , Bazo
3.
Blood ; 143(15): 1539-1550, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38142422

RESUMEN

ABSTRACT: JAK2 V617F (JAK2VF) clonal hematopoiesis (CH) has been associated with atherothrombotic cardiovascular disease (CVD). We assessed the impact of Jak2VF CH on arterial thrombosis and explored the underlying mechanisms. A meta-analysis of 3 large cohort studies confirmed the association of JAK2VF with CVD and with platelet counts and adjusted mean platelet volume (MPV). In mice, 20% or 1.5% Jak2VF CH accelerated arterial thrombosis and increased platelet activation. Megakaryocytes in Jak2VF CH showed elevated proplatelet formation and release, increasing prothrombogenic reticulated platelet counts. Gp1ba-Cre-mediated expression of Jak2VF in platelets (VFGp1ba) increased platelet counts to a similar level as in 20% Jak2VF CH mice while having no effect on leukocyte counts. Like Jak2VF CH mice, VFGp1ba mice showed enhanced platelet activation and accelerated arterial thrombosis. In Jak2VF CH, both Jak2VF and wild-type (WT) platelets showed increased activation, suggesting cross talk between mutant and WT platelets. Jak2VF platelets showed twofold to threefold upregulation of COX-1 and COX-2, particularly in young platelets, with elevated cPLA2 activation and thromboxane A2 production. Compared with controls, conditioned media from activated Jak2VF platelets induced greater activation of WT platelets that was reversed by a thromboxane receptor antagonist. Low-dose aspirin ameliorated carotid artery thrombosis in VFGp1ba and Jak2VF CH mice but not in WT control mice. This study shows accelerated arterial thrombosis and platelet activation in Jak2VF CH with a major role of increased reticulated Jak2VF platelets, which mediate thromboxane cross talk with WT platelets and suggests a potential beneficial effect of aspirin in JAK2VF CH.


Asunto(s)
Hematopoyesis Clonal , Trombosis , Animales , Humanos , Ratones , Aspirina/farmacología , Aspirina/uso terapéutico , Plaquetas/metabolismo , Ratones Noqueados , Activación Plaquetaria , Trombosis/genética , Trombosis/metabolismo
5.
PLoS Comput Biol ; 18(11): e1010708, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36441766

RESUMEN

The clustering of platelet glycoprotein receptors with cytosolic YxxL and YxxM motifs, including GPVI, CLEC-2 and PEAR1, triggers activation via phosphorylation of the conserved tyrosine residues and recruitment of the tandem SH2 (Src homology 2) domain effector proteins, Syk and PI 3-kinase. We have modelled the clustering of these receptors with monovalent, divalent and tetravalent soluble ligands and with transmembrane ligands based on the law of mass action using ordinary differential equations and agent-based modelling. The models were experimentally evaluated in platelets and transfected cell lines using monovalent and multivalent ligands, including novel nanobody-based divalent and tetravalent ligands, by fluorescence correlation spectroscopy. Ligand valency, receptor number, receptor dimerisation, receptor phosphorylation and a cytosolic tandem SH2 domain protein act in synergy to drive receptor clustering. Threshold concentrations of a CLEC-2-blocking antibody and Syk inhibitor act in synergy to block platelet aggregation. This offers a strategy for countering the effect of avidity of multivalent ligands and in limiting off-target effects.


Asunto(s)
Glicoproteínas de Membrana Plaquetaria , Dominios Homologos src , Simulación por Computador
6.
Blood ; 135(14): 1146-1160, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32040544

RESUMEN

Increasing evidence suggests that platelets play a predominant role in colon and breast cancer metastasis, but the underlying molecular mechanisms remain elusive. Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin that triggers platelet activation through immunoreceptor tyrosine-based activation motif (ITAM) signaling and thereby regulates diverse functions, including platelet adhesion, aggregation, and procoagulant activity. GPVI has been proposed as a safe antithrombotic target, because its inhibition is protective in models of arterial thrombosis, with only minor effects on hemostasis. In this study, the genetic deficiency of platelet GPVI in mice decreased experimental and spontaneous metastasis of colon and breast cancer cells. Similar results were obtained with mice lacking the spleen-tyrosine kinase Syk in platelets, an essential component of the ITAM-signaling cascade. In vitro and in vivo analyses supported that mouse, as well as human GPVI, had platelet adhesion to colon and breast cancer cells. Using a CRISPR/Cas9-based gene knockout approach, we identified galectin-3 as the major counterreceptor of GPVI on tumor cells. In vivo studies demonstrated that the interplay between platelet GPVI and tumor cell-expressed galectin-3 uses ITAM-signaling components in platelets and favors the extravasation of tumor cells. Finally, we showed that JAQ1 F(ab')2-mediated inhibition of GPVI efficiently impairs platelet-tumor cell interaction and tumor metastasis. Our study revealed a new mechanism by which platelets promote the metastasis of colon and breast cancer cells and suggests that GPVI represents a promising target for antimetastatic therapies.


Asunto(s)
Plaquetas/patología , Neoplasias de la Mama/patología , Neoplasias del Colon/patología , Galectina 3/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Animales , Plaquetas/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Neoplasias del Colon/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/patología , Activación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/genética , Mapas de Interacción de Proteínas
7.
Haematologica ; 107(12): 2846-2858, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34348450

RESUMEN

Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin ß4 (encoded by Tmsb4x) is one of the two main G-actin-sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function. Thymosin ß4 deficiency resulted in a macrothrombocytopenia with only mildly increased platelet volume and an unaltered platelet life span. Megakaryocyte numbers in the bone marrow and spleen were unaltered, however, Tmsb4x KO megakaryocytes showed defective proplatelet formation in vitro and in vivo. Thymosin ß4-deficient platelets displayed markedly decreased G-actin levels and concomitantly increased F-actin levels resulting in accelerated spreading on fibrinogen and clot retraction. Moreover, Tmsb4x KO platelets showed activation defects and an impaired immunoreceptor tyrosine-based activation motif (ITAM) signaling downstream of the activating collagen receptor glycoprotein VI. These defects translated into impaired aggregate formation under flow, protection from occlusive arterial thrombus formation in vivo and increased tail bleeding times. In summary, these findings point to a critical role of thymosin ß4 for actin dynamics during platelet biogenesis, platelet activation downstream of glycoprotein VI and thrombus stability.


Asunto(s)
Plaquetas , Trombosis , Timosina , Animales , Ratones , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Plaquetas/metabolismo , Ratones Noqueados , Trombosis/genética , Trombosis/metabolismo , Timosina/genética
8.
Circ Res ; 127(8): 1023-1035, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32762491

RESUMEN

RATIONALE: Ischemic stroke is a leading cause of morbidity and mortality worldwide. Recanalization of the occluded vessel is essential but not sufficient to guarantee brain salvage. Experimental and clinical data suggest that infarcts often develop further due to a thromboinflammatory process critically involving platelets and T cells, but the underlying mechanisms are unknown. OBJECTIVE: We aimed to determine the role of CD (cluster of differentiation)-84 in acute ischemic stroke after recanalization and to dissect the underlying molecular thromboinflammatory mechanisms. METHODS AND RESULTS: Here, we show that mice lacking CD84-a homophilic immunoreceptor of the SLAM (signaling lymphocyte activation molecule) family-on either platelets or T cells displayed reduced cerebral CD4+ T-cell infiltration and thrombotic activity following experimental stroke resulting in reduced neurological damage. In vitro, platelet-derived soluble CD84 enhanced motility of wild-type but not of Cd84-/- CD4+ T cells suggesting homophilic CD84 interactions to drive this process. Clinically, human arterial blood directly sampled from the ischemic cerebral circulation indicated local shedding of platelet CD84. Moreover, high platelet CD84 expression levels were associated with poor outcome in patients with stroke. CONCLUSIONS: These results establish CD84 as a critical pathogenic effector and thus a potential pharmacological target in ischemic stroke.


Asunto(s)
Plaquetas/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Inflamación/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Accidente Cerebrovascular Trombótico/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Coagulación Sanguínea , Linfocitos T CD4-Positivos/inmunología , Quimiotaxis de Leucocito , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/inmunología , Inflamación/genética , Inflamación/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Estudios Prospectivos , Transducción de Señal , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Accidente Cerebrovascular Trombótico/genética , Accidente Cerebrovascular Trombótico/inmunología
9.
Platelets ; 33(6): 849-858, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35109754

RESUMEN

Interrogating platelets and their densely packed, highly abundant receptor landscape is key to understand platelet clotting, a process that can save lives when stopping blood loss after an injury, but also kill when causing heart attack, stroke, or pulmonary embolism. The underlying key receptor distributions and interactions, in particular the relevance of integrin clustering, are not fully understood is because of highly abundant and densely distributed αIIbß3 receptors. This makes receptor distributions difficult to assess even by super-resolution fluorescence microscopy. Here, we combine dual-color expansion and confocal microscopy with colocalization analysis to assess platelet receptor organization without the need of a super-resolution microscope. We show that 4x expansion is highly straight-forward for super-resolution microscopy of platelets, while 10x expansion provides higher precision at the price of increased efforts in sample preparation and imaging. Quantifying various receptor colocalization scenarios we demonstrate that expansion microscopy can pinpoint receptor distributions and interactions in resting and activated platelets being superior to conventional methods that fail in such dense 3D scenarios with highly abundant receptors. We reveal the presence of αIIbß3 clusters in resting platelets, as well as in activated platelets, indicating that they contribute to the rapid platelet response during platelet clotting.


Asunto(s)
Plaquetas , Microscopía , Animales , Coagulación Sanguínea , Plaquetas/fisiología , Hemostasis , Humanos , Ratones , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria
10.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35409124

RESUMEN

Rac1 is a small Rho GTPase that is activated in platelets upon stimulation with various ligands, including collagen and thrombin, which are ligands for the glycoprotein VI (GPVI) receptor and the protease-activated receptors, respectively. Rac1-deficient murine platelets have impaired lamellipodia formation, aggregation, and reduced PLCγ2 activation, but not phosphorylation. The objective of our study is to investigate the role of Rac1 in GPVI-dependent human platelet activation and downstream signalling. Therefore, we used human platelets stimulated using GPVI agonists (collagen and collagen-related peptide) in the presence of the Rac1-specific inhibitor EHT1864 and analysed platelet activation, aggregation, spreading, protein phosphorylation, and GPVI clustering and shedding. We observed that in human platelets, the inhibition of Rac1 by EHT1864 had no significant effect on GPVI clustering on collagen fibres but decreased the ability of platelets to spread or aggregate in response to GPVI agonists. Additionally, in contrast to what was observed in murine Rac1-deficient platelets, EHT1864 enhanced GPVI shedding in platelets and reduced the phosphorylation levels of PLCγ2 following GPVI activation. In conclusion, Rac1 activity is required for both human and murine platelet activation in response to GPVI-ligands, but Rac1's mode of action differs between the two species.


Asunto(s)
Plaquetas , Glicoproteínas de Membrana Plaquetaria , Animales , Plaquetas/metabolismo , Colágeno/metabolismo , Humanos , Ligandos , Ratones , Fosfolipasa C gamma/metabolismo , Fosforilación , Activación Plaquetaria , Agregación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo
11.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955743

RESUMEN

Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1 cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes instead an increased response. This effect was also seen with platelets from newly generated human GPVI knockin mice (hGP6tg/tg). These results indicate that the binding of JAQ1 to a structurally conserved epitope in GPVI differently affects its function in human and mouse platelets.


Asunto(s)
Adhesividad Plaquetaria , Glicoproteínas de Membrana Plaquetaria , Animales , Plaquetas/metabolismo , Colágeno/metabolismo , Perros , Epítopos/metabolismo , Cobayas , Humanos , Ratones , Activación Plaquetaria , Agregación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Conejos , Ratas
12.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012752

RESUMEN

During ischemic stroke, infarct growth before recanalization diminishes functional outcome. Hence, adjunct treatment options to protect the ischemic penumbra before recanalization are eagerly awaited. In experimental stroke targeting two different pathways conferred protection from penumbral tissue loss: (1) enhancement of hypoxic tolerance of neurons by deletion of the calcium channel subunit Orai2 and (2) blocking of detrimental lymphocyte-platelet responses. However, until now, no preclinical stroke study has assessed the potential of combining neuroprotective with anti-thrombo-inflammatory interventions to augment therapeutic effects. We induced focal cerebral ischemia in Orai2-deficient (Orai2-/-) mice by middle cerebral artery occlusion (MCAO). Animals were treated with anti-glycoprotein Ib alpha (GPIbα) Fab fragments (p0p/B Fab) blocking GPIbα-von Willebrand factor (vWF) interactions. Rat immunoglobulin G (IgG) Fab was used as the control treatment. The extent of infarct growth before recanalization was assessed at 4 h after MCAO. Moreover, infarct volumes were determined 6 h after recanalization (occlusion time: 4 h). Orai2 deficiency significantly halted cerebral infarct progression under occlusion. Inhibition of platelet GPIbα further reduced primary infarct growth in Orai2-/- mice. During ischemia-reperfusion, upon recanalization, mice were likewise protected. All in all, we show that neuroprotection in Orai2-/- mice can be augmented by targeting thrombo-inflammation. This supports the clinical development of combined neuroprotective/anti-platelet strategies in hyper-acute stroke.


Asunto(s)
Isquemia Encefálica , Proteína ORAI2 , Accidente Cerebrovascular , Animales , Plaquetas/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/prevención & control , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/metabolismo , Ratones , Ratones Noqueados , Neuroprotección , Proteína ORAI2/genética , Accidente Cerebrovascular/metabolismo
13.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008919

RESUMEN

Understanding the pathways involved in the formation and stability of the core and shell regions of a platelet-rich arterial thrombus may result in new ways to treat arterial thrombosis. The distinguishing feature between these two regions is the absence of fibrin in the shell which indicates that in vitro flow-based assays over thrombogenic surfaces, in the absence of coagulation, can be used to resemble this region. In this study, we have investigated the contribution of Syk tyrosine kinase in the stability of platelet aggregates (or thrombi) formed on collagen or atherosclerotic plaque homogenate at arterial shear (1000 s-1). We show that post-perfusion of the Syk inhibitor PRT-060318 over preformed thrombi on both surfaces enhances thrombus breakdown and platelet detachment. The resulting loss of thrombus stability led to a reduction in thrombus contractile score which could be detected as early as 3 min after perfusion of the Syk inhibitor. A similar loss of thrombus stability was observed with ticagrelor and indomethacin, inhibitors of platelet adenosine diphosphate (ADP) receptor and thromboxane A2 (TxA2), respectively, and in the presence of the Src inhibitor, dasatinib. In contrast, the Btk inhibitor, ibrutinib, causes only a minor decrease in thrombus contractile score. Weak thrombus breakdown is also seen with the blocking GPVI nanobody, Nb21, which indicates, at best, a minor contribution of collagen to the stability of the platelet aggregate. These results show that Syk regulates thrombus stability in the absence of fibrin in human platelets under flow and provide evidence that this involves pathways additional to activation of GPVI by collagen.


Asunto(s)
Resistencia al Corte , Quinasa Syk/metabolismo , Trombosis/enzimología , Colágeno/metabolismo , Humanos , Fosforilación , Adhesividad Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Anticuerpos de Dominio Único/metabolismo , Quinasa Syk/antagonistas & inhibidores , Temperatura , Trombina/farmacología
14.
J Neuroinflammation ; 18(1): 46, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602266

RESUMEN

BACKGROUND: In acute ischemic stroke, cessation of blood flow causes immediate tissue necrosis within the center of the ischemic brain region accompanied by functional failure in the surrounding brain tissue designated the penumbra. The penumbra can be salvaged by timely thrombolysis/thrombectomy, the only available acute stroke treatment to date, but is progressively destroyed by the expansion of infarction. The underlying mechanisms of progressive infarction are not fully understood. METHODS: To address mechanisms, mice underwent filament occlusion of the middle cerebral artery (MCAO) for up to 4 h. Infarct development was compared between mice treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab) or rat immunoglobulin G (IgG) Fab as control treatment. Moreover, Rag1-/- mice lacking T-cells underwent the same procedures. Infarct volumes as well as the local inflammatory response were determined during vessel occlusion. RESULTS: We show that blocking of the platelet adhesion receptor, glycoprotein (GP) Ibα in mice, delays cerebral infarct progression already during occlusion and thus before recanalization/reperfusion. This therapeutic effect was accompanied by decreased T-cell infiltration, particularly at the infarct border zone, which during occlusion is supplied by collateral blood flow. Accordingly, mice lacking T-cells were likewise protected from infarct progression under occlusion. CONCLUSIONS: Progressive brain infarction can be delayed by blocking detrimental lymphocyte/platelet responses already during occlusion paving the way for ultra-early treatment strategies in hyper-acute stroke before recanalization.


Asunto(s)
Plaquetas/metabolismo , Encéfalo/patología , Progresión de la Enfermedad , Infarto de la Arteria Cerebral Media/sangre , Infarto de la Arteria Cerebral Media/patología , Linfocitos/metabolismo , Animales , Encéfalo/metabolismo , Circulación Cerebrovascular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Ratas
15.
Blood ; 134(21): 1847-1858, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31578203

RESUMEN

During thrombopoiesis, megakaryocytes (MKs) form proplatelets within the bone marrow (BM) and release platelets into BM sinusoids. Phosphoinositide-dependent protein kinase-1 (PDK1) is required for Ca2+-dependent platelet activation, but its role in MK development and regulation of platelet production remained elusive. The present study explored the role of PDK1 in the regulation of MK maturation and polarization during thrombopoiesis using a MK/platelet-specific knockout approach. Pdk1-deficient mice (Pdk1-/-) developed a significant macrothrombocytopenia as compared with wild-type mice (Pdk1fl/fl). Pdk1 deficiency further dramatically increased the number of MKs without sinusoidal contact within the BM hematopoietic compartment, resulting in a pronounced MK hyperplasia and a significantly increased extramedullary thrombopoiesis. Cultured Pdk1-/- BM-MKs showed impaired spreading on collagen, associated with an altered actin cytoskeleton structure with less filamentous actin (F-actin) and diminished podosome formation, whereas the tubulin cytoskeleton remained unaffected. This phenotype was associated with abrogated phosphorylation of p21-activated kinase (PAK) as well as its substrates LIM domain kinase and cofilin, supporting the hypothesis that the defective F-actin assembly results from increased cofilin activity in Pdk1-deficient MKs. Pdk1-/- BM-MKs developed increased ploidy and exhibited an abnormal ultrastructure with disrupted demarcation membrane system (DMS). Strikingly, Pdk1-/- BM-MKs displayed a pronounced defect in DMS polarization and produced significantly less proplatelets, indicating that PDK1 is critically required for proplatelet formation. In human MKs, genetic PDK1 knockdown resulted in increased maturity but reduced platelet-like particles formation. The present observations reveal a pivotal role of PDK1 in the regulation of MK cytoskeletal dynamics and polarization, proplatelet formation, and thrombopoiesis.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Plaquetas/metabolismo , Citoesqueleto/metabolismo , Megacariocitos/metabolismo , Trombopoyesis/fisiología , Animales , Plaquetas/citología , Humanos , Megacariocitos/citología , Ratones , Ratones Noqueados
16.
Haematologica ; 106(5): 1368-1380, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32327502

RESUMEN

Platelets are produced by bone marrow megakaryocytes through cytoplasmic protrusions, named native proplatelets (nPPT), into blood vessels. Proplatelets also refer to protrusions observed in megakaryocyte culture (cPPT) that are morphologically different. Contrary to cPPT, the mechanisms of nPPT formation are poorly understood. We show here in living mice that nPPT elongation is in equilibrium between protrusive and retraction forces mediated by myosin-IIA. We also found, using WT and ß1-tubulin-deficient mice, that microtubule behavior differs between cPPT and nPPT, being absolutely required in vitro, while less critical in vivo. Remarkably, microtubule depolymerization in myosin-deficient mice did not affect nPPT elongation. We then calculated that blood Stokes'forces may be sufficient to promote nPPT extension, independently of myosin and microtubules. Together, we propose a new mechanism for nPPT extension that might explain contradictions between severely affected cPPT production and moderate platelet count defects in some patients and animal models.


Asunto(s)
Citoesqueleto , Megacariocitos , Animales , Plaquetas , Humanos , Ratones , Microtúbulos , Tubulina (Proteína)
17.
Platelets ; 32(5): 601-607, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32726163

RESUMEN

Investigation of the bone marrow as the main compartment of hematopoiesis is critical in many research fields. Here, we adapted a centrifugation-based method for the isolation of murine bone marrow and compared it to the traditional flushing method. Analysis of primary hematopoietic stem cells, immune cells, and megakaryocytes revealed a comparable distribution of cellular (sub)populations. Furthermore, in vitro differentiated megakaryocytes displayed unaltered proplatelet formation. Strikingly, bone marrow isolation by centrifugation was considerably faster than the flushing method and significantly increased the cell yield. Thus, the centrifugation-based isolation method is highly suitable for the study of murine bone marrow cells.


Asunto(s)
Médula Ósea/metabolismo , Separación Celular/métodos , Centrifugación/métodos , Células Madre Hematopoyéticas/metabolismo , Animales , Humanos , Masculino , Ratones
18.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008781

RESUMEN

In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbß3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.


Asunto(s)
Coagulación Sanguínea , Plaquetas/metabolismo , Colágeno/farmacología , Tromboplastina/farmacología , Trombosis/patología , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/efectos de los fármacos , Factor VIIa/metabolismo , Fibrina/metabolismo , Humanos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores Proteinasa-Activados/metabolismo , Transducción de Señal , Quinasa Syk/metabolismo , Factores de Tiempo
19.
Blood ; 132(6): 635-646, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29950291

RESUMEN

Bone marrow (BM) megakaryocytes (MKs) produce platelets by extending proplatelets into sinusoidal blood vessels. Defects in thrombopoiesis can lead to thrombocytopenia associated with increased bleeding tendency. Recently, the platelet disorder congenital autosomal-recessive small-platelet thrombocytopenia (CARST) was described; it is caused by mutations in the adhesion and degranulation-promoting adaptor protein (ADAP; synonym: FYB, SLAP130/120) gene, and characterized by microthrombocytopenia and bleeding symptoms. In this study, we used constitutive ADAP-deficient mice (Adap-/- ) as a model to investigate mechanisms underlying the microthrombocytopenia in CARST. We show that Adap-/- mice display several characteristics of human CARST, with moderate thrombocytopenia and smaller-sized platelets. Adap-/- platelets had a shorter life span than control platelets, and macrophage depletion, but not splenectomy, increased platelet counts in mutant mice to control levels. Whole-sternum 3-dimensional confocal imaging and intravital 2-photon microscopy revealed altered morphology of ADAP-deficient MKs with signs of fragmentation and ectopic release of (pro)platelet-like particles into the BM compartment. In addition, cultured BM-derived MKs lacking ADAP showed reduced spreading on extracellular matrix proteins as well as activation of ß1 integrins, impaired podosome formation, and displayed defective polarization of the demarcation membrane system in vitro. MK-/platelet-specific ADAP-deficient mice (PF4-cre) also produced fewer and smaller-sized platelets and released platelets ectopically. These data demonstrate that the abnormal platelet production in the mutant mice is an MK-intrinsic defect. Taken together, these results point to an as-yet-unidentified role of ADAP in the process of MK polarization and platelet biogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Plaquetas/patología , Megacariocitos/patología , Trombocitopenia/etiología , Trombopoyesis/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Médula Ósea/patología , Membrana Celular/ultraestructura , Forma de la Célula , Tamaño de la Célula , Micropartículas Derivadas de Células , Senescencia Celular , Citoesqueleto/ultraestructura , Ratones , Ratones Noqueados , Activación Plaquetaria , Recuento de Plaquetas , Podosomas/ultraestructura , Especificidad de la Especie , Esplenectomía , Trombocitopenia/genética , Trombocitopenia/patología
20.
Haematologica ; 105(4): 895-904, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31248970

RESUMEN

All hematopoietic cells that develop in the bone marrow must cross the endothelial barrier to enter the blood circulation. Blood platelets, however, are released by bigger protrusions of huge progenitor cells, named megakaryocytes, and enter the blood stream as so-called proplatelets before fragmenting into mature platelets. Recently, a second function of megakaryocytes has been identified, as they modulate the quiescence of hematopoietic stem cells, mostly via different soluble factors. We know from light sheet fluorescence microscopy images that megakaryocytes are distributed throughout the bone marrow facing a dense vascular network. Here, we used such three-dimensional images to provide a realistic simulation template reflecting the in vivo cell-vessel distributions resulting in reliable whole-bone analysis in silico Combining this approach with an automated image analysis pipeline, we found that megakaryocytes influence migration of neutrophils and hematopoietic stem cells, and thus act as biomechanical restrainers modulating cell mobility and extravasation. Indeed, as a consequence of increased megakaryocyte volumes in platelet-depleted mice neutrophil mobility was reduced in these animals.


Asunto(s)
Médula Ósea , Megacariocitos , Animales , Plaquetas , Movimiento Celular , Células Madre Hematopoyéticas , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA