Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464005

RESUMEN

The rampant rise of multidrug resistant (MDR) bacterial pathogens poses a severe health threat, necessitating innovative tools to unravel the complex genetic underpinnings of antimicrobial resistance. Despite significant strides in developing genomic tools for detecting resistance genes, a gap remains in analyzing organism-specific patterns of resistance gene co-occurrence. Addressing this deficiency, we developed the Resistance Gene Association and Inference Network (ReGAIN), a novel web-based and command line genomic platform that uses Bayesian network structure learning to identify and map resistance gene networks in bacterial pathogens. ReGAIN not only detects resistance genes using well-established methods, but also elucidates their complex interplay, critical for understanding MDR phenotypes. Focusing on ESKAPE pathogens, ReGAIN yielded a queryable database for investigating resistance gene co-occurrence, enriching resistome analyses, and providing new insights into the dynamics of antimicrobial resistance. Furthermore, the versatility of ReGAIN extends beyond antibiotic resistance genes to include assessment of co-occurrence patterns among heavy metal resistance and virulence determinants, providing a comprehensive overview of key gene relationships impacting both disease progression and treatment outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA