Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(31): e2403585121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042685

RESUMEN

Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria toward a small number of cellulose overproducers from an initial pool of 40,000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms toward a specific phenotype and to unravel genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of new strains for the sustainable manufacturing of materials.


Asunto(s)
Celulosa , Evolución Molecular Dirigida , Celulosa/metabolismo , Celulosa/biosíntesis , Evolución Molecular Dirigida/métodos , Acetobacteraceae/metabolismo , Acetobacteraceae/genética , Fenotipo , Mutación
2.
J Am Chem Soc ; 140(43): 14289-14299, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30265527

RESUMEN

Calcium carbonate (CaCO3) is one of the most abundant biominerals that is prevalent in rocks and often used as a structural material in marine animals. Many of these natural CaCO3-based materials display excellent mechanical properties that are difficult to reproduce by man-made counterparts. This difficulty arises from the incomplete understanding of the influence of processing conditions on the structure and composition of CaCO3. To gain a better understanding of the evolution of the structure and composition of amorphous CaCO3 (ACC) particles during early stages, we introduce a new, organic solvent-free method that quenches this process with a high temporal resolution. We produce ACC particles inside small airborne drops that are formed with a microfluidic spray-dryer. These drops dry within 100 ms to 10 s and thereby arrest the formation of CaCO3 particles on that time scale. Using the microfluidic spray-dryer, we demonstrate that the amount of mobile water contained in ACC particles increases with increasing formation time and hence with increasing particle size. As a result of the higher concentration of mobile water, larger particles are less stable against temperature-induced solid-state crystallization and electron beam-induced decomposition than smaller counterparts. The amount of mobile water contained in ACC can be substantially reduced, and hence their kinetic stability against solid-state transformations increased, if certain organic additives, such as poly(acrylic acid) (PAA), are incorporated. These insights might open up new opportunities to fabricate biomimetic CaCO3-based materials with tunable structures and hence with properties that can be adapted to the needs of specific applications.

3.
Langmuir ; 34(11): 3459-3466, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29489377

RESUMEN

Natural soft materials are often composed of proteins that self-assemble into well-defined structures and display mechanical properties that cannot be matched by manmade materials. These materials are frequently mimicked with hydrogels whose mechanical properties depend on their composition and the type and density of cross-links. Protocols to tune these parameters are well established and routinely used. The mechanical properties of hydrogels also depend on their structure; this parameter is more difficult to control. In this paper, we present a method to produce hexagonal-prismatic granular hydrogel sheets with well-defined structures and heterogeneous cross-link densities. The hydrogel sheets are made of self-assembled covalently cross-linked 40-120 µm diameter hexagonal-prismatic hydrogel particles that display a narrow size distribution. The structure and microscale surface roughness of the hydrogels sheets can be tuned with the polymerization conditions, their chemical composition with that of the individual hydrogel particles, and their mechanical properties with the cross-link density. Remarkably, the hydrogels composed of hexagonal-prismatic microparticles are significantly stiffer than unstructured counterparts. These results demonstrate that the stiffness of hydrogels can be tuned by controlling their micrometer-scale structure without altering their composition. Thereby, they open up new possibilities to design soft materials whose performance more closely resembles that of natural ones.

4.
Soft Matter ; 12(15): 3545-57, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26948023

RESUMEN

We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

5.
Langmuir ; 31(25): 6965-70, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26061672

RESUMEN

We report on robust synthetic microcompartments with hydrophobically gated shells that can reversibly swell and contract multiple times upon external stimuli. The gating mechanism relies on a hydrophilic-hydrophobic transition of a polymer layer that is grafted on inorganic colloidosomes using atom-transfer radical polymerization. As a result of such a transition, the initially tight hydrophobic shell becomes permeable to the diffusion of hydrophilic solutes across the microcompartment walls. Surprisingly, the microcompartments are strong enough to retain their spherical shape during several swelling and contraction cycles. This provides a powerful alternative platform for the creation of synthetic microreactors and protocells that interact with the surrounding media through a simple gating mechanism and are sufficiently robust for further engineering of increasingly complex compartmentalized structures.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Nylons/química , Difusión , Polimerizacion
6.
ACS Appl Mater Interfaces ; 14(11): 13952-13961, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35258934

RESUMEN

Emulsion drops with defined sizes are frequently used to conduct chemical reactions on picoliter scales or as templates to form microparticles. Despite tremendous progress that has been achieved in the production of emulsions, the high throughput formation of drops with well-defined diameters of a few micrometers remains challenging. Drops of this size, however, are in high demand, for example, for many pharmaceutical, food, and materials science applications. Here, we introduce a scalable method to produce water-in-oil emulsion drops possessing controlled diameters of just a few micrometers: We fabricate calibrated aerosol drops and transfer them into an oil bath to form stable emulsions at rates up to 480 µL min-1 of the dispersed phase. We demonstrate that the emulsification is thermodynamically driven such that design principles to successfully form emulsions can easily be deduced. We employ these emulsion drops as templates to form well-defined micrometer-sized hydrogel spheres and capsules.

7.
Biomater Sci ; 9(20): 6753-6762, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34498620

RESUMEN

Fast advances in soft robotics and tissue engineering demand for new soft materials whose mechanical properties can be interchangeably and locally varied, thereby enabling, for example, the design of soft joints within an integral material. Inspired by nature, we introduce a competitive ligand-mediated approach to selectively and interchangeably reinforce metal-coordinated hydrogels. This is achieved by reinforcing carboxylate-containing hydrogels with Fe3+ ions. Key to achieving a homogeneous, predictable reinforcement of the hydrogels is the presence of weak complexation agents that delay the formation of metal-complexes within the hydrogels, thereby allowing a homogeneous distribution of the metal ions. The resulting metal-reinforced hydrogels show a compressive modulus of up to 2.5 MPa, while being able to withstand pressures as high as 0.6 MPa without appreciable damage. Competitive ligand exchanges offer an additional advantage: they enable non-linear compositional changes that, for example, allow the formation of joints within these hydrogels. These features open up new possibilities to extend the field of use of metal reinforced hydrogels to load-bearing applications that are omnipresent for example in soft robots and actuators.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Ligandos , Soporte de Peso
8.
ACS Appl Mater Interfaces ; 13(13): 15601-15609, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33764041

RESUMEN

Capsules are often used to protect chemical and biological entities from the environment, to control the timing and location of their release, or to facilitate the collection of waste. Their performance depends on the thickness and composition of their shells, which can be closely controlled if capsules are made from double emulsion drops that are produced with microfluidics. However, the fabrication of such double emulsions is delicate, limiting throughput and increasing costs. Here, a fast, scalable method to produce monodisperse microcapsules possessing mechanically robust, thin, semipermeable hydrogel shells from single emulsion drops is introduced. This is achieved by selectively polymerizing reagents in close proximity to the drop surface to form a biocompatible 1.6 µm-thick hydrogel shell that encompasses a liquid core. The size-selective permeability of the shell enables the growth of living yeast and bacteria in their cores. Moreover, if capsules are loaded with adsorbents, they can repetitively remove waste products from water. The simplicity and robustness of the capsule fabrication makes the process scalable and cost effective. It has thus the potential to extend the use of calibrated capsules possessing well-defined dimensions to cost sensitive fields, including food, waste water treatment, or oil recovery.

9.
Lab Chip ; 18(4): 648-654, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29359212

RESUMEN

Drops are often used as picoliter-sized reaction vessels, for example for high-throughput screening assays, or as templates to produce particles of controlled sizes and compositions. Many of these applications require close control over the size of drops, which can be achieved if they are produced with microfluidics. However, this tight size control comes at the expense of the throughput that is too low for many materials science and almost all industrial applications. To overcome this limitation, different parallelized microfluidic devices have been reported. These devices typically operate at high throughputs if the viscosity of the inner fluid is low. However, fluids that are processed into particles often contain high concentrations of reagents and therefore are rather viscous. We report a microfluidic device containing parallelized triangular nozzles with rectangular cross-sections that can process solutions with viscosities up to 155 mPa s into drops of well-defined sizes and narrow size distributions at significantly higher throughputs than what could be achieved previously. The increased throughput is enabled by the introduction of shunt channels: each nozzle is intersected by shunt channels that facilitate the backflow of the outer phase, thereby increasing the critical rate at which the fluid flow transitions from the dripping into the jetting regime. These modified nozzles open up new possibilities to employ drops made of viscous fluids as templates to produce particles with well-defined sizes for applications that require larger quantities.

10.
Phys Rev E ; 95(1-1): 012610, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28208468

RESUMEN

In this paper we probe the structural response to oscillatory shear deformations of polycrystalline monolayers of soft repulsive colloids with varying area fraction over a broad range of frequencies and amplitudes. The particles are confined at a fluid interface, sheared using a magnetic microdisk, and imaged through optical microscopy. The structural and mechanical response of soft materials is highly dependent on their microstructure. If crystals are well understood and deform through the creation and mobilization of specific defects, the situation is much more complex for disordered jammed materials, where identifying structural motifs defining plastically rearranging regions remains an elusive task. Our materials fall between these two classes and allow the identification of clear pathways for structural evolution. In particular, we demonstrate that large enough strains are able to fluidize the system, identifying critical strains that fulfill a local Lindemann criterion. Conversely, smaller strains lead to localized and erratic irreversible particle rearrangements due to the motion of structural defects. In this regime, oscillatory shear promotes defect annealing and leads to the growth of large crystalline domains. Numerical simulations help identify the population of rearranging particles with those exhibiting the largest deviatoric stresses and indicate that structural evolution proceeds towards the minimization of the stress stored in the system. The particles showing high deviatoric stresses are localized around grain boundaries and defects, providing a simple criterion to spot regions likely to rearrange plastically under oscillatory shear.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA