Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Semin Cell Dev Biol ; 81: 2-12, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28739340

RESUMEN

The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Polaridad Celular/fisiología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Animales , Adhesión Celular/fisiología , Células Endoteliales/metabolismo , Humanos , Unión Proteica
2.
Med Microbiol Immunol ; 209(4): 397-405, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32274581

RESUMEN

Tetraspanins comprise a family of proteins embedded in the membrane through four transmembrane domains. One of the most distinctive features of tetraspanins is their ability to interact with other proteins in the membrane using their extracellular, transmembrane and cytoplasmic domains, allowing them to incorporate several proteins into clusters called tetraspanin-enriched microdomains. The spatial proximity of signaling proteins and their regulators enables a rapid functional cross-talk between these proteins, which is required for a rapid translation of extracellular signals into intracellular signaling cascades. In this article, we highlight a few examples that illustrate how tetraspanin-mediated interactions between cell surface proteins allow their functional cross-talk to regulate intracellular signaling.


Asunto(s)
Enfermedad , Homeostasis , Microdominios de Membrana/fisiología , Transducción de Señal , Tetraspaninas/fisiología , Humanos , Inmunoglobulinas/fisiología , Receptores de Superficie Celular
3.
Appl Microbiol Biotechnol ; 104(13): 5943-5957, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32399588

RESUMEN

The first step in the development of Helicobacter pylori pathogenicity is the receptor-mediated adhesion to the gastric epithelium. Inhibition of outer membrane proteins of H. pylori (e.g. BabA) by antiadhesive drugs will contribute to reduced recolonization and infection. Pectin from apple inhibits the BabA and LPS-mediated adhesion of H. pylori to human stomach cells. Pectin-coated liposomes with encapsulated amoxicillin were characterized for polydispersity, zeta potential, encapsulation efficiency, stability, and amoxicillin release. Coated liposomes did not influence the viability of AGS and HT29-MTX cells up to 100 µg/mL but exert cytotoxicity against H. pylori at 10 µg/mL. Pectin-coating of liposomes provoked direct interaction and subsequent binding of the particles to surface structures of H. pylori, and interaction with mucus from porcine stomach and mucus secreted by HT29-MTX cells. Laser scanning microscopy of H. pylori and AGS cells together with liposomes indicated co-aggregation. The mucoadhesive effect seems interesting as stomach cells are covered by a mucus layer. H. pylori is able to penetrate and cross the mucin rapidly to reach pH-neutral epithelium to escape the acidic environment, followed by interaction with epithelial cells. In summary, all experimental evidence is consistent with a specific interaction of pectin-coated liposomes with mucins and surface structures of H. pylori. As the coated liposomes show mucoadhesion to the negatively charged mucins, docking to stomach mucin, mucus penetration, and recognition of and adhesion to H. pylori, they can be considered a novel type of multifunctional drug carriers for local antibiotic therapy against H. pylori. KEY POINTS: • Smart, multifunctional mucoadhesive liposomes • Specific targeting against BabA/LPS of Helicobacter pylori • Inhibition of bacterial adhesion of H. pylori to human host cells • Release of antibiotic cargo.


Asunto(s)
Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Helicobacter pylori/efectos de los fármacos , Liposomas/química , Pectinas/química , Adhesinas Bacterianas/metabolismo , Amoxicilina/química , Amoxicilina/farmacología , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Línea Celular , Mucinas Gástricas/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Helicobacter pylori/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Liposomas/metabolismo , Porcinos
4.
Cell Mol Life Sci ; 75(8): 1393-1409, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29238845

RESUMEN

Cell adhesion molecules (CAMs) of the immunoglobulin superfamily (IgSF) regulate important processes such as cell proliferation, differentiation and morphogenesis. This activity is primarily due to their ability to initiate intracellular signaling cascades at cell-cell contact sites. Junctional adhesion molecule-A (JAM-A) is an IgSF-CAM with a short cytoplasmic tail that has no catalytic activity. Nevertheless, JAM-A is involved in a variety of biological processes. The functional diversity of JAM-A resides to a large part in a C-terminal PDZ domain binding motif which directly interacts with nine different PDZ domain-containing proteins. The molecular promiscuity of its PDZ domain motif allows JAM-A to recruit protein scaffolds to specific sites of cell-cell adhesion and to assemble signaling complexes at those sites. Here, we review the molecular characteristics of JAM-A, including its dimerization, its interaction with scaffolding proteins, and the phosphorylation of its cytoplasmic domain, and we describe how these characteristics translate into diverse biological activities.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Eucariotas/metabolismo , Inmunoglobulinas/metabolismo , Molécula A de Adhesión de Unión/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteínas Portadoras/genética , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Eucariotas/ultraestructura , Regulación de la Expresión Génica , Humanos , Inmunoglobulinas/genética , Molécula A de Adhesión de Unión/genética , Proteínas de Microfilamentos/genética , Morfogénesis/genética , Proteínas Nucleares/genética , Dominios PDZ , Fosforilación , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura
5.
Histochem Cell Biol ; 150(4): 341-350, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29978321

RESUMEN

The formation of cell-cell junctions and the development of stable cell-cell adhesion require the association of actin filaments with the sites of cell-cell adhesion. From the initial formation of cell-cell junctions, which appear as punctate, spot-like junctions, to the formation of a stable actin belt that runs adjacent to cell-cell junctions, the actin cytoskeleton is closely associated with the adhesion apparatus. Importantly, the junctional actin is highly dynamic, even after the maturation of intercellular junctions and the development of apico-basal polarity. Regulators of both branched actin networks and of linear actin cables have been identified at cell-cell junctions, in particular at adherens junctions but also at tight junctions. These regulators of actin dynamics are often directly or indirectly associated with cell adhesion receptors, suggesting a critical role for cell adhesion molecules for the recruitment of regulators of actin dynamics to cell-cell junctions. Here, we review the recent developments on the role of cell adhesion molecules at epithelial and endothelial cell-cell junctions in the regulation of junctional actin dynamics.


Asunto(s)
Actinas/metabolismo , Uniones Adherentes/metabolismo , Adhesión Celular , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Animales , Humanos
6.
Int J Med Microbiol ; 305(1): 129-39, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25515664

RESUMEN

Although it belongs to the group of coagulase-negative staphylococci, Staphylococcus lugdunensis has been known to cause aggressive courses of native and prosthetic valve infective endocarditis with high mortality similar to Staphylococcus aureus. In contrast to S. aureus, only little is known about the equipment of S. lugdunensis with virulence factors including adhesins and their role in mediating attachment to extracellular matrix and plasma proteins and host cells. In this study, we show that the multifunctional autolysin/adhesin AtlL of S. lugdunensis binds to the extracellular matrix and plasma proteins fibronectin, fibrinogen, and vitronectin as well as to human EA.hy926 endothelial cells. Furthermore, we demonstrate that AtlL also plays an important role in the internalization of S. lugdunensis by eukaryotic cells: The atlL-deficient mutant Mut17 adheres to and becomes internalized by eukaryotic cells to a lesser extent than the isogenic wild-type strain Sl253 and the complemented mutant Mut17 (pCUatlL) shows an increased internalization level in comparison to Mut17. Thus, surface localized AtlL that exhibits a broad binding spectrum also mediates the internalization of S. lugdunensis by eukaryotic cells. We therefore propose an internalization pathway for S. lugdunensis, in which AtlL plays a major role. Investigating the role of AtlL in biofilm formation of S. lugdunensis, Mut17 shows a significantly reduced ability for biofilm formation, which is restored in the complemented mutant. Thus, our data provide evidence for a significant role for AtlL in adherence and internalization processes as well as in biofilm formation of S. lugdunensis.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Endocitosis , Células Endoteliales/microbiología , Staphylococcus lugdunensis/fisiología , Factores de Virulencia/metabolismo , Adhesinas Bacterianas/genética , Línea Celular , Fibrinógeno/metabolismo , Fibronectinas/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Humanos , Unión Proteica , Staphylococcus lugdunensis/metabolismo , Factores de Virulencia/genética , Vitronectina/metabolismo
7.
J Cell Biol ; 221(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35293964

RESUMEN

Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvß5 integrin. JAM-A binds Csk and inhibits the activity of αvß5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvß5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.


Asunto(s)
Inhibición de Contacto , Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Inhibición de Contacto/genética , Receptores de Vitronectina , Tetraspaninas
8.
Nat Commun ; 9(1): 5357, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559384

RESUMEN

Strict regulation of proliferation is vital for development, whereas unregulated cell proliferation is a fundamental characteristic of cancer. The polarity protein atypical protein kinase C lambda/iota (aPKCλ) is associated with cell proliferation through unknown mechanisms. In endothelial cells, suppression of aPKCλ impairs proliferation despite hyperactivated mitogenic signaling. Here we show that aPKCλ phosphorylates the DNA binding domain of forkhead box O1 (FoxO1) transcription factor, a gatekeeper of endothelial growth. Although mitogenic signaling excludes FoxO1 from the nucleus, consequently increasing c-Myc abundance and proliferation, aPKCλ controls c-Myc expression via FoxO1/miR-34c signaling without affecting its localization. We find this pathway is strongly activated in the malignant vascular sarcoma, angiosarcoma, and aPKC inhibition reduces c-Myc expression and proliferation of angiosarcoma cells. Moreover, FoxO1 phosphorylation at Ser218 and aPKC expression correlates with poor patient prognosis. Our findings may provide a potential therapeutic strategy for treatment of malignant cancers, like angiosarcoma.


Asunto(s)
Proliferación Celular/fisiología , Células Endoteliales/metabolismo , Proteína Forkhead Box O1/metabolismo , Hemangiosarcoma/patología , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/metabolismo , Proteína Forkhead Box O1/genética , Regulación de la Expresión Génica , Células HEK293 , Hemangiosarcoma/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Isoenzimas/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Fosforilación , Proteína Quinasa C/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética
9.
J Cell Biol ; 212(5): 591-603, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26903538

RESUMEN

Directional cell movements during morphogenesis require the coordinated interplay between membrane receptors and the actin cytoskeleton. The WAVE regulatory complex (WRC) is a conserved actin regulator. Here, we found that the atypical cadherin Fat2 recruits the WRC to basal membranes of tricellular contacts where a new type of planar-polarized whip-like actin protrusion is formed. Loss of either Fat2 function or its interaction with the WRC disrupts tricellular protrusions and results in the formation of nonpolarized filopodia. We provide further evidence for a molecular network in which the receptor tyrosine phosphatase Dlar interacts with the WRC to couple the extracellular matrix, the membrane, and the actin cytoskeleton during egg elongation. Our data uncover a mechanism by which polarity information can be transduced from a membrane receptor to a key actin regulator to control collective follicle cell migration during egg elongation. 4D-live imaging of rotating MCF10A mammary acini further suggests an evolutionary conserved mechanism driving rotational motions in epithelial morphogenesis.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Complejos Multiproteicos/metabolismo , Actinas/metabolismo , Animales , Drosophila melanogaster/embriología , Matriz Extracelular/metabolismo , Rotación
10.
Mol Biol Cell ; 27(18): 2811-21, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27466317

RESUMEN

Blood vessel tubulogenesis requires the formation of stable cell-to-cell contacts and the establishment of apicobasal polarity of vascular endothelial cells. Cell polarity is regulated by highly conserved cell polarity protein complexes such as the Par3-aPKC-Par6 complex and the CRB3-Pals1-PATJ complex, which are expressed by many different cell types and regulate various aspects of cell polarity. Here we describe a functional interaction of VE-cadherin with the cell polarity protein Pals1. Pals1 directly interacts with VE-cadherin through a membrane-proximal motif in the cytoplasmic domain of VE-cadherin. VE-cadherin clusters Pals1 at cell-cell junctions. Mutating the Pals1-binding motif in VE-cadherin abrogates the ability of VE-cadherin to regulate apicobasal polarity and vascular lumen formation. In a similar way, deletion of the Par3-binding motif at the C-terminus of VE-cadherin impairs apicobasal polarity and vascular lumen formation. Our findings indicate that the biological activity of VE-cadherin in regulating endothelial polarity and vascular lumen formation is mediated through its interaction with the two cell polarity proteins Pals1 and Par3.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Células Endoteliales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Nucleósido-Fosfato Quinasa/metabolismo , Nucleósido-Fosfato Quinasa/fisiología , Animales , Antígenos CD/genética , Antígenos CD/fisiología , Sitios de Unión , Cadherinas/genética , Cadherinas/fisiología , Línea Celular , Polaridad Celular/fisiología , Células Epiteliales/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Proteínas de la Membrana/genética , Nucleósido-Fosfato Quinasa/genética , Unión Proteica , Uniones Estrechas/metabolismo
11.
Nat Commun ; 6: 8128, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26306570

RESUMEN

Planar spindle orientation in polarized epithelial cells depends on the precise localization of the dynein-dynactin motor protein complex at the lateral cortex. The contribution of cell adhesion molecules to the cortical localization of the dynein-dynactin complex is poorly understood. Here we find that junctional adhesion molecule-A (JAM-A) regulates the planar orientation of the mitotic spindle during epithelial morphogenesis. During mitosis, JAM-A triggers a transient activation of Cdc42 and PI(3)K, generates a gradient of PtdIns(3,4,5)P3 at the cortex and regulates the formation of the cortical actin cytoskeleton. In the absence of functional JAM-A, dynactin localization at the cortex is reduced, the mitotic spindle apparatus is misaligned and epithelial morphogenesis in three-dimensional culture is compromised. Our findings indicate that a PI(3)K- and cortical F-actin-dependent pathway of planar spindle orientation operates in polarized epithelial cells to regulate epithelial morphogenesis, and we identify JAM-A as a junctional regulator of this pathway.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Dineínas/metabolismo , Molécula A de Adhesión de Unión/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Huso Acromático/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Actinas/metabolismo , Animales , Polaridad Celular , Perros , Complejo Dinactina , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Molécula A de Adhesión de Unión/metabolismo , Células de Riñón Canino Madin Darby , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA