Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 16(4): e1008409, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32287326

RESUMEN

The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned.


Asunto(s)
Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades de los Perros/virología , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N8 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/aislamiento & purificación , Zoonosis/virología , Animales , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Enfermedades de los Perros/transmisión , Perros , Hurones , Cobayas , Humanos , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N8 del Virus de la Influenza A/clasificación , Subtipo H3N8 del Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Gripe Humana/transmisión , Gripe Humana/virología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Estados Unidos , Zoonosis/transmisión
2.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31484755

RESUMEN

H3N2 strains of influenza A virus emerged in humans in 1968 and have continued to circulate, evolving in response to human immune pressure. During this process of "antigenic drift," viruses have progressively lost the ability to agglutinate erythrocytes of various species and to replicate efficiently under the established conditions for amplifying clinical isolates and generating vaccine candidates. We have determined the glycome profiles of chicken and guinea pig erythrocytes to gain insights into reduced agglutination properties displayed by drifted strains and show that both chicken and guinea pig erythrocytes contain complex sialylated N-glycans but that they differ with respect to the extent of branching, core fucosylation, and the abundance of poly-N-acetyllactosamine (PL) [-3Galß1-4GlcNAcß1-]n structures. We also examined binding of the H3N2 viruses using three different glycan microarrays: the synthetic Consortium for Functional Glycomics array; the defined N-glycan array designed to reveal contributions to binding based on sialic acid linkage type, branched structures, and core modifications; and the human lung shotgun glycan microarray. The results demonstrate that H3N2 viruses have progressively lost their capacity to bind nearly all canonical sialylated receptors other than a selection of biantennary structures and PL structures with or without sialic acid. Significantly, all viruses displayed robust binding to nonsialylated high-mannose phosphorylated glycans, even as the recognition of sialylated structures is decreased through antigenic drift.IMPORTANCE Influenza subtype H3N2 viruses have circulated in humans for over 50 years, continuing to cause annual epidemics. Such viruses have undergone antigenic drift in response to immune pressure, reducing the protective effects of preexisting immunity to previously circulating H3N2 strains. The changes in hemagglutinin (HA) affiliated with drift have implications for the receptor binding properties of these viruses, affecting virus replication in the culture systems commonly used to generate and amplify vaccine strains. Therefore, the antigenic properties of the vaccines may not directly reflect those of the circulating strains from which they were derived, compromising vaccine efficacy. In order to reproducibly provide effective vaccines, it will be critical to understand the interrelationships between binding, antigenicity, and replication properties in different growth substrates.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/inmunología , Ácido N-Acetilneuramínico/metabolismo , Animales , Antígenos Virales/metabolismo , Pollos/inmunología , Epítopos/metabolismo , Eritrocitos/virología , Cobayas/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/metabolismo , Gripe Humana/virología , Fosforilación , Polisacáridos/metabolismo , Receptores Virales/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(22): E2241-50, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843157

RESUMEN

Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.


Asunto(s)
Glicómica/métodos , Gripe Aviar/metabolismo , Gripe Humana/metabolismo , Pulmón/virología , Orthomyxoviridae/metabolismo , Receptores Virales/metabolismo , Pruebas de Aglutinación , Animales , Aves , Pollos , Eritrocitos/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/metabolismo , Subtipo H1N2 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Gripe Humana/virología , Lectinas/metabolismo , Pulmón/metabolismo , Orthomyxoviridae/aislamiento & purificación , Orthomyxoviridae/patogenicidad , Polisacáridos/metabolismo , Especificidad de la Especie , Porcinos , Virulencia
4.
Int J Mol Sci ; 18(7)2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28714909

RESUMEN

The hemagglutinin (HA) and neuraminidase (NA) glycoproteins of influenza A virus are responsible for the surface interactions of the virion with the host. Entry of the virus is mediated by functions of the HA: binding to cellular receptors and facilitating fusion of the virion membrane with the endosomal membrane. The HA structure contains receptor binding sites in the globular membrane distal head domains of the trimer, and the fusion machinery resides in the stem region. These sites have specific characteristics associated with subtype and host, and the differences often define species barriers. For example, avian viruses preferentially recognize α2,3-Sialic acid terminating glycans as receptors and mammalian viruses recognize α2,6-Sialic acid. The neuraminidase, or the receptor-destroying protein, cleaves the sialic acid from cellular membrane constituents and viral glycoproteins allowing for egress of nascent virions. A functional balance of activity has been demonstrated between the two glycoproteins, resulting in an optimum level of HA affinity and NA enzymatic cleavage to allow for productive infection. As more is understood about both HA and NA, the relevance for functional balance between HA and NA continues to expand, with potential implications for interspecies transmission, host adaptation, and pathogenicity.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/fisiología , Neuraminidasa/metabolismo , Animales , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus
5.
J Virol ; 89(8): 4504-16, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25653452

RESUMEN

UNLABELLED: Influenza A viruses enter host cells through endosomes, where acidification induces irreversible conformational changes of the viral hemagglutinin (HA) that drive the membrane fusion process. The prefusion conformation of the HA is metastable, and the pH of fusion can vary significantly among HA strains and subtypes. Furthermore, an accumulating body of evidence implicates HA stability properties as partial determinants of influenza host range, transmission phenotype, and pathogenic potential. Although previous studies have identified HA mutations that can affect HA stability, these have been limited to a small selection of HA strains and subtypes. Here we report a mutational analysis of HA stability utilizing a panel of expressed HAs representing a broad range of HA subtypes and strains, including avian representatives across the phylogenetic spectrum and several human strains. We focused on two highly conserved residues in the HA stem region: HA2 position 58, located at the membrane distal tip of the short helix of the hairpin loop structure, and HA2 position 112, located in the long helix in proximity to the fusion peptide. We demonstrate that a K58I mutation confers an acid-stable phenotype for nearly all HAs examined, whereas a D112G mutation consistently leads to elevated fusion pH. The results enhance our understanding of HA stability across multiple subtypes and provide an additional tool for risk assessment for circulating strains that may have other hallmarks of human adaptation. Furthermore, the K58I mutants, in particular, may be of interest for potential use in the development of vaccines with improved stability profiles. IMPORTANCE: The influenza A hemagglutinin glycoprotein (HA) mediates the receptor binding and membrane fusion functions that are essential for virus entry into host cells. While receptor binding has long been recognized for its role in host species specificity and transmission, membrane fusion and associated properties of HA stability have only recently been appreciated as potential determinants. We show here that mutations can be introduced at highly conserved positions to stabilize or destabilize the HA structure of multiple HA subtypes, expanding our knowledge base for this important phenotype. The practical implications of these findings extend to the field of vaccine design, since the HA mutations characterized here could potentially be utilized across a broad spectrum of influenza virus subtypes to improve the stability of vaccine strains or components.


Asunto(s)
Variación Genética , Hemaglutininas/genética , Virus de la Influenza A/genética , Modelos Moleculares , Fenotipo , Animales , Chlorocebus aethiops , Clonación Molecular , Cricetinae , Análisis Mutacional de ADN , Hemaglutininas/química , Concentración de Iones de Hidrógeno , Inmunoprecipitación , Luciferasas , Mutagénesis , Mutación/genética , Conformación Proteica , Estabilidad Proteica , Especificidad de la Especie , Células Vero
6.
Org Biomol Chem ; 14(47): 11106-11116, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27752690

RESUMEN

Glycans play diverse roles in a wide range of biological processes. Research on glycan-binding events is essential for learning their biological and pathological functions. However, the functions of terminal and internal glycan epitopes exhibited during binding with glycan-binding proteins (GBPs) and/or viruses need to be further identified. Therefore, a focused library of 36 biantennary asparagine (Asn)-linked glycans with some presenting tandem glycan epitopes was synthesized via a combined Core Isolation/Enzymatic Extension (CIEE) and one-pot multienzyme (OPME) synthetic strategy. These N-glycans include those containing a terminal sialyl N-acetyllactosamine (LacNAc), sialyl Lewis x (sLex) and Siaα2-8-Siaα2-3/6-R structures with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc) sialic acid form, LacNAc, Lewis x (Lex), α-Gal, and Galα1-3-Lex; and tandem epitopes including α-Gal, Lex, Galα1-3-Lex, LacNAc, and sialyl LacNAc, presented with an internal sialyl LacNAc or 1-2 repeats of an internal LacNAc or Lex component. They were synthesized in milligram-scale, purified to over 98% purity, and used to prepare a glycan microarray. Binding studies using selected plant lectins, antibodies, and viruses demonstrated, for the first time, that when interpreting the binding between glycans and GBPs/viruses, not only the structure of the terminal glycan epitopes, but also the internal epitopes and/or modifications of terminal epitopes needs to be taken into account.


Asunto(s)
Enzimas/metabolismo , Epítopos/química , Epítopos/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Técnicas de Química Sintética , Polisacáridos/síntesis química
7.
J Virol ; 88(3): 1502-12, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24227867

RESUMEN

The zoonotic outbreak of H7N9 subtype avian influenza virus that occurred in eastern China in the spring of 2013 resulted in 135 confirmed human cases, 44 of which were lethal. Sequencing of the viral genome revealed a number of molecular signatures associated with virulence or transmission in mammals. We report here that, in the guinea pig model, a human isolate of novel H7N9 influenza virus, A/Anhui/1/2013 (An/13), is highly dissimilar to an H7N1 avian isolate and instead behaves similarly to a human seasonal strain in several respects. An/13 was found to have a low 50% infectious dose, grow to high titers in the upper respiratory tract, and transmit efficiently among cocaged guinea pigs. The pH of fusion of the hemagglutinin (HA) and the binding of virus to fixed guinea pig tissues were also examined. The An/13 HA displayed a relatively elevated pH of fusion characteristic of many avian strains, and An/13 resembled avian viruses in terms of attachment to tissues. One important difference was seen between An/13 and both the H3N2 human and the H7N1 avian viruses: when inoculated intranasally at a high dose, only the An/13 virus led to productive infection of the lower respiratory tract of guinea pigs. In sum, An/13 was found to retain fusion and attachment properties of an avian influenza virus but displayed robust growth and contact transmission in the guinea pig model atypical of avian strains and indicative of mammalian adaptation.


Asunto(s)
Modelos Animales de Enfermedad , Cobayas , Subtipo H7N9 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Animales , Femenino , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Subtipo H7N1 del Virus de la Influenza A/genética , Subtipo H7N1 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/fisiología , Gripe Humana/transmisión , Virulencia
8.
PLoS Pathog ; 9(2): e1003151, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23459660

RESUMEN

The influenza A virus (IAV) HA protein must be activated by host cells proteases in order to prime the molecule for fusion. Consequently, the availability of activating proteases and the susceptibility of HA to protease activity represents key factors in facilitating virus infection. As such, understanding the intricacies of HA cleavage by various proteases is necessary to derive insights into the emergence of pandemic viruses. To examine these properties, we generated a panel of HAs that are representative of the 16 HA subtypes that circulate in aquatic birds, as well as HAs representative of the subtypes that have infected the human population over the last century. We examined the susceptibility of the panel of HA proteins to trypsin, as well as human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2). Additionally, we examined the pH at which these HAs mediated membrane fusion, as this property is related to the stability of the HA molecule and influences the capacity of influenza viruses to remain infectious in natural environments. Our results show that cleavage efficiency can vary significantly for individual HAs, depending on the protease, and that some HA subtypes display stringent selectivity for specific proteases as activators of fusion function. Additionally, we found that the pH of fusion varies by 0.7 pH units among the subtypes, and notably, we observed that the pH of fusion for most HAs from human isolates was lower than that observed from avian isolates of the same subtype. Overall, these data provide the first broad-spectrum analysis of cleavage-activation and membrane fusion characteristics for all of the IAV HA subtypes, and also show that there are substantial differences between the subtypes that may influence transmission among hosts and establishment in new species.


Asunto(s)
Adaptación Fisiológica , Glicoproteínas Hemaglutininas del Virus de la Influenza/clasificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/patogenicidad , Fusión de Membrana/fisiología , Activación Viral/fisiología , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Especificidad del Huésped , Humanos , Concentración de Iones de Hidrógeno , Inmunoprecipitación , Virus de la Influenza A/genética , Gripe Humana/metabolismo , Gripe Humana/patología , Gripe Humana/virología , Fenotipo , Conformación Proteica , Serina Endopeptidasas/metabolismo , Tripsina/metabolismo , Células Vero , Replicación Viral
9.
Curr Top Microbiol Immunol ; 385: 63-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25078920

RESUMEN

Host cell attachment by influenza A viruses is mediated by the hemagglutinin glycoprotein (HA), and the recognition of specific types of sialic acid -containing glycan receptors constitutes one of the major determinants of viral host range and transmission properties. Structural studies have elucidated some of the viral determinants involved in receptor recognition of avian-like and human-like receptors for various subtypes of influenza A viruses, and these provide clues relating to the mechanisms by which viruses evolve to adapt to human hosts. We discuss structural aspects of receptor binding by influenza HA, as well as the biological implications of functional interplay involving HA binding, NA sialidase functions, the effects of antigenic drift, and the inhibitory properties of natural glycans present on mucosal surfaces.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Especificidad del Huésped , Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , Receptores Virales/metabolismo , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Influenza A/química , Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/virología , Unión Proteica , Receptores Virales/genética
10.
J Virol ; 87(20): 11076-87, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23926334

RESUMEN

As we are confronted with an increasing number of emerging and reemerging viral pathogens, the identification of novel pathogen-specific and broad-spectrum antivirals has become a major developmental objective. Targeting of host factors required for virus replication presents a tangible approach toward obtaining novel hits with a broadened indication range. However, the identification of developable host-directed antiviral candidates remains challenging. We describe a novel screening protocol that interrogates the myxovirus host-pathogen interactome for broad-spectrum drug candidates and simultaneously probes for conventional, pathogen-directed hits. With resource efficiency and pan-myxovirus activity as the central developmental parameters, we explored coscreening against two distinct, independently traceable myxoviruses in a single-well setting. Having identified a pair of unrelated pathogenic myxoviruses (influenza A virus and measles virus) with comparable replication kinetics, we observed unimpaired coreplication of both viruses, generated suitable firefly and Renilla luciferase reporter constructs, respectively, and validated the protocol for up to a 384-well plate format. Combined with an independent counterscreen using a recombinant respiratory syncytial virus luciferase reporter, implementation of the protocol identified candidates with a broadened antimyxovirus profile, in addition to pathogen-specific hits. Mechanistic characterization revealed a newly discovered broad-spectrum lead that does not block viral entry but stimulates effector pathways of the innate cellular antiviral response. In summary, we provide proof of concept for the efficient discovery of broad-spectrum myxovirus inhibitors in parallel to para- and orthomyxovirus-specific hit candidates in a single screening campaign. The newly identified compound provides a basis for the development of a novel broad-spectrum small-molecule antiviral class.


Asunto(s)
Antivirales/aislamiento & purificación , Interacciones Huésped-Patógeno/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/aislamiento & purificación , Virus de la Influenza A/efectos de los fármacos , Virus del Sarampión/efectos de los fármacos , Animales , Antivirales/farmacología , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento , Humanos , Factores Inmunológicos/farmacología
12.
Microsc Microanal ; 20(1): 164-74, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24279992

RESUMEN

Electron microscopy (EM), cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) are essential techniques used for characterizing basic virus morphology and determining the three-dimensional structure of viruses. Enveloped viruses, which contain an outer lipoprotein coat, constitute the largest group of pathogenic viruses to humans. The purification of enveloped viruses from cell culture presents certain challenges. Specifically, the inclusion of host-membrane-derived vesicles, the complete destruction of the viruses, and the disruption of the internal architecture of individual virus particles. Here, we present a strategy for capturing enveloped viruses on affinity grids (AG) for use in both conventional EM and cryo-EM/ET applications. We examined the utility of AG for the selective capture of human immunodeficiency virus virus-like particles, influenza A, and measles virus. We applied nickel-nitrilotriacetic acid lipid layers in combination with molecular adaptors to selectively adhere the viruses to the AG surface. This further development of the AG method may prove essential for the gentle and selective purification of enveloped viruses directly onto EM grids for ultrastructural analyses.


Asunto(s)
Microscopía por Crioelectrón/métodos , Virión/aislamiento & purificación , Virus/aislamiento & purificación , Ácido Nitrilotriacético/análogos & derivados , Compuestos Organometálicos , Virión/química , Virus/química
13.
J Biol Chem ; 287(53): 44784-99, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23115247

RESUMEN

Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens.


Asunto(s)
Biomarcadores/química , Glicómica , Leche Humana/química , Polisacáridos/química , Receptores Virales/análisis , Animales , Secuencia de Carbohidratos , Línea Celular , Células Madre Embrionarias/metabolismo , Humanos , Ratones , Leche Humana/metabolismo , Datos de Secuencia Molecular , Polisacáridos/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo
14.
J Gen Virol ; 94(Pt 12): 2599-2608, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23994833

RESUMEN

An avian-like H3N2 influenza A virus (IAV) has recently caused sporadic canine influenza outbreaks in China and Korea, but the molecular mechanisms involved in the interspecies transmission of H3N2 IAV from avian to canine species are not well understood. Sequence analysis showed that residue 222 in haemagglutinin (HA) is predominantly tryptophan (W) in the closely related avian H3N2 IAV, but was leucine (L) in canine H3N2 IAV. In this study, reassortant viruses rH3N2-222L (canine-like) and rH3N2-222W (avian-like) with HA mutation L222W were generated using reverse genetics to evaluate the significance of the L222W mutation on receptor binding and host tropism of H3N2 IAV. Compared with rH3N2-222W, rH3N2-222L grew more rapidly in MDCK cells and had significantly higher infectivity in primary canine tracheal epithelial cells. Tissue-binding assays demonstrated that rH3N2-222L had a preference for canine tracheal tissues rather avian tracheal tissues, whereas rH3N2-222W favoured slightly avian rather canine tracheal tissues. Glycan microarray analysis suggested both rH3N2-222L and rH3N2-222W bound preferentially to α2,3-linked sialic acids. However, the rH3N2-222W had more than twofold less binding affinity than rH3N2-222L to a set of glycans with Neu5Aca2-3Galb1-4(Fuca-)-like or Neu5Aca2-3Galb1-3(Fuca-)-like structures. These data suggest the W to L mutation at position 222 of the HA could facilitate infection of H3N2 IAV in dogs, possibly by increasing the binding affinities of the HA to specific receptors with Neu5Aca2-3Galb1-4(Fuca-) or Neu5Aca2-3Galb1-3(Fuca-)-like structures that are present in dogs.


Asunto(s)
Enfermedades de los Perros/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Mutación , Infecciones por Orthomyxoviridae/veterinaria , Animales , Secuencia de Carbohidratos , Línea Celular , China , Perros , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Leucina/genética , Infecciones por Orthomyxoviridae/virología , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Triptófano/genética
15.
J Virol ; 85(23): 12387-98, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21917953

RESUMEN

To examine the range of selective processes that potentially operate when poorly binding influenza viruses adapt to replicate more efficiently in alternative environments, we passaged a virus containing an attenuating mutation in the hemagglutinin (HA) receptor binding site in mice and characterized the resulting mutants with respect to the structural locations of mutations selected, the replication phenotypes of the viruses, and their binding properties on glycan microarrays. The initial attenuated virus had a tyrosine-to-phenylalanine mutation at HA1 position 98 (Y98F), located in the receptor binding pocket, but viruses that were selected contained second-site pseudoreversion mutations in various structural locations that revealed a range of molecular mechanisms for modulating receptor binding that go beyond the scope that is generally mapped using receptor specificity mutants. A comparison of virus titers in the mouse respiratory tract versus MDCK cells in culture showed that the mutants displayed distinctive replication properties depending on the system, but all were less attenuated in mice than the Y98F virus. An analysis of receptor binding properties confirmed that the initial Y98F virus bound poorly to several different species of erythrocytes, while all mutants reacquired various degrees of hemagglutination activity. Interestingly, both the Y98F virus and pseudoreversion mutants were shown to bind very inefficiently to standard glycan microarrays containing an abundance of binding substrates for most influenza viruses that have been characterized to date, provided by the Consortium for Functional Glycomics. The viruses were also examined on a recently developed microarray containing glycans terminating in sialic acid derivatives, and limited binding to a potentially interesting subset of glycans was revealed. The results are discussed with respect to mechanisms for HA-mediated receptor binding, as well as regarding the species of molecules that may act as receptors for influenza virus on host cell surfaces.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Mutación/genética , Infecciones por Orthomyxoviridae/virología , Receptores Virales/metabolismo , Replicación Viral , Animales , Sitios de Unión , Bovinos , Células Cultivadas , Pollos , Perros , Eritrocitos/metabolismo , Eritrocitos/virología , Vectores Genéticos , Cobayas , Pruebas de Hemaglutinación , Caballos , Riñón/citología , Riñón/metabolismo , Riñón/virología , Ratones , Análisis por Micromatrices , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Orthomyxoviridae/patogenicidad , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Conformación Proteica , Ovinos , Turquía
16.
Sci Rep ; 12(1): 12757, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882911

RESUMEN

The Madin-Darby canine kidney (MDCK) cell line is an in vitro model for influenza A virus (IAV) infection and propagation. MDCK-SIAT1 (SIAT1) and humanized MDCK (hCK) cell lines are engineered MDCK cells that express N-glycans with elevated levels of sialic acid (Sia) in α2,6-linkage (α2,6-Sia) that are recognized by many human IAVs. To characterize the N-glycan structures in these cells and the potential changes compared to the parental MDCK cell line resulting from engineering, we analyzed the N-glycans from these cells at different passages, using both mass spectrometry and specific lectin and antibody binding. We observed significant differences between the three cell lines in overall complex N-glycans and terminal galactose modifications. MDCK cells express core fucosylated, bisected complex-type N-glycans at all passage stages, in addition to expressing α2,6-Sia on short N-glycans and α2,3-Sia on larger N-glycans. By contrast, SIAT1 cells predominantly express α2,6-Sia glycans and greatly reduced level of α2,3-Sia glycans. Additionally, they express bisected, sialylated N-glycans that are scant in MDCK cells. The hCK cells exclusively express α2,6-Sia glycans. Unexpectedly, hCK glycoproteins bound robustly to the plant lectin MAL-1, indicating α2,3-Sia glycans, but such binding was not Sia-dependent and closely mirrored that of an antibody that recognizes glycans with terminal 3-O-sulfate galactose (3-O-SGal). The 3-O-SGal epitope is highly expressed in N-glycans on multiple hCK glycoproteins. These results indicate vastly different N-glycomes between MDCK cells and the engineered clones that could relate to IAV infectivity.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Orthomyxoviridae , Animales , Perros , Galactosa/metabolismo , Glicoproteínas/metabolismo , Humanos , Virus de la Influenza A/metabolismo , Riñón/metabolismo , Células de Riñón Canino Madin Darby , Ácido N-Acetilneuramínico/metabolismo , Orthomyxoviridae/metabolismo , Polisacáridos/metabolismo , Sulfatos/metabolismo
17.
Virology ; 569: 44-55, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35255298

RESUMEN

Novel cell-based assays were developed to assess antibody-dependence cellular cytotoxicity (ADCC) antibodies against both vaccine and a representative circulation strain HA and NA proteins for the 2014-15 influenza season. The four assays using target cells stably expressing one of the four proteins worked well. In pre- and post-vaccine sera from 70 participants in a pre-season vaccine trial, we found ADCC antibodies and a rise in ADCC antibody titer against target cells expressing the 4 proteins but a much higher titer for the vaccine than the circulating HA in both pre-and post-vaccine sera. These differences in HA ADCC antibodies were not reflected in differences in HA binding antibodies. Our observations suggested that relatively minor changes on the subtype HA can result in large differences in ADCC activity.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Antivirales , Citotoxicidad Celular Dependiente de Anticuerpos , Reacciones Cruzadas , Glicoproteínas Hemaglutininas del Virus de la Influenza , Humanos , Gripe Humana/prevención & control , Vacunación
18.
J Virol ; 84(16): 8300-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20504926

RESUMEN

Viral vectors based on influenza virus, rabies virus (RV), and vaccinia virus (VV) were used to express large polypeptide segments derived from the Bacillus anthracis protective antigen (PA). For the infectious influenza virus vector and recombinant VV constructs, the receptor binding domain (RBD or domain 4) or the lethal and edema factor binding domain (LEF or domain 1') were engineered into functional chimeric hemagglutinin (HA) glycoproteins. In the case of the RV vector, the viral glycoprotein (G) was used as a carrier for RBD in an inactivated form of the vector. These constructs were examined by using multiple homologous and heterologous prime/boost immunization regimens in order to optimize the induction of alpha-PA antibody responses. Several immunization combinations were shown to induce high titers of antibody recognizing the anthrax RBD and LEF domains, as well as the full-length PA protein in mice. The heterologous prime/boost immunization regimens that involved an initial intranasal administration of a live influenza virus vector, followed by an intramuscular boost with either the killed RV vector or the VV vector, were particularly effective, inducing antigen-specific antibodies at levels severalfold higher than homologous or alternative heterologous protocols. Furthermore, sera from several groups of the immunized mice demonstrated neutralization activity in an in vitro anthrax toxin neutralization assay. In some cases, such toxin-neutralizing activity was notably high, indicating that the mechanisms by which immunity is primed by live influenza virus vectors may have beneficial properties.


Asunto(s)
Vacunas contra el Carbunco/inmunología , Anticuerpos Antibacterianos/inmunología , Anticuerpos Neutralizantes/inmunología , Antígenos Bacterianos/inmunología , Antitoxinas/inmunología , Toxinas Bacterianas/inmunología , Vectores Genéticos , Orthomyxoviridae/genética , Animales , Vacunas contra el Carbunco/genética , Femenino , Inmunización Secundaria/métodos , Ratones , Ratones Endogámicos BALB C , Virus de la Rabia/genética , Vacunación/métodos , Virus Vaccinia/genética
19.
Proc Natl Acad Sci U S A ; 105(46): 17736-41, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19004788

RESUMEN

The influenza surface glycoprotein hemagglutinin (HA) is a potential target for antiviral drugs because of its key roles in the initial stages of infection: receptor binding and the fusion of virus and cell membranes. The structure of HA in complex with a known inhibitor of membrane fusion and virus infectivity, tert-butyl hydroquinone (TBHQ), shows that the inhibitor binds in a hydrophobic pocket formed at an interface between HA monomers. Occupation of this site by TBHQ stabilizes the neutral pH structure through intersubunit and intrasubunit interactions that presumably inhibit the conformational rearrangements required for membrane fusion. The nature of the binding site suggests routes for the chemical modification of TBHQ that could lead to the development of more potent inhibitors of membrane fusion and potential anti-influenza drugs.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Hidroquinonas/química , Hidroquinonas/farmacología , Fusión de Membrana/efectos de los fármacos , Sitios de Unión , Fluorometría , Concentración de Iones de Hidrógeno/efectos de los fármacos , Filogenia , Multimerización de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Especificidad por Sustrato/efectos de los fármacos
20.
Virology ; 562: 142-148, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34325286

RESUMEN

SARS-CoV, MERS-CoV, and potentially SARS-CoV-2 emerged as novel human coronaviruses following cross-species transmission from animal hosts. Although the receptor binding characteristics of human coronaviruses are well documented, the role of carbohydrate binding in addition to recognition of proteinaceous receptors has not been fully explored. Using natural glycan microarray technology, we identified N-glycans in the human lung that are recognized by various human and animal coronaviruses. All viruses tested, including SARS-CoV-2, bound strongly to a range of phosphorylated, high mannose N-glycans and to a very specific set of sialylated structures. Examination of two linked strains, human CoV OC43 and bovine CoV Mebus, reveals shared binding to the sialic acid form Neu5Gc (not found in humans), supporting the evidence for cross-species transmission of the bovine strain. Our findings, revealing robust recognition of lung glycans, suggest that these receptors could play a role in the initial stages of coronavirus attachment and entry.


Asunto(s)
COVID-19/virología , Interacciones Microbiota-Huesped/fisiología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Polisacáridos/metabolismo , SARS-CoV-2/metabolismo , Animales , Bovinos , Humanos , Pulmón/metabolismo , Manosa/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Ácido N-Acetilneuramínico/química , Fosforilación , Análisis por Matrices de Proteínas , Unión Proteica , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA