Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(10): 16690-16708, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157743

RESUMEN

We demonstrate a fully submerged underwater LiDAR transceiver system based on single-photon detection technologies. The LiDAR imaging system used a silicon single-photon avalanche diode (SPAD) detector array fabricated in complementary metal-oxide semiconductor (CMOS) technology to measure photon time-of-flight using picosecond resolution time-correlated single-photon counting. The SPAD detector array was directly interfaced to a Graphics Processing Unit (GPU) for real-time image reconstruction capability. Experiments were performed with the transceiver system and target objects immersed in a water tank at a depth of 1.8 meters, with the targets placed at a stand-off distance of approximately 3 meters. The transceiver used a picosecond pulsed laser source with a central wavelength of 532 nm, operating at a repetition rate of 20 MHz and average optical power of up to 52 mW, dependent on scattering conditions. Three-dimensional imaging was demonstrated by implementing a joint surface detection and distance estimation algorithm for real-time processing and visualization, which achieved images of stationary targets with up to 7.5 attenuation lengths between the transceiver and the target. The average processing time per frame was approximately 33 ms, allowing real-time three-dimensional video demonstrations of moving targets at ten frames per second at up to 5.5 attenuation lengths between transceiver and target.

2.
Sensors (Basel) ; 21(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34300590

RESUMEN

We present an optical depth imaging system suitable for highly scattering underwater environments. The system used the time-correlated single-photon counting (TCSPC) technique and the time-of-flight approach to obtain depth profiles. The single-photon detection was provided by a linear array of single-photon avalanche diode (SPAD) detectors fabricated in a customized silicon fabrication technology for optimized efficiency, dark count rate, and jitter performance. The bi-static transceiver comprised a pulsed laser diode source with central wavelength 670 nm, a linear array of 16 × 1 Si-SPAD detectors, with a dedicated TCSPC acquisition module. Cylindrical lenses were used to collect the light scattered by the target and image it onto the sensor. These laboratory-based experiments demonstrated single-photon depth imaging at a range of 1.65 m in highly scattering conditions, equivalent up to 8.3 attenuation lengths between the system and the target, using average optical powers of up to 15 mW. The depth and spatial resolution of this sensor were investigated in different scattering conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA