Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(3): 843-857.e14, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720451

RESUMEN

Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.


Asunto(s)
Glucagón/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Triyodotironina/efectos de los fármacos , Animales , Aterosclerosis/tratamiento farmacológico , Peso Corporal/efectos de los fármacos , Huesos/efectos de los fármacos , Ingeniería Química/métodos , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Glucagón/efectos adversos , Glucagón/química , Glucagón/farmacología , Hiperglucemia/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Triyodotironina/efectos adversos , Triyodotironina/química , Triyodotironina/farmacología
2.
Diabetes Obes Metab ; 23(1): 195-207, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001570

RESUMEN

AIMS: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) (GLP-1/GIP co-agonist) have been shown to outperform each single peptide in the treatment of obesity and cardiometabolic disease in preclinical and clinical trials. By combining physiological treatment endpoints with plasma proteomic profiling (PPP), we aimed to identify biomarkers to advance non-invasive metabolic monitoring of compound treatment success and exploration of ulterior treatment effects on an individual basis. MATERIALS AND METHODS: We performed metabolic phenotyping along with PPP in body weight-matched male and female diet-induced obese (DIO) mice treated for 21 days with phosphate-buffered saline, single GIP and GLP-1 mono-agonists, or a GLP-1/GIP co-agonist. RESULTS: GLP-1R/GIPR co-agonism improved obesity, glucose intolerance, non-alcoholic fatty liver disease (NAFLD) and dyslipidaemia with superior efficacy in both male and female mice compared with mono-agonist treatments. PPP revealed broader changes of plasma proteins after GLP-1/GIP co-agonist compared with mono-agonist treatments in both sexes, including established and potential novel biomarkers for systemic inflammation, NAFLD and atherosclerosis. Subtle sex-specific differences have been observed in metabolic phenotyping and PPP. CONCLUSIONS: We herein show that a recently developed unimolecular GLP-1/GIP co-agonist is more efficient in improving metabolic disease than either mono-agonist in both sexes. PPP led to the identification of a sex-independent protein panel with the potential to monitor non-invasively the treatment efficacies on metabolic function of this clinically advancing GLP-1/GIP co-agonist.


Asunto(s)
Incretinas , Proteoma , Animales , Dieta , Femenino , Polipéptido Inhibidor Gástrico , Receptor del Péptido 1 Similar al Glucagón , Masculino , Ratones , Ratones Obesos , Obesidad/tratamiento farmacológico , Proteómica , Resultado del Tratamiento
3.
Diabetologia ; 63(6): 1236-1247, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32140744

RESUMEN

AIMS/HYPOTHESIS: Treatment with the α3ß4 nicotinic acetylcholine receptor (nAChR) agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), improves glucose tolerance in diet-induced obese (DIO) mice, but the physiological and molecular mechanisms are unknown. METHODS: DMPP (10 mg/kg body weight, s.c.) was administered either in a single injection (acute) or daily for up to 14 days (chronic) in DIO wild-type (WT) and Chrnb4 knockout (KO) mice and glucose tolerance, tissue-specific tracer-based glucose metabolism, and insulin signalling were assessed. RESULTS: In WT mice, but not in Chrnb4 KO mice, single acute treatment with DMPP induced transient hyperglycaemia, which was accompanied by high plasma adrenaline (epinephrine) levels, upregulated hepatic gluconeogenic genes, and decreased hepatic glycogen content. In contrast to these acute effects, chronic DMPP treatment in WT mice elicited improvements in glucose tolerance already evident after three consecutive days of DMPP treatment. After seven days of DMPP treatment, glucose tolerance was markedly improved, also in comparison with mice that were pair-fed to DMPP-treated mice. The glycaemic benefit of chronic DMPP was absent in Chrnb4 KO mice. Chronic DMPP increased insulin-stimulated glucose clearance into brown adipose tissue (+69%), heart (+93%), gastrocnemius muscle (+74%) and quadriceps muscle (+59%), with no effect in white adipose tissues. After chronic DMPP treatment, plasma adrenaline levels did not increase following an injection with DMPP. In glucose-stimulated skeletal muscle, we detected a decreased phosphorylation of the inhibitory Ser640 phosphorylation site on glycogen synthase and a congruent increase in glycogen accumulation following chronic DMPP treatment. CONCLUSIONS/INTERPRETATION: Our data suggest that DMPP acutely induces adrenaline release and hepatic glycogenolysis, while chronic DMPP-mediated activation of ß4-containing nAChRs improves peripheral insulin sensitivity independently of changes in body weight via mechanisms that could involve increased non-oxidative glucose disposal into skeletal muscle.


Asunto(s)
Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Glucemia/efectos de los fármacos , Catecolaminas/metabolismo , Yoduro de Dimetilfenilpiperazina/uso terapéutico , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Noqueados , Agonistas Nicotínicos/uso terapéutico
4.
Mol Syst Biol ; 15(3): e8793, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824564

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) affects 25% of the population and can progress to cirrhosis with limited treatment options. As the liver secretes most of the blood plasma proteins, liver disease may affect the plasma proteome. Plasma proteome profiling of 48 patients with and without cirrhosis or NAFLD revealed six statistically significantly changing proteins (ALDOB, APOM, LGALS3BP, PIGR, VTN, and AFM), two of which are already linked to liver disease. Polymeric immunoglobulin receptor (PIGR) was significantly elevated in both cohorts by 170% in NAFLD and 298% in cirrhosis and was further validated in mouse models. Furthermore, a global correlation map of clinical and proteomic data strongly associated DPP4, ANPEP, TGFBI, PIGR, and APOE with NAFLD and cirrhosis. The prominent diabetic drug target DPP4 is an aminopeptidase like ANPEP, ENPEP, and LAP3, all of which are up-regulated in the human or mouse data. Furthermore, ANPEP and TGFBI have potential roles in extracellular matrix remodeling in fibrosis. Thus, plasma proteome profiling can identify potential biomarkers and drug targets in liver disease.


Asunto(s)
Biomarcadores/sangre , Cirrosis Hepática/sangre , Enfermedad del Hígado Graso no Alcohólico/sangre , Proteoma , Proteómica , Animales , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Humanos , Hígado/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo
5.
Am J Physiol Endocrinol Metab ; 317(2): E212-E233, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039006

RESUMEN

To study the possibility that certain components of eukaryotic plasma membranes are released under certain (patho)physiological conditions, a chip-based sensor was developed for the detection of cell surface proteins, which are anchored at the outer leaflet of eukaryotic plasma membranes by a covalently attached glycolipid, exclusively, and might be prone to spontaneous or regulated release on the basis of their amphiphilic character. For this, unprocessed, full-length glycosylphosphatidylinositol-anchored proteins (GPI-AP), together with associated phospholipids, were specifically captured and detected by a chip- and microfluidic channel-based sensor, leading to changes in phase and amplitude of surface acoustic waves (SAW) propagating over the chip surface. Unprocessed GPI-AP in complex with lipids were found to be released from rat adipocyte plasma membranes immobilized on the chip, which was dependent on the flow rate and composition of the buffer stream. The complexes were identified in the incubation medium of primary rat adipocytes, in correlation to the cell size, and in rat as well as human serum. With rats, the measured changes in SAW phase shift, reflecting specific mass/size or amount of the unprocessed GPI-AP in complex with lipids, and SAW amplitude, reflecting their viscoelasticity, enabled the differentiation between the lean and obese (high-fat diet) state, and the normal (Wistar) and hyperinsulinemic (Zucker fatty) as well as hyperinsulinemic hyperglycemic (Zucker diabetic fatty) state. Thus chip-based sensing for complexes of unprocessed GPI-AP and lipids reveals the inherently labile anchorage of GPI-AP at plasma membranes and their susceptibility for release in response to (intrinsic/extrinsic) cues of metabolic relevance and may, therefore, be useful for monitoring of (pre-)diabetic disease states.


Asunto(s)
Membrana Celular/metabolismo , Dispositivos Laboratorio en un Chip , Proteínas de la Membrana/metabolismo , Estimulación Acústica , Adipocitos/química , Adipocitos/metabolismo , Animales , Membrana Celular/química , Clostridium botulinum tipo A/química , Dieta Alta en Grasa , Glicosilfosfatidilinositoles/química , Humanos , Hiperglucemia/metabolismo , Hiperinsulinismo/metabolismo , Masculino , Proteínas de la Membrana/análisis , Obesidad/metabolismo , Fosfolípidos/química , Ratas , Ratas Wistar , Ratas Zucker
6.
Arch Toxicol ; 91(10): 3427-3438, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28349193

RESUMEN

Genotoxic carcinogens pose great hazard to human health. Uncertainty of current risk assessment strategies and long latency periods between first carcinogen exposure and diagnosis of tumors have raised interest in predictive biomarkers. Initial DNA adduct formation is a necessary step for genotoxin induced carcinogenesis. However, as DNA adducts not always translate into tumorigenesis, their predictive value is limited. Here we hypothesize that the combined analysis of pro-mutagenic DNA adducts along with time-matched gene expression changes could serve as a superior prediction tool for genotoxic carcinogenesis. Eker rats, heterozygous for the tuberous sclerosis (Tsc2) tumor suppressor gene and thus highly susceptible towards genotoxic renal carcinogens, were continuously treated with the DNA alkylating carcinogen methylazoxymethanol acetate (MAMAc). Two weeks of MAMAc treatment resulted in a time-dependent increase of O6-methylguanine and N7-methylguanine adducts in the kidney cortex, which was however not reflected by significant expression changes of cyto-protective genes involved in DNA repair, cell cycle arrest or apoptosis. Instead, we found a transcriptional regulation of genes involved in the tumor-related MAPK, FoxO and TGF-beta pathways. Continuous MAMAc treatment for up to 6 months resulted in a mild but significant increase of cancerous lesions. In summary, the combined analysis of DNA adducts and early gene expression changes could serve as a suitable predictive tool for genotoxicant-induced carcinogenesis.


Asunto(s)
Aductos de ADN/análisis , Riñón/efectos de los fármacos , Acetato de Metilazoximetanol/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/patología , Daño del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Regulación Neoplásica de la Expresión Génica , Guanina/análogos & derivados , Guanina/metabolismo , Riñón/metabolismo , Riñón/patología , Masculino , Acetato de Metilazoximetanol/administración & dosificación , Ratas Mutantes , Factores de Tiempo
7.
Gastroenterology ; 149(4): 1042-52, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26052074

RESUMEN

BACKGROUND & AIMS: Cancer therapies are being developed based on our ability to direct T cells against tumor antigens. Glypican-3 (GPC3) is expressed by 75% of all hepatocellular carcinomas (HCC), but not in healthy liver tissue or other organs. We aimed to generate T cells with GPC3-specific receptors that recognize HCC and used them to eliminate GPC3-expressing xenograft tumors grown from human HCC cells in mice. METHODS: We used mass spectrometry to obtain a comprehensive peptidome from GPC3-expressing hepatoma cells after immune-affinity purification of human leukocyte antigen (HLA)-A2 and bioinformatics to identify immunodominant peptides. To circumvent GPC3 tolerance resulting from fetal expression, dendritic cells from HLA-A2-negative donors were cotransfected with GPC3 and HLA-A2 RNA to stimulate and expand antigen-specific T cells. RESULTS: Peptide GPC3367 was identified as a predominant peptide on HLA-A2. We used A2-GPC3367 multimers to detect, select for, and clone GPC3-specific T cells. These clones bound the A2-GPC3367 multimer and secreted interferon-γ when cultured with GPC3367, but not with control peptide-loaded cells. By genomic sequencing of these T-cell clones, we identified a gene encoding a dominant T-cell receptor. The gene was cloned and the sequence was codon optimized and expressed from a retroviral vector. Primary CD8(+) T cells that expressed the transgenic T-cell receptor specifically bound GPC3367 on HLA-A2. These T cells killed GPC3-expressing hepatoma cells in culture and slowed growth of HCC xenograft tumors in mice. CONCLUSIONS: We identified a GPC3367-specific T-cell receptor. Expression of this receptor by T cells allows them to recognize and kill GPC3-positive hepatoma cells. This finding could be used to advance development of adoptive T-cell therapy for HCC.


Asunto(s)
Linfocitos T CD8-positivos/trasplante , Carcinoma Hepatocelular/terapia , Citotoxicidad Inmunológica , Células Dendríticas/metabolismo , Genes Codificadores de los Receptores de Linfocitos T , Ingeniería Genética/métodos , Glipicanos/metabolismo , Antígeno HLA-A2/metabolismo , Inmunoterapia Adoptiva/métodos , Neoplasias Hepáticas/terapia , Activación de Linfocitos , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Supervivencia Celular , Técnicas de Cocultivo , Células Dendríticas/inmunología , Femenino , Glipicanos/genética , Glipicanos/inmunología , Antígeno HLA-A2/genética , Antígeno HLA-A2/inmunología , Células Hep G2 , Humanos , Epítopos Inmunodominantes , Interferón gamma/inmunología , Interferón gamma/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones SCID , Factores de Tiempo , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Diabetologia ; 58(10): 2414-23, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26099854

RESUMEN

AIMS/HYPOTHESIS: Ketogenic diets (KDs) have increasingly gained attention as effective means for weight loss and potential adjunctive treatment of cancer. The metabolic benefits of KDs are regularly ascribed to enhanced hepatic secretion of fibroblast growth factor 21 (FGF21) and its systemic effects on fatty-acid oxidation, energy expenditure (EE) and body weight. Ambiguous data from Fgf21-knockout animal strains and low FGF21 concentrations reported in humans with ketosis have nevertheless cast doubt regarding the endogenous function of FGF21. We here aimed to elucidate the causal role of FGF21 in mediating the therapeutic benefits of KDs on metabolism and cancer. METHODS: We established a dietary model of increased vs decreased FGF21 by feeding C57BL/6J mice with KDs, either depleted of protein or enriched with protein. We furthermore used wild-type and Fgf21-knockout mice that were subjected to the respective diets, and monitored energy and glucose homeostasis as well as tumour growth after transplantation of Lewis lung carcinoma cells. RESULTS: Hepatic and circulating, but not adipose tissue, FGF21 levels were profoundly increased by protein starvation, independent of the state of ketosis. We demonstrate that endogenous FGF21 is not essential for the maintenance of normoglycaemia upon protein and carbohydrate starvation and is therefore not needed for the effects of KDs on EE. Furthermore, the tumour-suppressing effects of KDs were independent of FGF21 and, rather, driven by concomitant protein and carbohydrate starvation. CONCLUSIONS/INTERPRETATION: Our data indicate that the multiple systemic effects of KD exposure in mice, previously ascribed to increased FGF21 secretion, are rather a consequence of protein malnutrition.


Asunto(s)
Dieta Cetogénica , Factores de Crecimiento de Fibroblastos/genética , Glucosa/metabolismo , Homeostasis/genética , Cetosis/genética , Neoplasias/genética , Deficiencia de Proteína/genética , Tejido Adiposo/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Cetosis/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Neoplasias/dietoterapia , Neoplasias/metabolismo , Deficiencia de Proteína/metabolismo
9.
Am J Physiol Endocrinol Metab ; 305(9): E1059-70, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23982154

RESUMEN

Moderate low-carbohydrate/high-fat (LC-HF) diets are widely used to induce weight loss in overweight subjects, whereas extreme ketogenic LC-HF diets are used to treat neurological disorders like pediatric epilepsy. Usage of LC-HF diets for improvement of glucose metabolism is highly controversial; some studies suggest that LC-HF diets ameliorate glucose tolerance, whereas other investigations could not identify positive effects of these diets or reported impaired insulin sensitivity. Here, we investigate the effects of LC-HF diets on glucose and insulin metabolism in a well-characterized animal model. Male rats were fed isoenergetic or hypocaloric amounts of standard control diet, a high-protein "Atkins-style" LC-HF diet, or a low-protein, ketogenic, LC-HF diet. Both LC-HF diets induced lower fasting glucose and insulin levels associated with lower pancreatic ß-cell volumes. However, dynamic challenge tests (oral and intraperitoneal glucose tolerance tests, insulin-tolerance tests, and hyperinsulinemic euglycemic clamps) revealed that LC-HF pair-fed rats exhibited impaired glucose tolerance and impaired hepatic and peripheral tissue insulin sensitivity, the latter potentially being mediated by elevated intramyocellular lipids. Adjusting visceral fat mass in LC-HF groups to that of controls by reducing the intake of LC-HF diets to 80% of the pair-fed groups did not prevent glucose intolerance. Taken together, these data show that lack of dietary carbohydrates leads to glucose intolerance and insulin resistance in rats despite causing a reduction in fasting glucose and insulin concentrations. Our results argue against a beneficial effect of LC-HF diets on glucose and insulin metabolism, at least under physiological conditions. Therefore, use of LC-HF diets for weight loss or other therapeutic purposes should be balanced against potentially harmful metabolic side effects.


Asunto(s)
Dieta Baja en Carbohidratos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/inducido químicamente , Prueba de Tolerancia a la Glucosa , Animales , Apoptosis , Glucemia/metabolismo , Restricción Calórica , Dieta , Técnica de Clampeo de la Glucosa , Intolerancia a la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Hormonas/sangre , Hiperinsulinismo/metabolismo , Inmunohistoquímica , Células Secretoras de Insulina/metabolismo , Lípidos/sangre , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas/metabolismo , Triglicéridos/metabolismo
10.
Nat Commun ; 14(1): 709, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759608

RESUMEN

Adipocyte-derived extracellular vesicles (AdEVs) are membranous nanoparticles that convey communication from adipose tissue to other organs. Here, to delineate their role as messengers with glucoregulatory nature, we paired fluorescence AdEV-tracing and SILAC-labeling with (phospho)proteomics, and revealed that AdEVs transfer functional insulinotropic protein cargo into pancreatic ß-cells. Upon transfer, AdEV proteins were subjects for phosphorylation, augmented insulinotropic GPCR/cAMP/PKA signaling by increasing total protein abundances and phosphosite dynamics, and ultimately enhanced 1st-phase glucose-stimulated insulin secretion (GSIS) in murine islets. Notably, insulinotropic effects were restricted to AdEVs isolated from obese and insulin resistant, but not lean mice, which was consistent with differential protein loads and AdEV luminal morphologies. Likewise, in vivo pre-treatment with AdEVs from obese but not lean mice amplified insulin secretion and glucose tolerance in mice. This data suggests that secreted AdEVs can inform pancreatic ß-cells about insulin resistance in adipose tissue in order to amplify GSIS in times of increased insulin demand.


Asunto(s)
Vesículas Extracelulares , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Secreción de Insulina , Insulina/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidad/metabolismo , Adipocitos/metabolismo , Vesículas Extracelulares/metabolismo , Islotes Pancreáticos/metabolismo
11.
Nat Metab ; 5(5): 861-879, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37253881

RESUMEN

Recent large-scale genomic association studies found evidence for a genetic link between increased risk of type 2 diabetes and decreased risk for adiposity-related traits, reminiscent of metabolically obese normal weight (MONW) association signatures. However, the target genes and cellular mechanisms driving such MONW associations remain to be identified. Here, we systematically identify the cellular programmes of one of the top-scoring MONW risk loci, the 2q24.3 risk locus, in subcutaneous adipocytes. We identify a causal genetic variant, rs6712203, an intronic single-nucleotide polymorphism in the COBLL1 gene, which changes the conserved transcription factor motif of POU domain, class 2, transcription factor 2, and leads to differential COBLL1 gene expression by altering the enhancer activity at the locus in subcutaneous adipocytes. We then establish the cellular programme under the genetic control of the 2q24.3 MONW risk locus and the effector gene COBLL1, which is characterized by impaired actin cytoskeleton remodelling in differentiating subcutaneous adipocytes and subsequent failure of these cells to accumulate lipids and develop into metabolically active and insulin-sensitive adipocytes. Finally, we show that perturbations of the effector gene Cobll1 in a mouse model result in organismal phenotypes matching the MONW association signature, including decreased subcutaneous body fat mass and body weight along with impaired glucose tolerance. Taken together, our results provide a mechanistic link between the genetic risk for insulin resistance and low adiposity, providing a potential therapeutic hypothesis and a framework for future identification of causal relationships between genome associations and cellular programmes in other disorders.


Asunto(s)
Actinas , Adipocitos , Obesidad Metabólica Benigna , Humanos , Adipocitos/metabolismo , Actinas/metabolismo , Obesidad Metabólica Benigna/genética , Factores de Transcripción/genética , Grasa Subcutánea/metabolismo , Células Cultivadas , Haplotipos , Ratones Noqueados , Masculino , Femenino , Ratones , Animales
12.
Sci Rep ; 12(1): 10325, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725987

RESUMEN

Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders.


Asunto(s)
Diabetes Mellitus Experimental , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Diferenciación Celular , Diabetes Mellitus Experimental/metabolismo , Lípidos , Ratones , Obesidad/metabolismo
13.
Cell Rep ; 38(3): 110270, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35045308

RESUMEN

Gastric bypass and vertical sleeve gastrectomy (VSG) remain the most potent and durable treatments for obesity and type 2 diabetes but are also associated with iron deficiency. The transcription factor HIF2α, which regulates iron absorption in the duodenum, increases following these surgeries. Increasing iron levels by means of dietary supplementation or hepatic hepcidin knockdown does not undermine the effects of VSG, indicating that metabolic improvements following VSG are not secondary to lower iron levels. Gut-specific deletion of Vhl results in increased constitutive duodenal HIF2α signaling and produces a profound lean, glucose-tolerant phenotype that mimics key effects of VSG. Interestingly, intestinal Vhl deletion also results in increased intestinal secretion of GLP-1, which is essential for these metabolic benefits. These data demonstrate a role for increased duodenal HIF2α signaling in regulating crosstalk between iron-regulatory systems and other aspects of systemic physiology important for metabolic regulation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Duodeno/metabolismo , Gastroplastia , Péptido 1 Similar al Glucagón/metabolismo , Animales , Gastrectomía/métodos , Gastroplastia/métodos , Ratones , Ratas
14.
Nat Metab ; 4(8): 1071-1083, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35995995

RESUMEN

Dual agonists activating the peroxisome proliferator-activated receptors alpha and gamma (PPARɑ/ɣ) have beneficial effects on glucose and lipid metabolism in patients with type 2 diabetes, but their development was discontinued due to potential adverse effects. Here we report the design and preclinical evaluation of a molecule that covalently links the PPARɑ/ɣ dual-agonist tesaglitazar to a GLP-1 receptor agonist (GLP-1RA) to allow for GLP-1R-dependent cellular delivery of tesaglitazar. GLP-1RA/tesaglitazar does not differ from the pharmacokinetically matched GLP-1RA in GLP-1R signalling, but shows GLP-1R-dependent PPARɣ-retinoic acid receptor heterodimerization and enhanced improvements of body weight, food intake and glucose metabolism relative to the GLP-1RA or tesaglitazar alone in obese male mice. The conjugate fails to affect body weight and glucose metabolism in GLP-1R knockout mice and shows preserved effects in obese mice at subthreshold doses for the GLP-1RA and tesaglitazar. Liquid chromatography-mass spectrometry-based proteomics identified PPAR regulated proteins in the hypothalamus that are acutely upregulated by GLP-1RA/tesaglitazar. Our data show that GLP-1RA/tesaglitazar improves glucose control with superior efficacy to the GLP-1RA or tesaglitazar alone and suggest that this conjugate might hold therapeutic value to acutely treat hyperglycaemia and insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , PPAR alfa , Alcanosulfonatos , Animales , Peso Corporal , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón , Glucosa , Masculino , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , PPAR alfa/agonistas , PPAR alfa/uso terapéutico , Fenilpropionatos
15.
Am J Physiol Endocrinol Metab ; 300(1): E65-76, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20943751

RESUMEN

Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of ß-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only (P < 0.001). In contrast, rats fed with LC-55/30 were not ketotic. Serum fibroblast growth factor-21, hepatic mRNA expression of hydroxymethylglutaryl-CoA-lyase, peroxisome proliferator-activated receptor-γ coactivator-1α, and peroxisome proliferator-activated receptor-γ coactivator-1ß were increased with LC-75/10 only. Expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase was downregulated by 50-70% in LC-HF groups. Furthermore, EE and LA were significantly decreased in all groups fed with LC-HFDs after 3 wk on the diets. In rats, the absence of dietary carbohydrates per se does not induce ketosis. LC-HFDs must be high in fat, but also low in protein contents to be clearly ketogenic. Independent of the macronutrient composition, LC-HFD-induced weight loss is not due to increased EE and LA.


Asunto(s)
Dieta Cetogénica/métodos , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Cetosis/epidemiología , Ácido 3-Hidroxibutírico/sangre , Acetona/orina , Animales , Peso Corporal , Dieta con Restricción de Proteínas , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/sangre , Regulación de la Expresión Génica , Gluconeogénesis , Cetosis/sangre , Cetosis/orina , Hígado/enzimología , Hígado/metabolismo , Masculino , Actividad Motora , Sobrepeso/dietoterapia , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
16.
Mol Metab ; 54: 101330, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34500108

RESUMEN

OBJECTIVE: The effectiveness of bariatric surgery in restoring ß-cell function has been described in type-2 diabetes (T2D) patients and animal models for years, whereas the mechanistic underpinnings are largely unknown. The possibility of vertical sleeve gastrectomy (VSG) to rescue far-progressed, clinically-relevant T2D and to promote ß-cell recovery has not been investigated on a single-cell level. Nevertheless, characterization of the heterogeneity and functional states of ß-cells after VSG is a fundamental step to understand mechanisms of glycaemic recovery and to ultimately develop alternative, less-invasive therapies. METHODS: We performed VSG in late-stage diabetic db/db mice and analyzed the islet transcriptome using single-cell RNA sequencing (scRNA-seq). Immunohistochemical analyses and quantification of ß-cell area and proliferation complement our findings from scRNA-seq. RESULTS: We report that VSG was superior to calorie restriction in late-stage T2D and rapidly restored normoglycaemia in morbidly obese and overt diabetic db/db mice. Single-cell profiling of islets of Langerhans showed that VSG induced distinct, intrinsic changes in the ß-cell transcriptome, but not in that of α-, δ-, and PP-cells. VSG triggered fast ß-cell redifferentiation and functional improvement within only two weeks of intervention, which is not seen upon calorie restriction. Furthermore, VSG expanded ß-cell area by means of redifferentiation and by creating a proliferation competent ß-cell state. CONCLUSION: Collectively, our study reveals the superiority of VSG in the remission of far-progressed T2D and presents paths of ß-cell regeneration and molecular pathways underlying the glycaemic benefits of VSG.


Asunto(s)
Diabetes Mellitus Tipo 2/cirugía , Gastrectomía , Células Secretoras de Insulina/patología , Animales , Masculino , Ratones , Ratones Obesos , Ratones Transgénicos
17.
Mol Metab ; 49: 101181, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33556643

RESUMEN

OBJECTIVE: We assessed the spatiotemporal GLP-1 and GIP receptor signaling, trafficking, and recycling dynamics of GIPR mono-agonists, GLP-1R mono-agonists including semaglutide, and GLP-1/GIP dual-agonists MAR709 and tirzepatide. METHODS: Receptor G protein recruitment and internalization/trafficking dynamics were assessed using bioluminescence resonance energy transfer (BRET)-based technology and live-cell HILO microscopy. RESULTS: Relative to native and acylated GLP-1 agonists, MAR709 and tirzepatide showed preserved maximal cAMP production despite partial Gαs recruitment paralleled by diminished ligand-induced receptor internalization at both target receptors. Despite MAR709's lower internalization rate, GLP-1R co-localization with Rab11-associated recycling endosomes was not different between MAR709 and GLP-1R specific mono-agonists. CONCLUSIONS: Our data indicated that MAR709 and tirzepatide induce unique spatiotemporal GLP-1 and GIP receptor signaling, trafficking, and recycling dynamics relative to native peptides, semaglutide, and matched mono-agonist controls. These findings support the hypothesis that the structure of GLP-1/GIP dual-agonists confer a biased agonism that, in addition to its influence on intracellular signaling, uniquely modulates receptor trafficking.


Asunto(s)
Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Transducción de Señal/efectos de los fármacos , Polipéptido Inhibidor Gástrico/farmacología , Células HEK293 , Humanos , Ligandos , Péptidos/farmacología
18.
Nat Metab ; 3(9): 1202-1216, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34552271

RESUMEN

Excess nutrient uptake and altered hormone secretion in the gut contribute to a systemic energy imbalance, which causes obesity and an increased risk of type 2 diabetes and colorectal cancer. This functional maladaptation is thought to emerge at the level of the intestinal stem cells (ISCs). However, it is not clear how an obesogenic diet affects ISC identity and fate. Here we show that an obesogenic diet induces ISC and progenitor hyperproliferation, enhances ISC differentiation and cell turnover and changes the regional identities of ISCs and enterocytes in mice. Single-cell resolution of the enteroendocrine lineage reveals an increase in progenitors and peptidergic enteroendocrine cell types and a decrease in serotonergic enteroendocrine cell types. Mechanistically, we link increased fatty acid synthesis, Ppar signaling and the Insr-Igf1r-Akt pathway to mucosal changes. This study describes molecular mechanisms of diet-induced intestinal maladaptation that promote obesity and therefore underlie the pathogenesis of the metabolic syndrome and associated complications.


Asunto(s)
Dieta Alta en Grasa , Intestinos/citología , Obesidad/patología , Estado Prediabético/patología , Células Madre/citología , Animales , Linaje de la Célula , Proliferación Celular , Ácidos Grasos/biosíntesis , Ratones , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Transducción de Señal
19.
Cell Metab ; 33(4): 833-844.e5, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33571454

RESUMEN

Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism.


Asunto(s)
Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Polipéptido Inhibidor Gástrico/farmacología , Receptores de la Hormona Gastrointestinal/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Sistema Nervioso Central/metabolismo , Dieta Alta en Grasa , Polipéptido Inhibidor Gástrico/química , Péptido 1 Similar al Glucagón/farmacología , Humanos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/metabolismo , Obesidad/patología , Obesidad/prevención & control , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de la Hormona Gastrointestinal/deficiencia , Receptores de la Hormona Gastrointestinal/genética
20.
Am J Pathol ; 175(4): 1686-98, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19717638

RESUMEN

Kidneys are the second most frequent site for chemically induced cancers in rats. However, there is still limited information on direct effects of carcinogens on pathways involved in the development of kidney tumors. Since transformed tumor cells have different characteristics than their cell of origin, it was hypothesized that healthy tissue and progressing stages of preneoplastic lesions are differentially influenced by chemical carcinogens. To elucidate this question, TSC2(-/-) Eker rats were gavaged with genotoxic aristolochic acid or nongenotoxic ochratoxin A for 3 and 6 months, respectively. Histopathology and cell proliferation analysis demonstrated a compound- and sex-specific onset of preneoplastic lesions. In contrast, comparable gene expression profiles of laser-microdissected preneoplastic lesions from carcinogen-treated and control rats, including reduced expression of genes involved in carcinogen uptake and metabolism, point to a compound-independent lesion progression. Gene expression profiles and additional immunostaining suggested that clonal expansion of renal lesions appears primarily driven by disturbed mammalian target of rapamycin complex 1 and mammalian target of rapamycin complex 2 pathway regulation. Finally, prolonged carcinogen exposure resulted in only marginal gene expression changes in tubules with normal morphology, indicating that some tubules may have adapted to the treatment. Taken together, these findings indicate that the final outcome of in vivo carcinogenicity studies is primarily determined by time-restricted initial events, while lesion progression may be a compound-independent process, involving deregulated mTOR signaling in the Eker rat model.


Asunto(s)
Neoplasias Renales/patología , Lesiones Precancerosas/patología , Animales , Apoptosis/efectos de los fármacos , Ácidos Aristolóquicos/toxicidad , Bromodesoxiuridina/metabolismo , Proliferación Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Relacionados con las Neoplasias , Neoplasias Renales/genética , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Túbulos Renales/patología , Modelos Biológicos , Ocratoxinas/toxicidad , Lesiones Precancerosas/genética , Ratas , Coloración y Etiquetado , Transactivadores , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA