Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 38(43): 9186-9201, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30181139

RESUMEN

The putative cache (Ca2+ channel and chemotaxis receptor) domain containing 1 (CACHD1) protein has predicted structural similarities to members of the α2δ voltage-gated Ca2+ channel auxiliary subunit family. CACHD1 mRNA and protein were highly expressed in the male mammalian CNS, in particular in the thalamus, hippocampus, and cerebellum, with a broadly similar tissue distribution to CaV3 subunits, in particular CaV3.1. In expression studies, CACHD1 increased cell-surface localization of CaV3.1, and these proteins were in close proximity at the cell surface, consistent with the formation of CACHD1-CaV3.1 complexes. In functional electrophysiological studies, coexpression of human CACHD1 with CaV3.1, CaV3.2, and CaV3.3 caused a significant increase in peak current density and corresponding increases in maximal conductance. By contrast, α2δ-1 had no effect on peak current density or maximal conductance in CaV3.1, CaV3.2, or CaV3.3. A comparison of CACHD1-mediated increases in CaV3.1 current density and gating currents revealed an increase in channel open probability. In hippocampal neurons from male and female embryonic day 19 rats, CACHD1 overexpression increased CaV3-mediated action potential firing frequency and neuronal excitability. These data suggest that CACHD1 is structurally an α2δ-like protein that functionally modulates CaV3 voltage-gated calcium channel activity.SIGNIFICANCE STATEMENT This is the first study to characterize the Ca2+ channel and chemotaxis receptor domain containing 1 (CACHD1) protein. CACHD1 is widely expressed in the CNS, in particular in the thalamus, hippocampus, and cerebellum. CACHD1 distribution is similar to that of low voltage-activated (CaV3, T-type) calcium channels, in particular to CaV3.1, a protein that regulates neuronal excitability and is a potential therapeutic target in conditions such as epilepsy and pain. CACHD1 is structurally an α2δ-like protein that functionally increases CaV3 calcium current. CACHD1 increases the presence of CaV3.1 at the cell surface, forms complexes with CaV3.1 at the cell surface, and causes an increase in channel open probability. In hippocampal neurons, CACHD1 causes increases in neuronal firing. Thus, CACHD1 represents a novel protein that modulates CaV3 activity.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/biosíntesis , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo T/química , Canales de Calcio Tipo T/genética , Femenino , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratas , Ratas Wistar
2.
Bioorg Med Chem ; 27(1): 230-239, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538065

RESUMEN

The voltage gated sodium channel NaV1.8 has been postulated to play a key role in the transmission of pain signals. Core hopping from our previously reported phenylimidazole leads has allowed the identification of a novel series of benzimidazole NaV1.8 blockers. Subsequent optimization allowed the identification of compound 9, PF-06305591, as a potent, highly selective blocker with an excellent preclinical in vitro ADME and safety profile.


Asunto(s)
Bencimidazoles/farmacología , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/química , Bencimidazoles/farmacocinética , Diseño de Fármacos , Células HEK293 , Humanos , Estructura Molecular , Solubilidad , Relación Estructura-Actividad , Bloqueadores del Canal de Sodio Activado por Voltaje/síntesis química , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacocinética
3.
J Drug Educ ; 47(3-4): 108-120, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30200776

RESUMEN

The current study examined the relationships between a personality metatrait (Stability consisting of conscientiousness, agreeableness, and neuroticism), self-esteem, and stress in an adult population of individuals with substance use disorders living in recovery homes. Adults ( N = 229) residing in 42 residential recovery settings were interviewed as part of the first wave of a longitudinal study in three sites. Standard error of the mean analysis found significant effects for several demographic variables on Stability, and Stability was significantly related both directly and indirectly to stress. These findings suggest that individual differences at entry may influence recovery home effects and may be important to developing more effective aftercare systems.


Asunto(s)
Hogares para Grupos/estadística & datos numéricos , Personalidad , Autoimagen , Estrés Psicológico/epidemiología , Trastornos Relacionados con Sustancias/epidemiología , Adulto , Factores de Edad , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Inventario de Personalidad , Grupos Raciales , Factores Sexuales , Estados Unidos
4.
Bioorg Med Chem Lett ; 26(20): 4919-4924, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27641472

RESUMEN

TRESK (Twik RElated Spinal cord K+ channel) is a member of the Twin Pore Domain potassium channel (K2P) family responsible for regulating neuronal excitability in dorsal root ganglion (DRG) and trigeminal (TG) neurons, peripheral neurons involved in pain transmission. As channel opening causes an outward K+ current responsible for cell hyperpolarisation, TRESK represents a potentially interesting target for pain treatment. However, as no crystal structure exists for this protein, the mechanisms involved in the opening action of its ligands are still poorly understood, making the development of new potent and selective openers challenging. In this work we present a structure activity relationship (SAR) of the known TRESK opener flufenamic acid (FFA) and some derivatives, investigating the functional effects of chemical modifications to build a TRESK homology model to support the biological results. A plausible binding mode is proposed, providing the first predictive hypothesis of a human TRESK opener binding site.


Asunto(s)
Ácido Flufenámico/química , Ácido Flufenámico/farmacología , Canales de Potasio/química , Animales , Sitios de Unión , Células HEK293 , Humanos , Ratones , Neuronas/efectos de los fármacos , Relación Estructura-Actividad
5.
Group Dyn ; 20(1): 51-64, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27065722

RESUMEN

The complex system conception of group social dynamics often involves not only changing individual characteristics, but also changing within-group relationships. Recent advances in stochastic dynamic network modeling allow these interdependencies to be modeled from data. This methodology is discussed within a context of other mathematical and statistical approaches that have been or could be applied to study the temporal evolution of relationships and behaviors within small- to medium-sized groups. An example model is presented, based on a pilot study of five Oxford House recovery homes, sober living environments for individuals following release from acute substance abuse treatment. This model demonstrates how dynamic network modeling can be applied to such systems, examines and discusses several options for pooling, and shows how results are interpreted in line with complex system concepts. Results suggest that this approach (a) is a credible modeling framework for studying group dynamics even with limited data, (b) improves upon the most common alternatives, and (c) is especially well-suited to complex system conceptions. Continuing improvements in stochastic models and associated software may finally lead to mainstream use of these techniques for the study of group dynamics, a shift already occurring in related fields of behavioral science.

6.
EMBO J ; 30(6): 994-1002, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21285946

RESUMEN

The capsaicin receptor TRPV1, a member of the transient receptor potential family of non-selective cation channels is a polymodal nociceptor. Noxious thermal stimuli, protons, and the alkaloid irritant capsaicin open the channel. The mechanisms of heat and capsaicin activation have been linked to voltage-dependent gating in TRPV1. However, until now it was unclear whether proton activation or potentiation or both are linked to a similar voltage-dependent mechanism and which molecular determinants underlie the proton gating. Using the whole-cell patch-clamp technique, we show that protons activate and potentiate TRPV1 by shifting the voltage dependence of the activation curves towards more physiological membrane potentials. We further identified a key residue within the pore region of TRPV1, F660, to be critical for voltage-dependent proton activation and potentiation. We conclude that proton activation and potentiation of TRPV1 are both voltage dependent and that amino acid 660 is essential for proton-mediated gating of TRPV1.


Asunto(s)
Activación del Canal Iónico , Protones , Canales Catiónicos TRPV/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Capsaicina/metabolismo , Línea Celular , Calor , Humanos , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Técnicas de Placa-Clamp , Canales Catiónicos TRPV/genética
7.
Mol Ther ; 22(8): 1530-1543, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24832007

RESUMEN

The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell-derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.


Asunto(s)
Ganglios Espinales/fisiología , Canales Iónicos/genética , Células Madre Pluripotentes/metabolismo , Células Receptoras Sensoriales/fisiología , Análisis de la Célula Individual , Compuestos de Anilina/farmacología , Diferenciación Celular , Células Cultivadas , Colforsina/farmacología , Furanos/farmacología , Regulación de la Expresión Génica , Humanos , Dolor/fisiopatología , Células Receptoras Sensoriales/citología
8.
Mol Pharmacol ; 85(5): 671-81, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24509840

RESUMEN

TWIK-related K(+) 1 (TREK1) potassium channels are members of the two-pore domain potassium channel family and contribute to background potassium conductances in many cell types, where their activity can be regulated by a variety of physiologic and pharmacologic mediators. Fenamates such as FFA (flufenamic acid; 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid), MFA [mefenamic acid; 2-(2,3-dimethylphenyl)aminobenzoic acid], NFA [niflumic acid; 2-{[3-(trifluoromethyl)phenyl]amino}nicotinic acid], and diclofenac [2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid] and the related experimental drug BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine] enhance the activity of TREK1 currents, and we show that BL-1249 is the most potent of these compounds. Alternative translation initiation produces a shorter, N terminus truncated form of TREK1 with a much reduced open probability and a proposed increased permeability to sodium compared with the longer form. We show that both forms of TREK1 can be activated by fenamates and that a number of mutations that affect TREK1 channel gating occlude the action of fenamates but only in the longer form of TREK1. Furthermore, fenamates produce a marked enhancement of current through the shorter, truncated form of TREK1 and reveal a K(+)-selective channel, like the long form. These results provide insight into the mechanism of TREK1 channel activation by fenamates, and, given the role of TREK1 channels in pain, they suggest a novel analgesic mechanism for these compounds.


Asunto(s)
Fenamatos/farmacología , Canales de Potasio de Dominio Poro en Tándem/agonistas , Canales de Potasio de Dominio Poro en Tándem/fisiología , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Mutación/fisiología , Canales de Potasio de Dominio Poro en Tándem/química , Estructura Secundaria de Proteína
9.
Am J Community Psychol ; 53(3-4): 324-34, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24217855

RESUMEN

Acute treatment aftercare in the form of sober living environments-i.e., recovery houses-provide an inexpensive and effective medium-term treatment alternative for many with substance use disorders. Limited evidence suggests that house-situated social relationships and associated social support are critical determinants of how successful these residential experiences are for their members, but little is known about the mechanisms underlying these relationships. This study explored the feasibility of using dynamic social network modeling to understand house-situated longitudinal associations among individual Alcoholics Anonymous related recovery behaviors, length of residence, dyadic interpersonal trust, and dyadic confidant relationship formation processes. Trust and confidant relationships were measured 3 months apart in U.S. urban-area recovery houses, all of which were part of a network of substance use recovery homes. A stochastic actor-based model was successfully estimated from this data set. Results suggest that confidant relationships are predicted by trust, while trust is affected by recovery behaviors and length of residence. Conceptualizing recovery houses as a set of independent, evolving social networks that can be modeled jointly appears to be a promising direction for research.


Asunto(s)
Casas de Convalecencia , Apoyo Social , Alcoholismo/rehabilitación , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Investigación Cualitativa , Confianza
10.
Pain ; 165(5): 983-996, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991272

RESUMEN

ABSTRACT: In the peripheral nervous system, spontaneous activity in sensory neurons is considered to be one of the 2 main drivers of chronic pain states, alongside neuronal sensitization. Despite this, the precise nature and timing of this spontaneous activity in neuropathic pain is not well-established. Here, we have performed a systematic search and data extraction of existing electrophysiological literature to shed light on which fibre types have been shown to maintain spontaneous activity and over what time frame. We examined both in vivo recordings of preclinical models of neuropathic pain, as well as microneurography recordings in humans. Our analyses reveal that there is broad agreement on the presence of spontaneous activity in neuropathic pain conditions, even months after injury or years after onset of neuropathic symptoms in humans. However, because of the highly specialised nature of the electrophysiological methods used to measure spontaneous activity, there is also a high degree of variability and uncertainty around these results. Specifically, there are very few directly controlled experiments, with less directly comparable data between human and animals. Given that spontaneous peripheral neuron activity is considered to be a key mechanistic feature of chronic pain conditions, it may be beneficial to conduct further experiments in this space.


Asunto(s)
Dolor Crónico , Neuralgia , Animales , Humanos , Dolor Crónico/complicaciones , Neuralgia/etiología , Nervios Periféricos , Sistema Nervioso Periférico , Células Receptoras Sensoriales/fisiología , Enfermedad Crónica
11.
J Biol Chem ; 286(45): 39663-72, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21911503

RESUMEN

The capsaicin-, heat-, and proton-activated ion channel TRPV1, a member of the transient receptor potential cation channel family is a polymodal nociceptor. For almost a decade, TRPV1 has been explored by the pharmaceutical industry as a potential target for example for pain conditions. Antagonists which block TRPV1 activation by capsaicin, heat, and protons were developed by a number of pharmaceutical companies. The unexpected finding of hyperthermia as an on-target side effect in clinical studies using polymodal TRPV1 antagonists has prompted companies to search for ways to circumvent hyperthermia, for example by the development of modality-selective antagonists. The significant lack of consistency of the pharmacology of many TRPV1 antagonists across different species has been a further obstacle. JYL-1421 for example was shown to block capsaicin and heat responses in human and monkey TRPV1 while it was largely ineffective in blocking heat responses in rat TRPV1. These findings suggested structural dissimilarities between different TRPV1 species relevant for small compound antagonism for example of heat activation. Using a chimeric approach (human and rat TRPV1) in combination with a novel FLIPR-based heat activation assay and patch-clamp electrophysiology we have identified the pore region as being strongly linked to the observed species differences. We demonstrate that by exchanging the pore domains JYL-1421, which is modality-selective in rat can be made modality-selective in human TRPV1 and vice-versa.


Asunto(s)
Calor , Canales Catiónicos TRPV/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad de la Especie , Sulfonamidas/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética , Tiourea/análogos & derivados , Tiourea/farmacología
13.
Pain ; 163(7): e869-e881, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561392

RESUMEN

ABSTRACT: Nav1.7 is a promising drug target for the treatment of pain. However, there is a mismatch between the analgesia produced by Nav1.7 loss-of-function and the peripherally restricted Nav1.7 inhibitors, which may reflect a lack of understanding of the function of Nav1.7 in the transmission of nociceptive information. In the periphery, the role of Nav1.7 in transduction at nociceptive peripheral terminals has been comprehensively examined, but its role in axonal propagation in these neurons is less clearly defined. In this study, we examined the contribution of Nav1.7 to axonal propagation in nociceptors using sodium channel blockers in in vivo electrophysiological and calcium imaging recordings in mice. Using the sodium channel blocker tetrodotoxin (TTX) (1-10 µM) to inhibit Nav1.7 and other tetrodotoxin-sensitive sodium channels along the sciatic nerve, we first showed that around two-thirds of nociceptive L4 dorsal root ganglion neurons innervating the skin, but a lower proportion innervating the muscle (45%), are blocked by TTX. By contrast, nearly all large-sized cutaneous afferents (95%-100%) were blocked by axonal TTX. Many cutaneous nociceptors resistant to TTX were polymodal (57%) and capsaicin sensitive (57%). Next, we applied PF-05198007 (300 nM-1 µM) to the sciatic nerve between stimulating and recording sites to selectively block axonal Nav1.7 channels. One hundred to three hundred nanomolar PF-05198007 blocked propagation in 63% of C-fiber sensory neurons, whereas similar concentrations produced minimal block (5%) in rapidly conducting A-fiber neurons. We conclude that Nav1.7 is essential for axonal propagation in around two-thirds of nociceptive cutaneous C-fiber neurons and a lower proportion (≤45%) of nociceptive neurons innervating muscle.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Fibras Nerviosas Amielínicas , Nociceptores , Potenciales de Acción , Animales , Ganglios Espinales , Ratones , Canal de Sodio Activado por Voltaje NAV1.7/fisiología , Fibras Nerviosas Amielínicas/fisiología , Nociceptores/fisiología , Dolor , Células Receptoras Sensoriales , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
14.
Br J Pharmacol ; 179(7): 1319-1337, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34644413

RESUMEN

BACKGROUND AND PURPOSE: Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators are small molecules developed to treat the genetic disease cystic fibrosis (CF). They interact directly with CFTR Cl- channels at the plasma membrane to enhance channel gating. Here, we investigate the action of a new CFTR potentiator, CP-628006 with a distinct chemical structure. EXPERIMENTAL APPROACH: Using electrophysiological assays with CFTR-expressing heterologous cells and CF patient-derived human bronchial epithelial (hBE) cells, we compared the effects of CP-628006 with the marketed CFTR potentiator ivacaftor. KEY RESULTS: CP-628006 efficaciously potentiated CFTR function in epithelia from cultured hBE cells. Its effects on the predominant CFTR variant F508del-CFTR were larger than those with the gating variant G551D-CFTR. In excised inside-out membrane patches, CP-628006 potentiated wild-type, F508del-CFTR, and G551D-CFTR by increasing the frequency and duration of channel openings. CP-628006 increased the affinity and efficacy of F508del-CFTR gating by ATP. In these respects, CP-628006 behaved like ivacaftor. CP-628006 also demonstrated notable differences with ivacaftor. Its potency and efficacy were lower than those of ivacaftor. CP-628006 conferred ATP-dependent gating on G551D-CFTR, whereas the action of ivacaftor was ATP-independent. For G551D-CFTR, but not F508del-CFTR, the action of CP-628006 plus ivacaftor was greater than ivacaftor alone. CP-628006 delayed, but did not prevent, the deactivation of F508del-CFTR at the plasma membrane, whereas ivacaftor accentuated F508del-CFTR deactivation. CONCLUSIONS AND IMPLICATIONS: CP-628006 has distinct effects compared to ivacaftor, suggesting a different mechanism of CFTR potentiation. The emergence of CFTR potentiators with diverse modes of action makes therapy with combinations of potentiators a possibility.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Adenosina Trifosfato , Aminofenoles/farmacología , Línea Celular , Células Cultivadas , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Mutación
15.
N Am J Psychol ; 12(2): 255-264, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23505336

RESUMEN

Previous researchers found that abstinence-specific self-efficacy has been predictive of the likelihood of relapse for individuals in recovery from substance abuse. Oxford Houses are sober living homes that provide mutual support and are resident funded and operated. The relationships between house level sense of community and abstinence-specific self-efficacy were examined in the present study with a sample of 754 adults living in 139 Oxford Houses nationwide in a multilevel model. A significant positive relationship between house level sense of community and self-efficacy was observed. These findings have both research and therapeutic implications.

16.
Alcohol Treat Q ; 38(1): 126-142, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32863558

RESUMEN

Key characteristics of recovery homes include governance style (which can play a central role in structuring recovery mechanisms), social embeddedness (e.g., social relationships within the home), economic viability (e.g., the individual's ability to be self-supporting), and learned recovery skills (such as coping with stress, avoiding putting one's self in risky situations, etc.). These domains can have important associations with perceived quality of life (measured across physical, psychological, social relationships, and environmental domains). The current study investigated relationships among these key "active ingredients" (Moos, 2007) of recovery homes. In addition, we present dynamic model consistent with these observed relationships, to illustrate how relevant mechanisms interact over time to and affect system evolution. Data were collected from recovery home residents in three states. Findings supported our overall hypotheses indicating that social embeddedness, stress, and self-efficacy were related to quality of life, and policy and treatment-design implications are further examined by simulating system dynamics.

17.
J Subst Abuse Treat ; 101: 79-87, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174717

RESUMEN

Improved access to housing and recovery support is a low-cost, high-potential opportunity to help people recovering from alcohol and substance use sustain their recoveries. Oxford House (OH) recovery homes represent a recovery-favorable social environment for at least some people, but it is still unclear which resident characteristics and relational dynamics affect the social integration of residents. In the current study, OH residents in three geographic locations completed a social network instrument and self-rated their quality of life (QOL). The instruments were administered to the current (per wave) residents of 42 OHs at three time points over a period of a year. Findings indicated that those with a higher QOL were more likely to form friendships with those with a lower QOL than with their similar QOL peers, and vice versa. This finding would not have been predicted based on relationship mechanisms typical of broader social contexts, where homophily (similarity-based assortativity) is common. The self-governance model that characterizes OH residences, in which success among residents is necessarily viewed as mutually dependent and therefore mutually beneficial, seems a likely explanation for our result. Specifically, and aligned with current knowledge about what works in peer oriented recovery, our results suggest the governance mechanisms of OH favor relationships between those more stable in their recovery and those who are at a higher risk of dropout or relapse. This study reveals a potential research avenue examining an important ingredient for the effectiveness of OH.


Asunto(s)
Hogares para Grupos , Grupo Paritario , Calidad de Vida , Red Social , Trastornos Relacionados con Sustancias/rehabilitación , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
Br J Pharmacol ; 175(12): 2133-2137, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29878335

RESUMEN

LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Asunto(s)
Analgésicos/farmacología , Dolor Crónico/tratamiento farmacológico , Canales Iónicos/antagonistas & inhibidores , Animales , Dolor Crónico/metabolismo , Humanos , Canales Iónicos/metabolismo
19.
Aging Cell ; 17(4): e12795, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29943484

RESUMEN

Despite pain prevalence altering with age, the effects of aging on the properties of nociceptors are not well understood. Nociceptors, whose somas are located in dorsal root ganglia, are frequently divided into two groups based on their ability to bind isolectin B4 (IB4). Here, using cultured neurons from 1-, 3-, 5-, 8-, 12-, and 18-month-old mice, we investigate age-dependent changes in IB4-positive and IB4-negative neurons. Current-clamp experiments at physiological temperature revealed nonlinear changes in firing frequency of IB4-positive, but not IB4-negative neurons, with a peak at 8 months. This was likely due to the presence of proexcitatory conductances activated at depolarized membrane potentials and significantly higher input resistances found in IB4-positive neurons from 8-month-old mice. Repetitive firing in nociceptors is driven primarily by the TTX-resistant sodium current, and indeed, IB4-positive neurons from 8-month-old mice were found to receive larger contributions from the TTX-resistant window current around the resting membrane potential. To further address the mechanisms behind these differences, we performed RNA-seq experiments on IB4-positive and IB4-negative neurons from 1-, 8-, and 18-month-old mice. We found a larger number of genes significantly affected by age within the IB4-positive than IB4-negative neurons from 8-month-old mice, including known determinants of nociceptor excitability. The above pronounced age-dependent changes at the cellular and molecular levels in IB4-positive neurons point to potential mechanisms behind the reported increase in pain sensitivity in middle-aged rodents and humans, and highlight the possibility of targeting a particular group of neurons in the development of age-tailored pain treatments.


Asunto(s)
Senescencia Celular/genética , Glicoproteínas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Nociceptores/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica/genética , Glicoproteínas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/citología , Debilidad Muscular/genética , Nociceptores/citología
20.
Br J Pharmacol ; 175(12): 2272-2283, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29150838

RESUMEN

BACKGROUND AND PURPOSE: TREK two-pore-domain potassium (K2P ) channels play a critical role in regulating the excitability of somatosensory nociceptive neurons and are important mediators of pain perception. An understanding of the roles of TREK channels in pain perception and, indeed, in other pathophysiological conditions, has been severely hampered by the lack of potent and/or selective activators and inhibitors. In this study, we describe a new, selective opener of TREK channels, GI-530159. EXPERIMENTAL APPROACH: The effect of GI-530159 on TREK channels was demonstrated using 86 Rb efflux assays, whole-cell and single-channel patch-clamp recordings from recombinant TREK channels. The expression of K2P 2.1 (TREK1), K2P 10.1 (TREK2) and K2P 4.1 (TRAAK) channels was determined using transcriptome analysis from single dorsal root ganglion (DRG) cells. Current-clamp recordings from cultured rat DRG neurons were used to measure the effect of GI-530159 on neuronal excitability. KEY RESULTS: For recombinant human TREK1 channels, GI-530159 had similar low EC50 values in Rb efflux experiments and electrophysiological recordings. It activated TREK2 channels, but it had no detectable action on TRAAK channels nor any significant effect on other K channels tested. Current-clamp recordings from cultured rat DRG neurones showed that application of GI-530159 at 1 µM resulted in a significant reduction in firing frequency and a small hyperpolarization of resting membrane potential. CONCLUSIONS AND IMPLICATIONS: This study provides pharmacological evidence for the presence of mechanosensitive TREK K2P channels in sensory neurones and suggests that development of selective K2P channel openers like GI-530159 could aid in the development of novel analgesic agents. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Neuronas/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/agonistas , Animales , Células CHO , Línea Celular , Cricetulus , Relación Dosis-Respuesta a Droga , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Estructura Molecular , Neuronas/metabolismo , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA