RESUMEN
Uterine arteriovenous malformations (AVMs) are rare and potentially life-threatening. They can be congenital or acquired. Uterine artery embolization or hysterectomy are considered mainstays of management. AVMs can be associated with leiomyomas, and patients may require both procedures. We present a case of a 42-year-old woman with a massively enlarged leiomyomatous uterus supplied and drained by multiple large AVMs, leading to high cardiac output state with severe four chamber cardiac dilation. Management required a multidisciplinary team of interventional radiology, gynecologic oncology surgery, vascular surgery, cardiac anesthesiology, cardiology, and urology and a 2-day interventional approach of preoperative arterial embolization followed by hysterectomy.
RESUMEN
OBJECTIVE: To assess the presence of clinically actionable results and other genetic findings in an otherwise healthy population of adults seen in a medical practice setting and offered "predictive" genomic testing. PATIENTS AND METHODS: In 2014, a predictive genomics clinic for generally healthy adults was launched through the Mayo Clinic Executive Health Program. Self-identified interested patients met with a genomic nurse and genetic counselor for pretest advice and education. Two genome sequencing platforms and one gene panel-based health screen were offered. Posttest genetic counseling was available for patients who elected testing. From March 1, 2014, through June 1, 2019, 1281 patients were seen and 301 (23.5%) chose testing. Uptake rates increased to 36.3% [70 of 193]) in 2019 from 11.8% [2 of 17] in 2014. Clinically actionable results and genetic findings were analyzed using descriptive statistics. RESULTS: Clinically actionable results were detected in 11.6% of patients (35 of 301), and of those, 51.7% (15 of 29) with a cancer or cardiovascular result = did not have a personal or family history concerning for a hereditary disorder. The most common actionable results were in the BCHE, BRCA2, CHEK2, LDLR, MUTYH, and MYH7 genes. A carrier of at least one recessive condition was found in 53.8% of patients (162 of 301). At least one variant associated with multifactorial disease was found in 44.5% (134 of 301) (eg, 25 patients were heterozygous for the F5 factor V Leiden variant associated with thrombophilia risk). CONCLUSION: Our predictive screening revealed that 11.6% of individuals will test positive for a clinically actionable, likely pathogenic/pathogenic variant. This finding suggests that wider knowledge and adoption of predictive genomic services could be beneficial in medical practice, although additional studies are needed.
Asunto(s)
Pruebas Genéticas , Femenino , Asesoramiento Genético/métodos , Asesoramiento Genético/estadística & datos numéricos , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/terapia , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Pruebas Genéticas/estadística & datos numéricos , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Estudios RetrospectivosRESUMEN
RATIONALE & OBJECTIVE: The etiology of kidney disease remains unknown in many individuals with chronic kidney disease (CKD). We created the Mayo Clinic Nephrology Genomics Clinic to improve our ability to integrate genomic and clinical data to identify the etiology of unexplained CKD. STUDY DESIGN: Retrospective study. SETTING & PARTICIPANTS: An essential component of our program is the Nephrology Genomics Board which consists of nephrologists, geneticists, pathologists, translational omics scientists, and trainees who interpret the patient's clinical and genetic data. Since September 2016, the Board has reviewed 163 cases (15 cystic, 100 glomerular, 6 congenital anomalies of kidney and urinary tract (CAKUT), 20 stones, 15 tubulointerstitial, and 13 other). ANALYTICAL APPROACH: Testing was performed with targeted panels, single gene analysis, or analysis of kidney-related genes from exome sequencing. Variant classification was obtained based on the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS: A definitive genetic diagnosis was achieved for 50 families (30.7%). The highest diagnostic yield was obtained in individuals with tubulointerstitial diseases (53.3%), followed by congenital anomalies of the kidney and urological tract (33.3%), glomerular (31%), cysts (26.7%), stones (25%), and others (15.4%). A further 20 (12.3%) patients had variants of interest, and variant segregation, and research activities (exome, genome, or transcriptome sequencing) are ongoing for 44 (40%) unresolved families. LIMITATIONS: Possible overestimation of diagnostic rate due to inclusion of individuals with variants with evidence of pathogenicity but classified as of uncertain significance by the clinical laboratory. CONCLUSIONS: Integration of genomic and research testing and multidisciplinary evaluation in a nephrology cohort with CKD of unknown etiology or suspected monogenic disease provided a diagnosis in a third of families. These diagnoses had prognostic implications, and often changes in management were implemented.