Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(18)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38565289

RESUMEN

Several studies have shown white matter (WM) abnormalities in Alzheimer's disease (AD) using diffusion tensor imaging (DTI). Nonetheless, robust characterization of WM changes has been challenging due to the methodological limitations of DTI. We applied fixel-based analyses (FBA) to examine microscopic differences in fiber density (FD) and macroscopic changes in fiber cross-section (FC) in early stages of AD (N = 393, 212 females). FBA was also compared with DTI, free-water corrected (FW)-DTI and diffusion kurtosis imaging (DKI). We further investigated the correlation of FBA and tensor-derived metrics with AD pathology and cognition. FBA metrics were decreased in the entire cingulum bundle, uncinate fasciculus and anterior thalamic radiations in Aß-positive patients with mild cognitive impairment compared to control groups. Metrics derived from DKI, and FW-DTI showed similar alterations whereas WM degeneration detected by DTI was more widespread. Tau-PET uptake in medial temporal regions was only correlated with reduced FC mainly in the parahippocampal cingulum in Aß-positive individuals. This tau-related WM alteration was also associated with impaired memory. Despite the spatially extensive between-group differences in DTI-metrics, the link between WM and tau aggregation was only revealed using FBA metrics implying high sensitivity but low specificity of DTI-based measures in identifying subtle tau-related WM degeneration. No relationship was found between amyloid load and any diffusion-MRI measures. Our results indicate that early tau-related WM alterations in AD are due to macrostructural changes specifically captured by FBA metrics. Thus, future studies assessing the effects of AD pathology in WM tracts should consider using FBA metrics.


Asunto(s)
Enfermedad de Alzheimer , Imagen de Difusión Tensora , Sustancia Blanca , Proteínas tau , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Femenino , Masculino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Anciano , Proteínas tau/metabolismo , Imagen de Difusión Tensora/métodos , Anciano de 80 o más Años , Persona de Mediana Edad , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología
2.
Ann Neurol ; 95(2): 274-287, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37837382

RESUMEN

OBJECTIVE: We aimed to test whether region-specific factors, including spatial expression patterns of the tau-encoding gene MAPT and regional levels of amyloid positron emission tomography (PET), enhance connectivity-based modeling of the spatial variability in tau-PET deposition in the Alzheimer disease (AD) spectrum. METHODS: We included 685 participants (395 amyloid-positive participants within AD spectrum and 290 amyloid-negative controls) with tau-PET and amyloid-PET from 3 studies (Alzheimer's Disease Neuroimaging Initiative, 18 F-AV-1451-A05, and BioFINDER-1). Resting-state functional magnetic resonance imaging was obtained in healthy controls (n = 1,000) from the Human Connectome Project, and MAPT gene expression from the Allen Human Brain Atlas. Based on a brain-parcellation atlas superimposed onto all modalities, we obtained region of interest (ROI)-to-ROI functional connectivity, ROI-level PET values, and MAPT gene expression. In stepwise regression analyses, we tested connectivity, MAPT gene expression, and amyloid-PET as predictors of group-averaged and individual tau-PET ROI values in amyloid-positive participants. RESULTS: Connectivity alone explained 21.8 to 39.2% (range across 3 studies) of the variance in tau-PET ROI values averaged across amyloid-positive participants. Stepwise addition of MAPT gene expression and amyloid-PET increased the proportion of explained variance to 30.2 to 46.0% and 45.0 to 49.9%, respectively. Similarly, for the prediction of patient-level tau-PET ROI values, combining all 3 predictors significantly improved the variability explained (mean adjusted R2 range across studies = 0.118-0.148, 0.156-0.196, and 0.251-0.333 for connectivity alone, connectivity plus MAPT expression, and all 3 modalities combined, respectively). INTERPRETATION: Across 3 study samples, combining the functional connectome and molecular properties substantially enhanced the explanatory power compared to single modalities, providing a valuable tool to explain regional susceptibility to tau deposition in AD. ANN NEUROL 2024;95:274-287.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Conectoma , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Imagen por Resonancia Magnética/métodos , Proteínas tau/genética , Proteínas tau/metabolismo , Encéfalo/patología , Tomografía de Emisión de Positrones/métodos , Amiloide/metabolismo , Expresión Génica , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/patología
3.
Ann Neurol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888212

RESUMEN

OBJECTIVE: We compared the accuracy of amyloid and [18F]Flortaucipir (FTP) tau positron emission tomography (PET) visual reads for distinguishing patients with mild cognitive impairment (MCI) or dementia with fluid biomarker support of Alzheimer's disease (AD). METHODS: Participants with FTP-PET, amyloid-PET, and diagnosis of dementia-AD (n = 102), MCI-AD (n = 41), non-AD diseases (n = 76), and controls (n = 20) were included. AD status was determined independent of PET by cerebrospinal fluid or plasma biomarkers. The mean age was 66.9 years, and 44.8% were women. Three readers interpreted scans blindly and independently. Amyloid-PET was classified as positive/negative using tracer-specific criteria. FTP-PET was classified as positive with medial temporal lobe (MTL) binding as the minimum uptake indicating AD tau (tau-MTL+), positive with posterolateral temporal or extratemporal cortical binding in an AD-like pattern (tau-CTX+), or negative. The majority of scan interpretations were used to calculate diagnostic accuracy of visual reads in detecting MCI/dementia with fluid biomarker support for AD (MCI/dementia-AD). RESULTS: Sensitivity of amyloid-PET for MCI/dementia-AD was 95.8% (95% confidence interval 91.1-98.4%), which was comparable to tau-CTX+ 92.3% (86.7-96.1%, p = 0.67) and tau-MTL+ 97.2% (93.0-99.2%, p = 0.27). Specificity of amyloid-PET for biomarker-negative healthy and disease controls was 84.4% (75.5-91.0%), which was like tau-CTX+ 88.5% (80.4-94.1%, p = 0.34), and trended toward being higher than tau-MTL+ 75.0% (65.1-83.3%, p = 0.08). Tau-CTX+ had higher specificity than tau-MTL+ (p = 0.0002), but sensitivity was lower (p = 0.02), driven by decreased sensitivity for MCI-AD (80.5% [65.1-91.2] vs. 95.1% [83.5-99.4], p = 0.03). INTERPRETATION: Amyloid- and tau-PET visual reads have similar sensitivity/specificity for detecting AD in cognitively impaired patients. Visual tau-PET interpretations requiring cortical binding outside MTL increase specificity, but lower sensitivity for MCI-AD. ANN NEUROL 2024.

4.
Brain ; 147(3): 961-969, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38128551

RESUMEN

There is increased interest in developing markers reflecting microstructural changes that could serve as outcome measures in clinical trials. This is especially important after unexpected results in trials evaluating disease-modifying therapies targeting amyloid-ß (Aß), where morphological metrics from MRI showed increased volume loss despite promising clinical treatment effects. In this study, changes over time in cortical mean diffusivity, derived using diffusion tensor imaging, were investigated in a large cohort (n = 424) of non-demented participants from the Swedish BioFINDER study. Participants were stratified following the Aß/tau (AT) framework. The results revealed a widespread increase in mean diffusivity over time, including both temporal and parietal cortical regions, in Aß-positive but still tau-negative individuals. These increases were steeper in Aß-positive and tau-positive individuals and robust to the inclusion of cortical thickness in the model. A steeper increase in mean diffusivity was also associated with both changes over time in fluid markers reflecting astrocytic activity (i.e. plasma level of glial fibrillary acidic protein and CSF levels of YKL-40) and worsening of cognitive performance (all P < 0.01). By tracking cortical microstructural changes over time and possibly reflecting variations related to the astrocytic response, cortical mean diffusivity emerges as a promising marker for tracking treatments-induced microstructural changes in clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Imagen de Difusión Tensora , Imagen de Difusión por Resonancia Magnética , Péptidos beta-Amiloides , Filamentos Intermedios
5.
Brain ; 147(3): 949-960, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721482

RESUMEN

Cerebrovascular pathology often co-exists with Alzheimer's disease pathology and can contribute to Alzheimer's disease-related clinical progression. However, the degree to which vascular burden contributes to Alzheimer's disease pathological progression is still unclear. This study aimed to investigate interactions between vascular burden and amyloid-ß pathology on both baseline tau tangle load and longitudinal tau accumulation. We included 1229 participants from the Swedish BioFINDER-2 Study, including cognitively unimpaired and impaired participants with and without biomarker-confirmed amyloid-ß pathology. All underwent baseline tau-PET (18F-RO948), and a subset (n = 677) underwent longitudinal tau-PET after 2.5 ± 1.0 years. Tau-PET uptake was computed for a temporal meta-region-of-interest. We focused on four main vascular imaging features and risk factors: microbleeds; white matter lesion volume; stroke-related events (infarcts, lacunes and haemorrhages); and the Framingham Heart Study Cardiovascular Disease risk score. To validate our in vivo results, we examined 1610 autopsy cases from an Arizona-based neuropathology cohort on three main vascular pathological features: cerebral amyloid angiopathy; white matter rarefaction; and infarcts. For the in vivo cohort, primary analyses included age-, sex- and APOE ɛ4-corrected linear mixed models between tau-PET (outcome) and interactions between time, amyloid-ß and each vascular feature (predictors). For the neuropathology cohort, age-, sex- and APOE ɛ4-corrected linear models between tau tangle density (outcome) and an interaction between plaque density and each vascular feature (predictors) were performed. In cognitively unimpaired individuals, we observed a significant interaction between microbleeds and amyloid-ß pathology on greater baseline tau load (ß = 0.68, P < 0.001) and longitudinal tau accumulation (ß = 0.11, P < 0.001). For white matter lesion volume, we did not observe a significant independent interaction effect with amyloid-ß on tau after accounting for microbleeds. In cognitively unimpaired individuals, we further found that stroke-related events showed a significant negative interaction with amyloid-ß on longitudinal tau (ß = -0.08, P < 0.001). In cognitively impaired individuals, there were no significant interaction effects between cerebrovascular and amyloid-ß pathology at all. In the neuropathology dataset, the in vivo observed interaction effects between cerebral amyloid angiopathy and plaque density (ß = 0.38, P < 0.001) and between infarcts and plaque density (ß = -0.11, P = 0.005) on tau tangle density were replicated. To conclude, we demonstrated that cerebrovascular pathology-in the presence of amyloid-ß pathology-modifies tau accumulation in early stages of Alzheimer's disease. More specifically, the co-occurrence of microbleeds and amyloid-ß pathology was associated with greater accumulation of tau aggregates during early disease stages. This opens the possibility that interventions targeting microbleeds may attenuate the rate of tau accumulation in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Accidente Cerebrovascular , Humanos , Tomografía Computarizada por Rayos X , Péptidos beta-Amiloides , Placa Amiloide , Infarto , Hemorragia Cerebral , Apolipoproteínas E
6.
Brain ; 147(7): 2414-2427, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325331

RESUMEN

Synaptic dysfunction and degeneration is likely the key pathophysiology for the progression of cognitive decline in various dementia disorders. Synaptic status can be monitored by measuring synaptic proteins in CSF. In this study, both known and new synaptic proteins were investigated and compared as potential biomarkers of synaptic dysfunction, particularly in the context of Alzheimer's disease (AD). Seventeen synaptic proteins were quantified in CSF using two different targeted mass spectrometry assays in the prospective Swedish BioFINDER-2 study. The study included 958 individuals, characterized as having mild cognitive impairment (MCI, n = 205), AD dementia (n = 149) and a spectrum of other neurodegenerative diseases (n = 171), in addition to cognitively unimpaired individuals (CU, n = 443). Synaptic protein levels were compared between diagnostic groups and their associations with cognitive decline and key neuroimaging measures (amyloid-ß-PET, tau-PET and cortical thickness) were assessed. Among the 17 synaptic proteins examined, 14 were specifically elevated in the AD continuum. SNAP-25, 14-3-3 zeta/delta, ß-synuclein, and neurogranin exhibited the highest discriminatory accuracy in differentiating AD dementia from controls (areas under the curve = 0.81-0.93). SNAP-25 and 14-3-3 zeta/delta also had the strongest associations with tau-PET, amyloid-ß-PET and cortical thickness at baseline and were associated with longitudinal changes in these imaging biomarkers [ß(standard error, SE) = -0.056(0.0006) to 0.058(0.005), P < 0.0001]. SNAP-25 was the strongest predictor of progression to AD dementia in non-demented individuals (hazard ratio = 2.11). In contrast, neuronal pentraxins were decreased in all neurodegenerative diseases (except for Parkinson's disease), and NPTX2 showed the strongest associations with subsequent cognitive decline [longitudinal Mini-Mental State Examination: ß(SE) = 0.57(0.1), P ≤ 0.0001; and mPACC: ß(SE) = 0.095(0.024), P ≤ 0.001] across the AD continuum. Interestingly, utilizing a ratio of the proteins that displayed higher levels in AD, such as SNAP-25 or 14-3-3 zeta/delta, over NPTX2 improved the biomarkers' associations with cognitive decline and brain atrophy. We found 14-3-3 zeta/delta and SNAP-25 to be especially promising as synaptic biomarkers of pathophysiological changes in AD. Neuronal pentraxins were identified as general indicators of neurodegeneration and associated with cognitive decline across various neurodegenerative dementias. Cognitive decline and brain atrophy were best predicted by ratios of SNAP-25/NPTX2 and 14-3-3 zeta/delta/NPTX2.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Sinapsis , Humanos , Masculino , Femenino , Anciano , Biomarcadores/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , Enfermedad de Alzheimer/líquido cefalorraquídeo , Persona de Mediana Edad , Sinapsis/patología , Anciano de 80 o más Años , Estudios Prospectivos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Tomografía de Emisión de Positrones , Neurogranina/líquido cefalorraquídeo
7.
Brain ; 147(7): 2400-2413, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38654513

RESUMEN

Memory clinic patients are a heterogeneous population representing various aetiologies of pathological ageing. It is not known whether divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± standard deviation, age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (n = 342), mild cognitive impairment (n = 118) or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid Alzheimer's disease biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5) as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test whether baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and mild cognitive impairment conversion rates of cognitively unimpaired participants and those with subjective cognitive decline. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy initially affected the medial temporal lobes, followed by further temporal regions and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological Alzheimer's disease biomarker levels, APOE ε4 carriership and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe, with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive Alzheimer's disease biomarkers and was associated with more generalized cognitive impairment. Limbic-predominant atrophy, in all participants and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of mild cognitive impairment conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, at both the subject and the group level, was excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for Alzheimer's disease in applied settings. The implementation of atrophy subtype- and stage-specific end points might increase the statistical power of pharmacological trials targeting early Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Disfunción Cognitiva , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Atrofia/patología , Anciano , Disfunción Cognitiva/patología , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/patología , Persona de Mediana Edad , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Pruebas Neuropsicológicas , Estudios de Cohortes , Anciano de 80 o más Años , Memoria Episódica , Trastornos de la Memoria/patología
8.
Neuroimage ; 296: 120672, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38851551

RESUMEN

Age-related white matter hyperintensities are a common feature and are known to be negatively associated with structural integrity, functional connectivity, and cognitive performance. However, this has yet to be fully understood mechanistically. We analyzed multiple MRI modalities acquired in 465 non-demented individuals from the Swedish BioFINDER study including 334 cognitively normal and 131 participants with mild cognitive impairment. White matter hyperintensities were automatically quantified using fluid-attenuated inversion recovery MRI and parameters from diffusion tensor imaging were estimated in major white matter fibre tracts. We calculated fMRI resting state-derived functional connectivity within and between predefined cortical regions structurally linked by the white matter tracts. How change in functional connectivity is affected by white matter lesions and related to cognition (in the form of executive function and processing speed) was explored. We examined the functional changes using a measure of sample entropy. As expected hyperintensities were associated with disrupted structural white matter integrity and were linked to reduced functional interregional lobar connectivity, which was related to decreased processing speed and executive function. Simultaneously, hyperintensities were also associated with increased intraregional functional connectivity, but only within the frontal lobe. This phenomenon was also associated with reduced cognitive performance. The increased connectivity was linked to increased entropy (reduced predictability and increased complexity) of the involved voxels' blood oxygenation level-dependent signal. Our findings expand our previous understanding of the impact of white matter hyperintensities on cognition by indicating novel mechanisms that may be important beyond this particular type of brain lesions.


Asunto(s)
Disfunción Cognitiva , Imagen por Resonancia Magnética , Sustancia Blanca , Humanos , Masculino , Femenino , Anciano , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/patología , Imagen de Difusión Tensora/métodos , Anciano de 80 o más Años , Función Ejecutiva/fisiología , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Conectoma/métodos , Encéfalo/diagnóstico por imagen
9.
Brain ; 146(4): 1602-1614, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36130332

RESUMEN

Markers of downstream events are a key component of clinical trials of disease-modifying therapies for Alzheimer's disease. Morphological metrics like cortical thickness are established measures of atrophy but are not sensitive enough to detect amyloid-beta (Aß)- related changes that occur before overt atrophy become visible. We aimed to investigate to what extent diffusion MRI can provide sensitive markers of cortical microstructural changes and to test their associations with multiple aspects of the Alzheimer's disease pathological cascade, including both Aß and tau accumulation, astrocytic activation and cognitive deficits. We applied the mean apparent diffusion propagator model to diffusion MRI data from 492 cognitively unimpaired elderly and patients with mild cognitive impairment from the Swedish BioFINDER-2 cohort. Participants were stratified in Aß-negative/tau-negative, Aß-positive/tau-negative and Aß-positive/tau-positive based on Aß- and tau-PET uptake. Cortical regional values of diffusion MRI metrics and cortical thickness were compared across groups. Associations between regional values of diffusion MRI metrics and both Aß- and tau-PET uptake were also investigated along with the association with plasma level of glial fibrillary acidic protein (GFAP), a marker of astrocyte activation (available in 292 participants). Mean squared displacement revealed widespread microstructural differences already between Aß-negative/tau-negative and Aß-positive/tau-negative participants with a spatial distribution that closely resembled the pattern of Aß accumulation. In contrast, differences in cortical thickness were clearly more limited. Mean squared displacement was also correlated with both Aß- and tau-PET uptake even independently from one another and from cortical thickness. Further, the same metric exhibited significantly stronger correlations with PET uptake than cortical thickness (P < 0.05). Mean squared displacement was also positively correlated with GFAP with a pattern that resembles Aß accumulation, and GFAP partially mediated the association between Aß accumulation and mean squared displacement. Further, impairments in executive functions were significantly more associated with mean squared displacement values extracted from a meta-region of interest encompassing regions accumulating Aß early in the disease process, than with cortical thickness (P < 0.05). Similarly, impairments in memory functions were significantly more associated with mean squared displacement values extracted from a temporal meta-region of interest than with cortical thickness (P < 0.05). Metrics of cortical microstructural alteration derived from diffusion MRI are highly sensitive to multiple aspects of the Alzheimer's disease pathological cascade. Of particular interest is the link with both Aß-PET and GFAP, suggesting diffusion MRI might reflects microstructural changes related to the astrocytic response to Aß aggregation. Therefore, metrics of cortical diffusion might be important outcome measures in anti-Aß treatments clinical trials for detecting drug-induced changes in cortical microstructure.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Encéfalo/patología , Tomografía de Emisión de Positrones , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/patología , Amiloide/metabolismo , Atrofia/patología , Biomarcadores/metabolismo
10.
Brain ; 146(4): 1580-1591, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36084009

RESUMEN

Different tau biomarkers become abnormal at different stages of Alzheimer's disease, with CSF phospho-tau typically becoming elevated at subthreshold levels of tau-PET binding. To capitalize on the temporal order of tau biomarker-abnormality and capture the earliest changes of tau accumulation, we implemented an observational study design to examine longitudinal changes in tau-PET, cortical thickness and cognitive decline in amyloid-ß-positive individuals with elevated CSF p-tau levels (P+) but subthreshold Tau-PET retention (T-). To this end, individuals without dementia (i.e. cognitively unimpaired or mild cognitive impairment, n = 231) were selected from the BioFINDER-2 study. Amyloid-ß-positive (A+) individuals were categorized into biomarker groups based on cut-offs for abnormal CSF p-tau217 and 18F-RO948 (Tau) PET, yielding groups of tau-concordant-negative (A+P-T-; n = 30), tau-discordant (i.e. A+P+T-; n = 48) and tau-concordant-positive (A+P+T+; n = 18) individuals. In addition, 135 amyloid-ß-negative, tau-negative, cognitively unimpaired individuals served as controls. Differences in annual change in regional tau-PET, cortical thickness and cognition between the groups were assessed using general linear models, adjusted for age, sex, clinical diagnosis and (for cognitive measures only) education. Mean follow-up time was ∼2 years. Longitudinal increase in tau-PET was faster in the A+P+T- group than in the control and A+P-T- groups across medial temporal and neocortical regions, with the highest accumulation rates in the medial temporal lobe. The A+P+T- group showed a slower rate of increase in tau-PET compared to the A+P+T+ group, primarily in neocortical regions. We did not detect differences in yearly change in cortical thickness or in cognitive decline between the A+P+T- and A+P-T- groups. The A+P+T+ group, however, showed faster cognitive decline compared to all other groups. Altogether, these findings suggest that the A+P+T- biomarker profile in persons without dementia is associated with an isolated effect on increased tau-PET accumulation rates but not on cortical thinning and cognitive decline. While this suggests that the tau-discordant biomarker profile is not strongly associated with short-term clinical decline, this group does represent an interesting population for monitoring the effects of interventions with disease-modifying agents on tau accumulation in early Alzheimer's disease, and for examining the emergence of tau aggregates in Alzheimer's disease. Further, we suggest updating the AT(N) criteria for Alzheimer's disease biomarker classification to APT(N).


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Tomografía de Emisión de Positrones , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Amiloide , Cognición , Biomarcadores
11.
Brain ; 146(8): 3192-3205, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37082959

RESUMEN

Amyloid-ß (Aß) is hypothesized to facilitate the spread of tau pathology beyond the medial temporal lobe. However, there is evidence that, independently of Aß, age-related tau pathology might be present outside of the medial temporal lobe. We therefore aimed to study age-related Aß-independent tau deposition outside the medial temporal lobe in two large cohorts and to investigate potential downstream effects of this on cognition and structural measures. We included 545 cognitively unimpaired adults (40-92 years) from the BioFINDER-2 study (in vivo) and 639 (64-108 years) from the Rush Alzheimer's Disease Center cohorts (ex vivo). 18F-RO948- and 18F-flutemetamol-PET standardized uptake value ratios were calculated for regional tau and global/regional Aß in vivo. Immunohistochemistry was used to estimate Aß load and tangle density ex vivo. In vivo medial temporal lobe volumes (subiculum, cornu ammonis 1) and cortical thickness (entorhinal cortex, Brodmann area 35) were obtained using Automated Segmentation for Hippocampal Subfields packages. Thickness of early and late neocortical Alzheimer's disease regions was determined using FreeSurfer. Global cognition and episodic memory were estimated to quantify cognitive functioning. In vivo age-related tau deposition was observed in the medial temporal lobe and in frontal and parietal cortical regions, which was statistically significant when adjusting for Aß. This was also observed in individuals with low Aß load. Tau deposition was negatively associated with cortical volumes and thickness in temporal and parietal regions independently of Aß. The associations between age and cortical volume or thickness were partially mediated via tau in regions with early Alzheimer's disease pathology, i.e. early tau and/or Aß pathology (subiculum/Brodmann area 35/precuneus/posterior cingulate). Finally, the associations between age and cognition were partially mediated via tau in Brodmann area 35, even when including Aß-PET as covariate. Results were validated in the ex vivo cohort showing age-related and Aß-independent increases in tau aggregates in and outside the medial temporal lobe. Ex vivo age-cognition associations were mediated by medial and inferior temporal tau tangle density, while correcting for Aß density. Taken together, our study provides support for primary age-related tauopathy even outside the medial temporal lobe in vivo and ex vivo, with downstream effects on structure and cognition. These results have implications for our understanding of the spreading of tau outside the medial temporal lobe, also in the context of Alzheimer's disease. Moreover, this study suggests the potential utility of tau-targeting treatments in primary age-related tauopathy, likely already in preclinical stages in individuals with low Aß pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Tauopatías , Adulto , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau , Disfunción Cognitiva/patología , Péptidos beta-Amiloides , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética
12.
Alzheimers Dement ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867417

RESUMEN

INTRODUCTION: Remote unsupervised cognitive assessments have the potential to complement and facilitate cognitive assessment in clinical and research settings. METHODS: Here, we evaluate the usability, validity, and reliability of unsupervised remote memory assessments via mobile devices in individuals without dementia from the Swedish BioFINDER-2 study and explore their prognostic utility regarding future cognitive decline. RESULTS: Usability was rated positively; remote memory assessments showed good construct validity with traditional neuropsychological assessments and were significantly associated with tau-positron emission tomography and downstream magnetic resonance imaging measures. Memory performance at baseline was associated with future cognitive decline and prediction of future cognitive decline was further improved by combining remote digital memory assessments with plasma p-tau217. Finally, retest reliability was moderate for a single assessment and good for an aggregate of two sessions. DISCUSSION: Our results demonstrate that unsupervised digital memory assessments might be used for diagnosis and prognosis in Alzheimer's disease, potentially in combination with plasma biomarkers. HIGHLIGHTS: Remote and unsupervised digital memory assessments are feasible in older adults and individuals in early stages of Alzheimer's disease. Digital memory assessments are associated with neuropsychological in-clinic assessments, tau-positron emission tomography and magnetic resonance imaging measures. Combination of digital memory assessments with plasma p-tau217 holds promise for prognosis of future cognitive decline. Future validation in further independent, larger, and more diverse cohorts is needed to inform clinical implementation.

13.
J Neurol Neurosurg Psychiatry ; 94(3): 211-219, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36357168

RESUMEN

BACKGROUND: A putative role for iron in driving Alzheimer's disease (AD) progression is complicated by previously reported associations with neuroinflammation, apolipoprotein E and AD proteinopathy. To establish how iron interacts with clinicopathological features of AD and at what disease stage iron influences cognitive outcomes, we investigated the association of cerebrospinal fluid (CSF) biomarkers of iron (ferritin), inflammation (acute phase response proteins) and apolipoproteins with pathological biomarkers (CSF Aß42/t-tau, p-tau181), clinical staging and longitudinal cognitive deterioration in subjects from the BioFINDER cohort, with replication of key results in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. METHODS: Ferritin, acute phase response proteins (n=9) and apolipoproteins (n=6) were measured in CSF samples from BioFINDER (n=1239; 4 years cognitive follow-up) participants stratified by cognitive status (cognitively unimpaired, mild cognitive impairment, AD) and for the presence of amyloid and tangle pathology using CSF Aß42/t-tau (A+) and p-tau181 (T+). The ferritin and apolipoprotein E associations were replicated in the ADNI (n=264) cohort. RESULTS: In both cohorts, ferritin and apoE were elevated in A-T+ and A+T+ subjects (16%-40%), but not clinical diagnosis. Other apolipoproteins and acute phase response proteins increased with clinical diagnosis, not pathology. CSF ferritin was positively associated with p-tau181, which was mediated by apolipoprotein E. An optimised threshold of ferritin predicted cognitive deterioration in mild cognitive impairment subjects in the BioFINDER cohort, especially those people classified as A-T- and A+T-. CONCLUSIONS: CSF markers of iron and neuroinflammation have distinct associations with disease stages, while iron may be more intimately associated with apolipoprotein E and tau pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Ferritinas/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Enfermedades Neuroinflamatorias , Reacción de Fase Aguda , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico , Apolipoproteínas E/genética , Hierro , Inflamación , Péptidos beta-Amiloides/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Progresión de la Enfermedad
14.
Clin Chem Lab Med ; 61(2): 234-244, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36282960

RESUMEN

OBJECTIVES: Timely diagnosis of Alzheimer's disease (AD) is critical for appropriate treatment/patient management. Cerebrospinal fluid (CSF) biomarker analysis is often used to aid diagnosis. We assessed analytical performance of second-generation (Gen II) Elecsys® CSF immunoassays (Roche Diagnostics International Ltd), and adjusted existing cut-offs, to evaluate their potential utility in clinical routine. METHODS: Analytical performance was assessed using CSF samples measured with Elecsys CSF Gen II immunoassays on cobas e analyzers. Aß42 Gen I/Gen II immunoassay method comparisons were performed (Passing-Bablok regression). Cut-off values were adjusted using estimated bias in biomarker levels between BioFINDER protocol aliquots/Gen I immunoassays and Gen II protocol aliquots/immunoassays. Distribution of Gen II immunoassay values was evaluated in AD, mild cognitive impairment (MCI), and cognitively normal cohorts; percentage observations outside the measuring range were derived. RESULTS: The Gen II immunoassays demonstrated good analytical performance, including repeatability, intermediate precision, lot-to-lot agreement (Pearson's r: ≥0.999), and platform agreement (Pearson's r: ≥0.995). Aß42 Gen I/Gen II immunoassay measurements were strongly correlated (Pearson's r: 0.985-0.999). Aß42 Gen II immunoassay cut-offs were adjusted to 1,030 and 800 ng/L, and pTau181/Aß42 ratio cut-offs to 0.023 and 0.029, for Gen II and I protocols, respectively. No observations were below the lower limit of the measuring range; above the upper limit, there were none from the AD cohort, and 2.6 and 6.8% from the MCI and cognitively normal cohorts, respectively. CONCLUSIONS: Our findings suggest that the Gen II immunoassays have potential utility in clinical routine to aid diagnosis of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Inmunoensayo/métodos , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
15.
Cereb Cortex ; 32(18): 3937-3944, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-35034126

RESUMEN

The paracingulate sulcus is a tertiary sulcus formed during the third trimester. In healthy individuals paracingulate sulcation is more prevalent in the left hemisphere. The anterior cingulate and paracingulate gyri are focal points of neurodegeneration in behavioral variant frontotemporal dementia (bvFTD). This study aims to determine the prevalence and impact of paracingulate sulcation in bvFTD. Structural magnetic resonance images of individuals with bvFTD (n = 105, mean age 66.9 years), Alzheimer's disease (n = 92, 73.3), and healthy controls (n = 110, 62.4) were evaluated using standard protocol for hemispheric paracingulate sulcal presence. No difference in left hemisphere paracingulate sulcal frequency was observed between groups; 0.72, 0.79, and 0.70, respectively, in the bvFTD, Alzheimer's disease, and healthy control groups, (P = 0.3). A significant impact of right (but not left) hemispheric paracingulate sulcation on age at disease onset was identified in bvFTD (mean 60.4 years where absent vs. 63.8 where present [P = 0.04, Cohen's d = 0.42]). This relationship was not observed in Alzheimer's disease. These findings demonstrate a relationship between prenatal neuronal development and the expression of a neurodegenerative disease providing a gross morphological example of brain reserve.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Edad de Inicio , Anciano , Enfermedad de Alzheimer/patología , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/patología , Humanos , Imagen por Resonancia Magnética
16.
Alzheimers Dement ; 19(11): 5095-5102, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37186338

RESUMEN

INTRODUCTION: ß-Synuclein is an emerging synaptic blood biomarker for Alzheimer's disease (AD) but differences in ß-synuclein levels in preclinical AD and its association with amyloid and tau pathology have not yet been studied. METHODS: We measured plasma ß-synuclein levels in cognitively unimpaired individuals with positive Aß-PET (i.e., preclinical AD, N = 48) or negative Aß-PET (N = 61), Aß-positive patients with mild cognitive impairment (MCI, N = 36), and Aß-positive AD dementia (N = 85). Amyloid (A) and tau (T) pathology were assessed by [18 F]flutemetamol and [18 F]RO948 PET. RESULTS: Plasma ß-synuclein levels were higher in preclinical AD and even higher in MCI and AD dementia. Stratification according to amyloid/tau pathology revealed higher ß-synuclein in A+ T- and A+ T+ subjects compared with A- T- . Plasma ß-synuclein levels were related to tau and Aß pathology and associated with temporal cortical thinning and cognitive impairment. DISCUSSION: Our data indicate that plasma ß-synuclein might track synaptic dysfunction, even during the preclinical stages of AD. HIGHLIGHTS: Plasma ß-synuclein is already higher in preclinical AD. Plasma ß-synuclein is higher in MCI and AD dementia than in preclinical AD. Aß- and tau-PET SUVRs are associated with plasma ß-synuclein levels. Plasma ß-synuclein is already higher in tau-PET negative subjects. Plasma ß-synuclein is related to temporal cortical atrophy and cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau , Péptidos beta-Amiloides , Sinucleína beta , Disfunción Cognitiva/patología , Biomarcadores , Amiloide , Proteínas Amiloidogénicas , Tomografía de Emisión de Positrones
17.
Alzheimers Dement ; 19(4): 1393-1402, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36150024

RESUMEN

INTRODUCTION: Further evidence is needed to support the use of plasma amyloid ß (Aß) biomarkers as Alzheimer's disease prescreening tools. This study evaluated the clinical performance and robustness of plasma Aß42 /Aß40 for amyloid positivity prescreening. METHODS: Data were collected from 333 BioFINDER and 121 Alzheimer's Disease Neuroimaging Initiative study participants. Risk and predictive values versus percentile of plasma Aß42 /Aß40 evaluated the actionability of plasma Aß42 /Aß40 , and simulations modeled the impact of potential uncertainties and biases. Amyloid PET was the brain amyloidosis reference standard. RESULTS: Elecsys plasma Aß42 /Aß40 could potentially rule out amyloid pathology in populations with low-to-moderate amyloid positivity prevalence. However, simulations showed small measurement or pre-analytical errors in Aß42 and/or Aß40 cause misclassifications, impacting sensitivity or specificity. The minor fold change between amyloid PET positive and negative cases explains the biomarkers low robustness. DISCUSSION: Implementing plasma Aß42 /Aß40 for routine clinical use may pose significant challenges, with misclassification risks. HIGHLIGHTS: Plasma Aß42 /Aß40 ruled out amyloid PET positivity in a setting of low amyloid-positive prevalence. Including (pre-) analytical errors or measurement biases caused misclassifications. Plasma Aß42 /Aß40 had a low inherent dynamic range, independent of analytical method. Other blood biomarkers may be easier to implement as robust prescreening tools.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Péptidos beta-Amiloides , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/metabolismo , Biomarcadores , Amiloide/metabolismo , Fragmentos de Péptidos
18.
Alzheimers Dement ; 19(4): 1403-1414, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36152307

RESUMEN

INTRODUCTION: Plasma biomarkers will likely revolutionize the diagnostic work-up of Alzheimer's disease (AD) globally. Before widespread use, we need to determine if confounding factors affect the levels of these biomarkers, and their clinical utility. METHODS: Participants with plasma and CSF biomarkers, creatinine, body mass index (BMI), and medical history data were included (BioFINDER-1: n = 748, BioFINDER-2: n = 421). We measured beta-amyloid (Aß42, Aß40), phosphorylated tau (p-tau217, p-tau181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP). RESULTS: In both cohorts, creatinine and BMI were the main factors associated with NfL, GFAP, and to a lesser extent with p-tau. However, adjustment for BMI and creatinine had only minor effects in models predicting either the corresponding levels in CSF or subsequent development of dementia. DISCUSSION: Creatinine and BMI are related to certain plasma biomarkers levels, but they do not have clinically relevant confounding effects for the vast majority of individuals. HIGHLIGHTS: Creatinine and body mass index (BMI) are related to certain plasma biomarker levels. Adjusting for creatinine and BMI has minor influence on plasma-cerebrospinal fluid (CSF) associations. Adjusting for creatinine and BMI has minor influence on prediction of dementia using plasma biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Creatinina , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo
19.
Alzheimers Dement ; 19(6): 2497-2507, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36516028

RESUMEN

INTRODUCTION: Biomarkers for the prediction of cognitive decline in patients with amnestic mild cognitive impairment (MCI) and amnestic mild dementia are needed for both clinical practice and clinical trials. METHODS: We evaluated the ability of tau-PET (positron emission tomography), cortical atrophy on magnetic resonance imaging (MRI), baseline cognition, apolipoprotein E gene (APOE) status, plasma and cerebrospinal fluid (CSF) levels of phosphorylated tau-217, neurofilament light (NfL), and amyloid beta (Aß)42/40 ratio (individually and in combination) to predict cognitive decline over 2 years in BioFINDER-2 and Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS: Baseline tau-PET and a composite baseline cognitive score were the strongest independent predictors of cognitive decline. Cortical thickness and NfL provided some additional information. Using a predictive algorithm to enrich patient selection in a theoretical clinical trial led to a significantly lower required sample size. DISCUSSION: Models including baseline tau-PET and cognition consistently provided the best prediction of change in cognitive function over 2 years in patients with amnestic MCI or mild dementia.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Tomografía de Emisión de Positrones/métodos , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo
20.
Alzheimers Dement ; 19(7): 2994-3004, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36681387

RESUMEN

INTRODUCTION: This study investigated the comparability of cerebrospinal fluid (CSF) cutoffs for Elecsys immunoassays for amyloid beta (Aß)42/Aß40 or Aß42/phosphorylated tau (p-tau)181 and the effects of measurement variability when predicting Alzheimer's disease (AD)-related outcomes (i.e., Aß-positron emission tomography [PET] visual read and AD neuropathology). METHODS: We studied 750 participants (BioFINDER study, Alzheimer's Disease Neuroimaging Initiative [ADNI], and University of California San Francisco [UCSF]). Youden's index was used to identify cutoffs and to calculate accuracy (Aß-PET visual read as outcome). Using longitudinal variability in Aß-negative controls, we identified a gray zone around cut-points where the risk of an inconsistent predicted outcome was >5%. RESULTS: For Aß42/Aß40, cutoffs across cohorts were <0.059 (BioFINDER), <0.057 (ADNI), and <0.058 (UCSF). For Aß42/p-tau181, cutoffs were <41.90 (BioFINDER), <39.20 (ADNI), and <46.02 (UCSF). Accuracy was ≈90% for both Aß42/Aß40 and Aß42/p-tau181 using these cutoffs. Using Aß-PET as an outcome, 8.7% of participants fell within a gray zone interval for Aß42/Aß40, compared to 4.5% for Aß42/p-tau181. Similar findings were observed using a measure of overall AD neuropathologic change (7.7% vs. 3.3%). In a subset with CSF and plasma Aß42/40, the number of individuals within the gray zone was ≈1.5 to 3 times greater when using plasma Aß42/40. DISCUSSION: CSF Aß42/p-tau181 was more robust to the effects of measurement variability, suggesting that it may be the preferred Elecsys-based measure in clinical practice and trials.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Inmunoensayo , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA