Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(2): e2215509119, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36608295

RESUMEN

Recently, Co-based honeycomb magnets have been proposed as promising candidate materials to host the Kitaev spin liquid (KSL) state. One of the front-runners is BaCo2(AsO4)2 (BCAO), where it was suggested that the exchange processes between Co2+ ions via the surrounding edge-sharing oxygen octahedra could give rise to bond-dependent Kitaev interactions. In this work, we present and analyze a comprehensive inelastic neutron scattering (INS) study of BCAO with fields in the honeycomb plane. Combining the constraints from the magnon excitations in the high-field polarized state and the inelastic spin structure factor measured in zero magnetic field, we examine two leading theoretical models: the Kitaev-type [Formula: see text] model and the XXZ[Formula: see text]model. We show that the existing experimental data can be consistently accounted for by the XXZ[Formula: see text]model but not by the [Formula: see text] model, and we discuss the implications of these results for the realization of a spin liquid phase in BCAO and more generally for the realization of the Kitaev model in cobaltates.

2.
Phys Rev Lett ; 128(9): 097201, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35302826

RESUMEN

We investigate the magnetic excitations of elemental gadolinium (Gd) using inelastic neutron scattering, showing that Gd is a Dirac magnon material with nodal lines at K and nodal planes at half integer ℓ. We find an anisotropic intensity winding around the K-point Dirac magnon cone, which is interpreted to indicate Berry phase physics. Using linear spin wave theory calculations, we show the nodal lines have nontrivial Berry phases, and topological surface modes. We also discuss the origin of the nodal plane in terms of a screw-axis symmetry, and introduce a topological invariant characterizing its presence and effect on the scattering intensity. Together, these results indicate a highly nontrivial topology, which is generic to hexagonal close packed ferromagnets. We discuss potential implications for other such systems.

3.
Phys Rev Lett ; 124(8): 087206, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167347

RESUMEN

We report time-of-flight neutron spectroscopy and neutron and x-ray diffraction studies of the 5d^{2} double perovskite magnets, Ba_{2}MOsO_{6} (M=Zn,Mg,Ca). These materials host antiferromagnetically coupled 5d^{2} Os^{6+} ions decorating a face-centered cubic (fcc) lattice and are found to remain cubic down to the lowest temperatures. They all exhibit thermodynamic anomalies consistent with a single phase transition at a temperature T^{*}, and a gapped magnetic excitation spectrum with spectral weight concentrated at wave vectors typical of type-I antiferromagnetic orders. However, while muon spin resonance experiments show clear evidence for time-reversal symmetry breaking below T^{*}, we observe no corresponding magnetic Bragg scattering signal. These results are shown to be consistent with ferro-octupolar symmetry breaking below T^{*}, and are discussed in the context of other 5d double perovskite magnets and theories of exotic orders driven by multipolar interactions.

4.
Phys Rev Lett ; 122(18): 187201, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144900

RESUMEN

Neutron scattering measurements on the pyrochlore magnet Ce_{2}Zr_{2}O_{7} reveal an unusual crystal field splitting of its lowest J=5/2 multiplet, such that its ground-state doublet is composed of m_{J}=±3/2, giving these doublets a dipole-octupole (DO) character with local Ising anisotropy. Its magnetic susceptibility shows weak antiferromagnetic correlations with θ_{CW}=-0.4(2) K, leading to a naive expectation of an all-in, all-out ordered state at low temperatures. Instead, our low-energy inelastic neutron scattering measurements show a dynamic quantum spin ice state, with suppressed scattering near |Q|=0, and no long-range order at low temperatures. This is consistent with recent theory predicting symmetry-enriched U(1) quantum spin liquids for such DO doublets decorating the pyrochlore lattice. Finally, we show that disorder, especially oxidation of powder samples, is important in Ce_{2}Zr_{2}O_{7} and could play an important role in the low-temperature behavior of this material.

5.
Nat Mater ; 15(7): 733-40, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27043779

RESUMEN

Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.


Asunto(s)
Campos Magnéticos , Imanes , Modelos Químicos , Teoría Cuántica , Soluciones/química , Marcadores de Spin , Frío , Simulación por Computador , Dosis de Radiación
6.
Phys Rev Lett ; 119(23): 237203, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29286699

RESUMEN

The insulating honeycomb magnet α-RuCl_{3} exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T=0, fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir^{3+} substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru_{1-x}Ir_{x}Cl_{3} show that the magnetic ordering temperature is suppressed with increasing x, and evidence of zizag magnetic order is absent for x>0.3. Inelastic neutron scattering demonstrates that the signature of fractionalized excitations is maintained over the full range of x investigated. The depleted lattice without magnetic order thus hosts a spin-liquid-like ground state that may indicate the relevance of Kitaev physics in the magnetically dilute limit of RuCl_{3}.

7.
Phys Rev Lett ; 119(14): 147201, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-29053286

RESUMEN

Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo_{2-y}As_{2} at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J_{1}-J_{2} Heisenberg model on a square lattice with ferromagnetic J_{1} and hence indicate that the extensive previous experimental and theoretical study of the J_{1}-J_{2} Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

8.
Phys Rev Lett ; 117(7): 076402, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27563978

RESUMEN

Ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M_{5}^{-} phonon mode in B2-ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. The thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M_{5}^{-} phonon mode and an adiabatic electron-phonon interaction with an unusual temperature dependence.

9.
Phys Rev Lett ; 115(4): 047401, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26252707

RESUMEN

Iron pnictides and selenides display a variety of unusual magnetic phases originating from the interplay between electronic, orbital, and lattice degrees of freedom. Using powder inelastic neutron scattering on the two-leg ladder BaFe_{2}Se_{3}, we fully characterize the static and dynamic spin correlations associated with the Fe_{4} block state, an exotic magnetic ground state observed in this low-dimensional magnet and in Rb_{0.89}Fe_{1.58}Se_{2}. All the magnetic excitations of the Fe_{4} block state predicted by an effective Heisenberg model with localized spins are observed below 300 meV and quantitatively reproduced. However, the data only account for 16(3)µ_{B}^{2} per Fe^{2+}, approximatively 2/3 of the total spectral weight expected for localized S=2 moments. Our results highlight how orbital degrees of freedom in iron-based magnets can conspire to stabilize an exotic magnetic state.

10.
Phys Rev Lett ; 114(3): 036401, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25659009

RESUMEN

Using inelastic neutron scattering, we map a 14 meV coherent resonant mode in the topological Kondo insulator SmB6 and describe its relation to the low energy insulating band structure. The resonant intensity is confined to the X and R high symmetry points, repeating outside the first Brillouin zone and dispersing less than 2 meV, with a 5d-like magnetic form factor. We present a slave-boson treatment of the Anderson Hamiltonian with a third neighbor dominated hybridized band structure. This approach produces a spin exciton below the charge gap with features that are consistent with the observed neutron scattering. We find that maxima in the wave vector dependence of the inelastic neutron scattering indicate band inversion.

11.
Phys Rev Lett ; 111(22): 227002, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24329466

RESUMEN

The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the nonsuperconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is nonmagnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

12.
Phys Rev Lett ; 108(16): 167202, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22680752

RESUMEN

We present inelastic neutron scattering measurements and first principles calculations examining the intermetallic marcasite CrSb(2). The observed spin-wave dispersion implies that the magnetic interactions are strongly one-dimensional with antiferromagnetic chains parallel to the crystalline c axis. Such low-dimensional excitations are unexpected in a semiconducting intermetallic system. Moreover, we observe a clear anisotropic thermal conductivity indicating that the magnetic anisotropy enhances thermoelectric properties along particular crystallographic directions.

13.
Phys Rev Lett ; 109(12): 127203, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23005980

RESUMEN

In this Letter, we explore the phase diagram and excitations of a distorted triangular lattice antiferromagnet. The unique two-dimensional distortion considered here is very different from the "isosceles"-type distortion that has been extensively investigated. We show that it is able to stabilize a 120° spin structure for a large range of exchange interaction values, while new structures are found for extreme distortions. A physical realization of this model is α-CaCr(2)O(4), which has a 120° structure but lies very close to the phase boundary. This is verified by inelastic neutron scattering which reveals unusual rotonlike minima at reciprocal space points different from those corresponding to the magnetic order.

14.
Phys Rev Lett ; 108(25): 257209, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-23004655

RESUMEN

The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder), and Peierls (localization via distortion of a periodic one-dimensional lattice) mechanisms. One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and x-ray scattering we show that the MIT in NaOsO(3) is coincident with the onset of long-range commensurate three dimensional magnetic order. While candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT.

15.
Nat Commun ; 13(1): 5796, 2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36184666

RESUMEN

Traditional spectroscopy, by its very nature, characterizes physical system properties in the momentum and frequency domains. However, the most interesting and potentially practically useful quantum many-body effects emerge from local, short-time correlations. Here, using inelastic neutron scattering and methods of integrability, we experimentally observe and theoretically describe a local, coherent, long-lived, quasiperiodically oscillating magnetic state emerging out of the distillation of propagating excitations following a local quantum quench in a Heisenberg antiferromagnetic chain. This "quantum wake" displays similarities to Floquet states, discrete time crystals and nonlinear Luttinger liquids. We also show how this technique reveals the non-commutativity of spin operators, and is thus a model-agnostic measure of a magnetic system's "quantumness."

16.
Rev Sci Instrum ; 93(6): 065109, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778024

RESUMEN

CHESS, chopper spectrometer examining small samples, is a planned direct geometry neutron chopper spectrometer designed to detect and analyze weak signals intrinsic to small cross sections (e.g., small mass, small magnetic moments, or neutron absorbing materials) in powders, liquids, and crystals. CHESS is optimized to enable transformative investigations of quantum materials, spin liquids, thermoelectrics, battery materials, and liquids. The broad dynamic range of the instrument is also well suited to study relaxation processes and excitations in soft and biological matter. The 15 Hz repetition rate of the Second Target Station at the Spallation Neutron Source enables the use of multiple incident energies within a single source pulse, greatly expanding the information gained in a single measurement. Furthermore, the high flux grants an enhanced capability for polarization analysis. This enables the separation of nuclear from magnetic scattering or coherent from incoherent scattering in hydrogenous materials over a large range of energy and momentum transfer. This paper presents optimizations and technical solutions to address the key requirements envisioned in the science case and the anticipated uses of this instrument.

17.
Phys Rev Lett ; 107(11): 115501, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-22026683

RESUMEN

Inelastic neutron scattering and nuclear resonant inelastic x-ray scattering were used to measure phonon spectra of FeV as a B2 ordered compound and as a bcc solid solution. The two data sets were combined to give an accurate phonon density of states, and the phonon partial densities of states for V and Fe atoms. Contrary to the behavior of ordering alloys studied to date, the phonons in the B2 ordered phase are softer than in the solid solution. Ordering increases the vibrational entropy by +0.22±0.03 kB/atom, which stabilizes the ordered phase to higher temperatures. First-principles calculations show that the number of electronic states at the Fermi level increases upon ordering, enhancing the screening between ions, and reducing the interatomic force constants. The effect of screening is larger at the V atomic sites than at the Fe atomic sites.

18.
J Phys Condens Matter ; 33(24)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33827056

RESUMEN

The question of structural disorder and its effects on magnetism is relevant to a number of spin liquid candidate materials. Although commonly thought of as a route to spin glass behaviour, here we describe a system in which the structural disorder results in long-range antiferromagnetic order due to local symmetry breaking. Nd2ScNbO7is shown to have a dispersionless gapped excitation observed in other neodymium pyrochlores belowTN= 0.37 K through polarized and inelastic neutron scattering. However the dispersing spin waves are not observed. This excited mode is shown to occur in only 14(2)% of the neodymium ions through spectroscopy and is consistent with total scattering measurements as well as the magnitude of the dynamic moment 0.26(2)µB. The remaining magnetic species order completely into the all-in all-out Ising antiferromagnetic structure. This can be seen as a result of local symmetry breaking due disordered Sc+3and Nb+5ions about theA-site. From this work, it has been established thatB-site disorder restores the dipole-like behaviour of the Nd+3ions compared to the Nd2B2O7parent series.

19.
Nat Commun ; 12(1): 171, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420023

RESUMEN

In quantum magnets, magnetic moments fluctuate heavily and are strongly entangled with each other, a fundamental distinction from classical magnetism. Here, with inelastic neutron scattering measurements, we probe the spin correlations of the honeycomb lattice quantum magnet YbCl3. A linear spin wave theory with a single Heisenberg interaction on the honeycomb lattice, including both transverse and longitudinal channels of the neutron response, reproduces all of the key features in the spectrum. In particular, we identify a Van Hove singularity, a clearly observable sharp feature within a continuum response. The demonstration of such a Van Hove singularity in a two-magnon continuum is important as a confirmation of broadly held notions of continua in quantum magnetism and additionally because analogous features in two-spinon continua could be used to distinguish quantum spin liquids from merely disordered systems. These results establish YbCl3 as a benchmark material for quantum magnetism on the honeycomb lattice.

20.
Artículo en Inglés | MEDLINE | ID: mdl-37588000

RESUMEN

The magnetic ground state of the pyrochlore Yb2GaSbO7 has remained an enigma for nearly a decade. The persistent spin fluctuations observed by muon spin relaxation measurements at low temperatures have not been adequately explained for this material using existing theories for quantum magnetism. Here we report on the synthesis and characterisation of Yb2GaSbO7 to elucidate the central physics at play. Through DC and AC magnetic susceptibility, heat capacity, and neutron scattering experiments, we observe evidence for a dynamical ground state that makes Yb2GaSbO7 a promising candidate for disorder-induced spin-liquid or spin-singlet behaviour. This state is quite fragile, being tuned to a splayed ferromagnet in a modest magnetic field µ0Hc∼1.5T.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA