Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731942

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.


Asunto(s)
Células Acinares , Carcinoma Ductal Pancreático , Metaplasia , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Especies Reactivas de Oxígeno , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Metaplasia/metabolismo , Metaplasia/genética , Células Acinares/metabolismo , Células Acinares/patología , Ratones Transgénicos , Quimiocinas CC/metabolismo , Quimiocinas CC/genética , Proteínas Inflamatorias de Macrófagos/metabolismo , Proteínas Inflamatorias de Macrófagos/genética , Páncreas/metabolismo , Páncreas/patología
2.
Gastroenterology ; 158(8): 2072-2081, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32199881

RESUMEN

Although the estimated time for development of pancreatic ductal adenocarcinoma (PDA) is more than 20 years, PDAs are usually detected at late, metastatic stages. PDAs develop from duct-like cells through a multistep carcinogenesis process, from low-grade dysplastic lesions to carcinoma in situ and eventually to metastatic disease. This process involves gradual acquisition of mutations in oncogenes and tumor suppressor genes, as well as changes in the pancreatic environment from a pro-inflammatory microenvironment that favors the development of early lesions, to a desmoplastic tumor microenvironment that is highly fibrotic and immune suppressive. This review discusses our current understanding of how PDA originates.


Asunto(s)
Carcinoma Ductal Pancreático , Transformación Celular Neoplásica , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Linaje de la Célula , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Humanos , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Factores de Tiempo
3.
J Biol Chem ; 294(43): 15759-15767, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31492751

RESUMEN

Vascular endothelial growth factor A (VEGF) signals primarily through its cognate receptor VEGF receptor-2 (VEGFR-2) to control vasculogenesis and angiogenesis, key physiological processes in cardiovascular disease and cancer. In human umbilical vein endothelial cells (HUVECs), knockdown of protein kinase D-1 (PKD1) or PKD2 down-regulates VEGFR-2 expression and inhibits VEGF-induced cell proliferation and migration. However, how PKD regulates VEGF signaling is unclear. Previous bioinformatics analyses have identified binding sites for the transcription factor activating enhancer-binding protein 2 (AP2) in the VEGFR-2 promoter. Using ChIP analyses, here we found that PKD knockdown in HUVECs increases binding of AP2ß to the VEGFR-2 promoter. Luciferase reporter assays with serial deletions of AP2-binding sites within the VEGFR-2 promoter revealed that its transcriptional activity negatively correlates with the number of these sites. Next we demonstrated that AP2ß up-regulation decreases VEGFR-2 expression and that loss of AP2ß enhances VEGFR-2 expression in HUVECs. In vivo experiments confirmed increased VEGFR-2 immunostaining in the spinal cord of AP2ß knockout mouse embryos. Mechanistically, we observed that PKD phosphorylates AP2ß at Ser258 and Ser277 and suppresses its nuclear accumulation. Inhibition of PKD activity with a pan-PKD inhibitor increased AP2ß nuclear localization, and overexpression of both WT and constitutively active PKD1 or PKD2 reduced AP2ß nuclear localization through a Ser258- and Ser277-dependent mechanism. Furthermore, substitution of Ser277 in AP2ß increased its binding to the VEGFR-2 promoter. Our findings uncover evidence of a molecular pathway that regulates VEGFR-2 expression, insights that may shed light on the etiology of diseases associated with aberrant VEGF/VEGFR signaling.


Asunto(s)
Núcleo Celular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteína Quinasa C/metabolismo , Factor de Transcripción AP-2/metabolismo , Transcripción Genética , Regulación hacia Arriba , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Movimiento Celular , Proliferación Celular , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Neovascularización Fisiológica , Regiones Promotoras Genéticas/genética , Unión Proteica , Serina/metabolismo
4.
Int J Cancer ; 146(12): 3423-3434, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31745977

RESUMEN

Protein kinase D3 (PKD3) is upregulated in triple-negative breast cancer (TNBC) and associated with cell proliferation and metastasis development but its precise pro-oncogenic function is unknown. Here we show that PKD3 is required for the maintenance of the TNBC stem cell population. The depletion of PKD3 in MDA-MB-231 cells reduced the cancer stem cell frequency in vitro and tumor initiation potential in vivo. We further provide evidence that the RhoGEF GEF-H1 is upstream of PKD3 activation in TNBC stem cells. Most importantly, pharmacological PKD inhibition in combination with paclitaxel synergistically decreased oncosphere and colony formation efficiency in vitro and tumor recurrence in vivo. Based on our results we propose that targeting the GEF-H1/PKD3 signaling pathway in combination with chemotherapy might provide an effective therapeutic option for TNBC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Células Madre Neoplásicas/patología , Proteína Quinasa C/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Sinergismo Farmacológico , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
5.
PLoS Pathog ; 12(10): e1005915, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27711191

RESUMEN

Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis and liver and bone infections. Humans are typically infected by aerosol-mediated transmission, and C. burnetii initially targets alveolar macrophages wherein the pathogen replicates in a phagolysosome-like niche known as the parasitophorous vacuole (PV). C. burnetii manipulates host cAMP-dependent protein kinase (PKA) signaling to promote PV formation, cell survival, and bacterial replication. In this study, we identified the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) as a PKA substrate that is increasingly phosphorylated at S157 and S239 during C. burnetii infection. Avirulent and virulent C. burnetii triggered increased levels of phosphorylated VASP in macrophage-like THP-1 cells and primary human alveolar macrophages, and this event required the Cα subunit of PKA. VASP phosphorylation also required bacterial protein synthesis and secretion of effector proteins via a type IV secretion system, indicating the pathogen actively triggers prolonged VASP phosphorylation. Optimal PV formation and intracellular bacterial replication required VASP activity, as siRNA-mediated depletion of VASP reduced PV size and bacterial growth. Interestingly, ectopic expression of a phospho-mimetic VASP (S239E) mutant protein prevented optimal PV formation, whereas VASP (S157E) mutant expression had no effect. VASP (S239E) expression also prevented trafficking of bead-containing phagosomes to the PV, indicating proper VASP activity is critical for heterotypic fusion events that control PV expansion in macrophages. Finally, expression of dominant negative VASP (S157A) in C. burnetii-infected cells impaired PV formation, confirming importance of the protein for proper infection. This study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen via activation of PKA in human macrophages.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Interacciones Huésped-Patógeno/fisiología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fiebre Q/metabolismo , Coxiella burnetii , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Inmunoprecipitación , Microscopía Confocal
6.
J Pathol ; 243(1): 65-77, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28639695

RESUMEN

Acinar-to-ductal metaplasia (ADM) is a reversible epithelial transdifferentiation process that occurs in the pancreas in response to acute inflammation. ADM can rapidly progress towards pre-malignant pancreatic intraepithelial neoplasia (PanIN) lesions in the presence of mutant KRas and ultimately pancreatic adenocarcinoma (PDAC). In the present work, we elucidate the role and related mechanism of glycogen synthase kinase-3beta (GSK-3ß) in ADM development using in vitro 3D cultures and genetically engineered mouse models. We show that GSK-3ß promotes TGF-α-induced ADM in 3D cultured primary acinar cells, whereas deletion of GSK-3ß attenuates caerulein-induced ADM formation and PanIN progression in KrasG12D transgenic mice. Furthermore, we demonstrate that GSK-3ß ablation influences ADM formation and PanIN progression by suppressing oncogenic KRas-driven cell proliferation. Mechanistically, we show that GSK-3ß regulates proliferation by increasing the activation of S6 kinase. Taken together, these results indicate that GSK-3ß participates in early pancreatitis-induced ADM and thus could be a target for the treatment of chronic pancreatitis and the prevention of PDAC progression. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Células Acinares/enzimología , Carcinoma in Situ/prevención & control , Transdiferenciación Celular , Glucógeno Sintasa Quinasa 3 beta/deficiencia , Páncreas Exocrino/enzimología , Conductos Pancreáticos/enzimología , Neoplasias Pancreáticas/prevención & control , Pancreatitis/enzimología , Células Acinares/efectos de los fármacos , Células Acinares/patología , Animales , Carcinoma in Situ/enzimología , Carcinoma in Situ/genética , Carcinoma in Situ/patología , Proliferación Celular , Transdiferenciación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Cultivadas , Ceruletida , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Glucógeno Sintasa Quinasa 3 beta/genética , Proteínas de Homeodominio/genética , Masculino , Metaplasia , Ratones Noqueados , Páncreas Exocrino/efectos de los fármacos , Páncreas Exocrino/patología , Conductos Pancreáticos/efectos de los fármacos , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/patología , Fenotipo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Transactivadores/genética , Factor de Necrosis Tumoral alfa/farmacología
7.
Arterioscler Thromb Vasc Biol ; 36(6): 1197-208, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27013613

RESUMEN

OBJECTIVE: CD36 is a scavenger and antiangiogenic receptor that is important in atherothrombotic diseases, diabetes mellitus, cancer, and obesity. Lysophosphatidic acid, a phospholipid signaling mediator, abolishes endothelial cell responses to antiangiogenic proteins containing thrombospondin type 1 homology domains by downregulating endothelial CD36 transcription via protein kinase D1 (PKD-1) signaling. We aimed to understand mechanisms by which lysophosphatidic acid-mediated angiogenic signaling is integrated to regulate CD36 transcription and endothelial cell function via a nuclear transcriptional complex. APPROACH AND RESULTS: Microvascular endothelial cells expressing CD36 were used for studying angiogenic signaling and CD36 transcription. Gene transfection and transduction, RT-qPCR, avidin-biotin-conjugated DNA-binding assay, chromatin immunoprecipitation assay, co-immunoprecipitation, proximal ligation assay, and immunofluorescence microscopy showed that lysophosphatidic acid-mediated CD36 transcriptional repression involved PKD-1 signaling mediated formation of forkhead box protein O1-histone deacetylase 7 complex in the nucleus. Unexpectedly, turning off CD36 transcription initiated reprogramming microvascular endothelial cells to express ephrin B2, a critical molecular signature involved in angiogenesis and arteriogenesis. Spheroid-based angiogenesis and in vivo Matrigel angiogenesis assays indicated that angiogenic branching morphogenesis and in vivo angiogenesis were dependent on PKD-1 signaling. A mouse tumor angiogenesis model revealed enhanced PKD-1 signaling and expression of ephrin B2 and smooth muscle actin in neovessels of Lewis Lung Carcinomas, along with low-CD36 expression or CD36 deficiency. CONCLUSIONS: Lysophosphatidic acid/PKD-1 signaling leads to nuclear accumulation of histone deacetylase 7, where it interacts with forkhead box protein O1 to suppress endothelial CD36 transcription and mediates silencing of antiangiogenic switch, resulting in proangiogenic and proarteriogenic reprogramming. Targeting this signaling cascade could be a novel approach for ischemic cardiovascular disease and cancer.


Asunto(s)
Antígenos CD36/metabolismo , Reprogramación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Lisofosfolípidos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Proteína Quinasa C/metabolismo , Transcripción Genética/efectos de los fármacos , Animales , Antígenos CD36/genética , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Núcleo Celular/enzimología , Células Cultivadas , Regulación hacia Abajo , Células Endoteliales/enzimología , Efrina-B2/metabolismo , Proteína Forkhead Box O1/genética , Histona Desacetilasas/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Ratones , Neovascularización Patológica , Proteína Quinasa C/genética , Interferencia de ARN , Transfección
8.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G548-60, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27514475

RESUMEN

Pancreatitis is an inflammatory disease of the pancreas characterized by dysregulated activity of digestive enzymes, necrosis, immune infiltration, and pain. Repeated incidence of pancreatitis is an important risk factor for pancreatic cancer. Legumain, a lysosomal cysteine protease, has been linked to inflammatory diseases such as atherosclerosis, stroke, and cancer. Until now, legumain activation has not been studied during pancreatitis. We used a fluorescently quenched activity-based probe to assess legumain activation during caerulein-induced pancreatitis in mice. We detected activated legumain by ex vivo imaging, confocal microscopy, and gel electrophoresis. Compared with healthy controls, legumain activity in the pancreas of caerulein-treated mice was increased in a time-dependent manner. Legumain was localized to CD68(+) macrophages and was not active in pancreatic acinar cells. Using a small-molecule inhibitor of legumain, we found that this protease is not essential for the initiation of pancreatitis. However, it may serve as a biomarker of disease, since patients with chronic pancreatitis show strongly increased legumain expression in macrophages. Moreover, the occurrence of legumain-expressing macrophages in regions of acinar-to-ductal metaplasia suggests that this protease may influence reprogramming events that lead to inflammation-induced pancreatic cancer.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Macrófagos/enzimología , Pancreatitis/enzimología , Animales , Ceruletida/toxicidad , Cisteína Endopeptidasas/genética , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pancreatitis/inducido químicamente
9.
Gastroenterology ; 148(5): 1024-1034.e9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25623042

RESUMEN

BACKGROUND & AIMS: Oncogenic mutations in KRAS contribute to the development of pancreatic ductal adenocarcinoma, but are not sufficient to initiate carcinogenesis. Secondary events, such as inflammation-induced signaling via the epidermal growth factor receptor (EGFR) and expression of the SOX9 gene, are required for tumor formation. Herein we sought to identify the mechanisms that link EGFR signaling with activation of SOX9 during acinar-ductal metaplasia, a transdifferentiation process that precedes pancreatic carcinogenesis. METHODS: We analyzed pancreatic tissues from Kras(G12D);pdx1-Cre and Kras(G12D);NFATc1(Δ/Δ);pdx1-Cre mice after intraperitoneal administration of caerulein, vs cyclosporin A or dimethyl sulfoxide (controls). Induction of EGFR signaling and its effects on the expression of Nuclear factor of activated T cells c1 (NFATc1) or SOX9 were investigated by quantitative reverse-transcription polymerase chain reaction, immunoblot, and immunohistochemical analyses of mouse and human tissues and acinar cell explants. Interactions between NFATc1 and partner proteins and effects on DNA binding or chromatin modifications were studied using co-immunoprecipitation and chromatin immunoprecipitation assays in acinar cell explants and mouse tissue. RESULTS: EGFR activation induced expression of NFATc1 in metaplastic areas from patients with chronic pancreatitis and in pancreatic tissue from Kras(G12D) mice. EGFR signaling also promoted formation of a complex between NFATc1 and C-JUN in dedifferentiating mouse acinar cells, leading to activation of Sox9 transcription and induction of acinar-ductal metaplasia. Pharmacologic inhibition of NFATc1 or disruption of the Nfatc1 gene inhibited EGFR-mediated induction of Sox9 transcription and blocked acinar-ductal transdifferentiation and pancreatic cancer initiation in mice. CONCLUSIONS: EGFR signaling induces expression of NFATc1 and Sox9, leading to acinar cell transdifferentiation and initiation of pancreatic cancer. Strategies designed to disrupt this pathway might be developed to prevent pancreatic cancer initiation in high-risk patients with chronic pancreatitis.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Transdiferenciación Celular , Receptores ErbB/metabolismo , Factores de Transcripción NFATC/metabolismo , Páncreas Exocrino/metabolismo , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatitis/metabolismo , Lesiones Precancerosas/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Animales , Carcinoma Ductal Pancreático/inducido químicamente , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Ceruletida , Ciclosporina , Modelos Animales de Enfermedad , Receptores ErbB/genética , Regulación de la Expresión Génica , Humanos , Masculino , Metaplasia , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Factores de Transcripción NFATC/deficiencia , Factores de Transcripción NFATC/genética , Páncreas Exocrino/patología , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/inducido químicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/patología , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor de Transcripción SOX9/genética , Técnicas de Cultivo de Tejidos , Activación Transcripcional
10.
Cell Mol Life Sci ; 72(22): 4369-82, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26253275

RESUMEN

The protein kinase D (PKD) family members, PKD1, PKD2 and PKD3 constitute a family of serine/threonine kinases that are essential regulators of cell migration, proliferation and protein transport. Multiple types of cancers are characterized by aberrant expression of PKD isoforms. In breast cancer PKD isoforms exhibit distinct expression patterns and regulate various oncogenic processes. In highly invasive breast cancer, the leading cause of cancer-associated deaths in females, the loss of PKD1 is thought to promote invasion and metastasis, while PKD2 and upregulated PKD3 have been shown to be positive regulators of proliferation, chemoresistance and metastasis. In this review, we examine the differential expression pattern, mechanisms of regulation and contributions made by each PKD isoform to the development and maintenance of invasive breast cancer. In addition, we discuss the potential therapeutic approaches for targeting PKD in this disease.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Modelos Biológicos , Invasividad Neoplásica
11.
J Biol Chem ; 288(1): 455-65, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23148218

RESUMEN

Neuregulin (NRG; heregulin) is overexpressed in ∼30% of breast cancers and mediates various processes involved in tumor progression, including tumor cell migration and invasion. Here, we show that NRG mediates its effects on tumor cell migration via PKD1. Downstream of RhoA, PKD1 can prevent directed cell migration through phosphorylation of its substrate SSH1L. NRG exerts its inhibitory effects on PKD1 through Rac1/NADPH oxidase, leading to decreased PKD1 activation loop phosphorylation and decreased activity toward SSH1L. The consequence of PKD1 inhibition by NRG is decreased binding of 14-3-3 to SSH1L, localization of SSH1L to F-actin at the leading edge, and increased cofilin activity, resulting in increased reorganization of the actin cytoskeleton and cell motility. Our data provide a mechanism through which the Rho GTPase Rac1 cross-talks with PKD1 signaling pathways to facilitate directed cell migration.


Asunto(s)
Actinas/metabolismo , Neurregulina-1/metabolismo , Proteína Quinasa C/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Movimiento Celular , Quimiotaxis , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Microscopía Fluorescente/métodos , Invasividad Neoplásica , Metástasis de la Neoplasia , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Cicatrización de Heridas
12.
J Biol Chem ; 288(9): 6640-50, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23335514

RESUMEN

Syx is a Rho-specific guanine nucleotide exchange factor (GEF) that localizes at cell-cell junctions and promotes junction stability by activating RhoA and the downstream effector Diaphanous homolog 1 (Dia1). Previously, we identified several molecules, including 14-3-3 proteins, as Syx-interacting partners. In the present study, we show that 14-3-3 isoforms interact with Syx at both its N- and C-terminal regions in a phosphorylation-dependent manner. We identify the protein kinase D-mediated phosphorylation of serine 92 on Syx, and additional phosphorylation at serine 938, as critical sites for 14-3-3 association. Our data indicate that the binding of 14-3-3 proteins inhibits the GEF activity of Syx. Furthermore, we show that phosphorylation-deficient, 14-3-3-uncoupled Syx exhibits increased junctional targeting and increased GEF activity, resulting in the strengthening of the circumferential junctional actin ring in Madin-Darby canine kidney cells. These findings reveal a novel means of regulating junctional Syx localization and function by phosphorylation-induced 14-3-3 binding and further support the importance of Syx function in maintaining stable cell-cell contacts.


Asunto(s)
Proteínas 14-3-3/metabolismo , Comunicación Celular/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas 14-3-3/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Perros , Forminas , Factores de Intercambio de Guanina Nucleótido/genética , Células HeLa , Humanos , Ratones , Fosforilación/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología
13.
J Biol Chem ; 288(34): 24382-93, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23846685

RESUMEN

Enabled/Vasodilator-stimulated phosphoprotein (Ena/VASP) protein family members link actin dynamics and cellular signaling pathways. VASP localizes to regions of dynamic actin reorganization such as the focal adhesion contacts, the leading edge or filopodia, where it contributes to F-actin filament elongation. Here we identify VASP as a novel substrate for protein kinase D1 (PKD1). We show that PKD1 directly phosphorylates VASP at two serine residues, Ser-157 and Ser-322. These phosphorylations occur in response to RhoA activation and mediate VASP re-localization from focal contacts to the leading edge region. The net result of this PKD1-mediated phosphorylation switch in VASP is increased filopodia formation and length at the leading edge. However, such signaling when persistent induced membrane ruffling and decreased cell motility.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/fisiología , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal/fisiología , Actinas/genética , Actinas/metabolismo , Moléculas de Adhesión Celular/genética , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Células HeLa , Humanos , Proteínas de Microfilamentos/genética , Fosfoproteínas/genética , Fosforilación/fisiología , Proteína Quinasa C/genética , Transporte de Proteínas/fisiología , Seudópodos/genética , Seudópodos/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
14.
J Cell Sci ; 125(Pt 18): 4253-63, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22718346

RESUMEN

The Forkhead transcription factor, FoxO3a, is a known suppressor of primary tumor growth through transcriptional regulation of key genes regulating cell cycle arrest and apoptosis. In many types of cancer, in response to growth factor signaling, FoxO3a is phosphorylated by Akt, resulting in its exclusion from the nucleus. Here we show that FoxO3a remains nuclear in anaplastic thyroid carcinoma (ATC). This correlates with lack of Akt phosphorylation at serine473 in ATC cell lines and tissues of ATC patients, providing a potential explanation for nuclear FoxO3a. Mechanistically, nuclear FoxO3a promotes cell cycle progression by transcriptional upregulation of cyclin A1, promoting proliferation of human ATC cells. Silencing FoxO3a with a reverse genetics approach leads to downregulation of CCNA1 mRNA and protein. These combined data suggest an entirely novel function for FoxO3a in ATC promotion by enhancing cell cycle progression and tumor growth through transcriptional upregulation of cyclin A1. This is clinically relevant since we detected highly elevated CCNA1 mRNA and protein levels in tumor tissues of ATC patients. Our data indicate therapeutic inactivation of FoxO3a may lead to attenuation of tumor expansion in ATC. This new paradigm also suggests caution in relation to current dogma focused upon reactivation of FoxO3a as a therapeutic strategy against cancers harboring active PI3-K and Akt signaling pathways.


Asunto(s)
Ciclina A1/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Transcripción Genética , Secuencia de Bases , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Ciclina A1/metabolismo , Proteína Forkhead Box O3 , Silenciador del Gen , Células HEK293 , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides/enzimología , Neoplasias de la Tiroides/terapia
15.
Breast Cancer Res Treat ; 144(1): 79-91, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24510012

RESUMEN

The treatment of patients with invasive breast cancer remains a major issue because of the acquisition of drug resistance to conventional chemotherapy. Here we propose a new therapeutic strategy by combining DNA methyltransferase inhibitors (DMTIs) with suramin. Cytotoxic effects of suramin or combination treatment with DMTIs were determined in highly invasive breast cancer cell lines MDA-MB-231, BT-20 and HCC1954, or control cells. In addition, effects on cell invasion were determined in 3-dimensional cell culture assays. DMTI-mediated upregulation of Protein Kinase D1 (PKD1) expression was shown by Western blotting. Effects of suramin on PKD1 activity was determined in vitro and in cells. The importance of PKD1 in mediating the effects of such combination treatment in cell invasion was demonstrated using 3D cell culture assays. A proof of principal animal experiment was performed showing that PKD1 is critical for breast cancer growth. We show that when used in combination, suramin and DMTIs impair the invasive phenotype of breast cancer cells. We show that PKD1, a kinase that previously has been described as a suppressor of tumor cell invasion, is an interface for both FDA-approved drugs, since the additive effects observed are due to DMTI-mediated re-expression and suramin-induced activation of PKD1. Our data reveal a mechanism of how a combination treatment with non-toxic doses of suramin and DMTIs may be of therapeutic benefit for patients with aggressive, multi-drug resistant breast cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Animales , Azacitidina/administración & dosificación , Azacitidina/análogos & derivados , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Decitabina , Femenino , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Ratones , Ratones Desnudos , Invasividad Neoplásica/patología , Ftalimidas/administración & dosificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Suramina/administración & dosificación , Triptófano/administración & dosificación , Triptófano/análogos & derivados , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Biochem J ; 455(2): 251-60, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23841590

RESUMEN

PAKs (p21-activated kinases) are effectors of RhoGTPases. PAK4 contributes to regulation of cofilin at the leading edge of migrating cells through activation of LIMK (Lin-11/Isl-1/Mec-3 kinase). PAK4 activity is regulated by an autoinhibitory domain that is released upon RhoGTPase binding as well as phosphorylation at Ser474 in the activation loop of the kinase domain. In the present study, we add another level of complexity to PAK4 regulation by showing that phosphorylation at Ser99 is required for its targeting to the leading edge. This phosphorylation is mediated by PKD1 (protein kinase D1). Phosphorylation of PAK4 at Ser99 also mediates binding to 14-3-3 protein, and is required for the formation of a PAK4-LIMK-PKD1 complex that regulates cofilin activity and directed cell migration.


Asunto(s)
Proteína Quinasa C/metabolismo , Serina/genética , Quinasas p21 Activadas/análisis , Quinasas p21 Activadas/metabolismo , Proteínas 14-3-3/metabolismo , Movimiento Celular , Células HEK293 , Células HeLa , Humanos , Fosforilación , Serina/metabolismo , Transducción de Señal , Transfección
17.
Cancer Res ; 84(14): 2225-2226, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005051

RESUMEN

Pancreatic cancer is usually detected at a late stage, when tumors have already metastasized; therefore, it has a poor prognosis with a 5-year survival rate of 11% to 12%. A key to targeting this high mortality is to develop methods for detecting the disease at a stage in which it is still local to the pancreas. However, this needs a better understanding of the events that govern pancreatic cancer oncogenesis. In this issue of Cancer Research, Neuß and colleagues report metabolic changes associated with acinar-to-ductal metaplasia (ADM), an initiating event that leads to the formation of precursor lesions for pancreatic ductal adenocarcinoma (PDAC). Their findings reveal a switch to aerobic glycolysis, increased c-MYC signaling, and increased serine metabolism as driving factors for the ADM process. These findings are important as they demonstrate that metabolic changes that drive the proliferation and metastasis of full-blown PDAC begin in the earliest lesions. The data not only provide insights into how PDAC develops but also a potential explanation for previously described findings, such as circulating lesion cells can be detected even when no carcinoma in situ is present. In summary, this article is highly relevant for furthering our understanding of how metabolic reprogramming drives the earliest events leading to PDAC development and could lay the groundwork for developing methods for early detection or intervention. See related article by Neuß et al., p. 2297.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Animales
18.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119646, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38061566

RESUMEN

Members of the Protein kinase D (PKD) kinase family each play important cell-specific roles in the regulation of normal pancreas functions. In pancreatic diseases PKD1 is the most widely characterized isoform with roles in pancreatitis and in induction of pancreatic cancer and its progression. PKD1 expression and activation increases in pancreatic acinar cells through macrophage secreted factors, Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling, and reactive oxygen species (ROS), driving the formation of precancerous lesions. In precancerous lesions PKD1 regulates cell survival, growth, senescence, and generation of doublecortin like kinase 1 (DCLK1)-positive cancer stem cells (CSCs). Within tumors, regulation by PKD1 includes chemoresistance, apoptosis, proliferation, CSC features, and the Warburg effect. Thus, PKD1 plays a critical role throughout pancreatic disease initiation and progression.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Lesiones Precancerosas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pancreatitis/metabolismo , Pancreatitis/patología , Proteínas Quinasas , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Quinasas Similares a Doblecortina
19.
Front Immunol ; 15: 1278807, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576613

RESUMEN

Pancreatic inflammation is a risk factor for the development of pancreatic cancer. Increased presence of inflammatory macrophages can be found in response to a KRAS mutation in acinar cells or in response to experimentally-induced pancreatitis. Inflammatory macrophages induce pancreatic acinar cells to undergo dedifferentiation to a duct-like progenitor stage, a process called acinar-to-ductal metaplasia (ADM). Occurrence of ADM lesions are believed to be the initiating event in tumorigenesis. Here we will discuss how macrophage-induced oxidative stress contributes to ADM and how ADM cells shape the fibrotic stroma needed for further progression.


Asunto(s)
Neoplasias Pancreáticas , Pancreatitis , Humanos , Especies Reactivas de Oxígeno , Transducción de Señal/genética , Neoplasias Pancreáticas/patología , Pancreatitis/patología , Macrófagos/patología
20.
J Biol Chem ; 287(39): 32367-80, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22791710

RESUMEN

We here identify protein kinase D1 (PKD1) as a major regulator of anchorage-dependent and -independent growth of cancer cells controlled via the transcription factor Snail1. Using FRET, we demonstrate that PKD1, but not PKD2, efficiently interacts with Snail1 in nuclei. PKD1 phosphorylates Snail1 at Ser-11. There was no change in the nucleocytoplasmic distribution of Snail1 using wild type Snail1 and Ser-11 phosphosite mutants in different tumor cells. Regardless of its phosphorylation status or following co-expression of constitutively active PKD, Snail1 was predominantly localized to cell nuclei. We also identify a novel mechanism of PKD1-mediated regulation of Snail1 transcriptional activity in tumor cells. The interaction of the co-repressors histone deacetylases 1 and 2 as well as lysyl oxidase-like protein 3 with Snail1 was impaired when Snail1 was not phosphorylated at Ser-11, which led to reduced Snail1-associated histone deacetylase activity. Additionally, lysyl oxidase-like protein 3 expression was up-regulated by ectopic PKD1 expression, implying a synergistic regulation of Snail1-driven transcription. Ectopic expression of PKD1 also up-regulated proliferation markers such as Cyclin D1 and Ajuba. Accordingly, Snail1 and its phosphorylation at Ser-11 were required and sufficient to control PKD1-mediated anchorage-independent growth and anchorage-dependent proliferation of different tumor cells. In conclusion, our data show that PKD1 is crucial to support growth of tumor cells via Snail1.


Asunto(s)
Núcleo Celular/metabolismo , Proliferación Celular , Neoplasias/metabolismo , Proteína Quinasa C/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Transporte Activo de Núcleo Celular/genética , Aminoácido Oxidorreductasas , Núcleo Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Neoplasias/genética , Proteína Quinasa C/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA