Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neuropathol Appl Neurobiol ; 50(3): e12981, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38738494

RESUMEN

The convergence of digital pathology and artificial intelligence could assist histopathology image analysis by providing tools for rapid, automated morphological analysis. This systematic review explores the use of artificial intelligence for histopathological image analysis of digitised central nervous system (CNS) tumour slides. Comprehensive searches were conducted across EMBASE, Medline and the Cochrane Library up to June 2023 using relevant keywords. Sixty-eight suitable studies were identified and qualitatively analysed. The risk of bias was evaluated using the Prediction model Risk of Bias Assessment Tool (PROBAST) criteria. All the studies were retrospective and preclinical. Gliomas were the most frequently analysed tumour type. The majority of studies used convolutional neural networks or support vector machines, and the most common goal of the model was for tumour classification and/or grading from haematoxylin and eosin-stained slides. The majority of studies were conducted when legacy World Health Organisation (WHO) classifications were in place, which at the time relied predominantly on histological (morphological) features but have since been superseded by molecular advances. Overall, there was a high risk of bias in all studies analysed. Persistent issues included inadequate transparency in reporting the number of patients and/or images within the model development and testing cohorts, absence of external validation, and insufficient recognition of batch effects in multi-institutional datasets. Based on these findings, we outline practical recommendations for future work including a framework for clinical implementation, in particular, better informing the artificial intelligence community of the needs of the neuropathologist.


Asunto(s)
Inteligencia Artificial , Neoplasias del Sistema Nervioso Central , Humanos , Neoplasias del Sistema Nervioso Central/patología , Procesamiento de Imagen Asistido por Computador/métodos
2.
Br J Surg ; 111(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37951600

RESUMEN

BACKGROUND: There is a need to standardize training in robotic surgery, including objective assessment for accreditation. This systematic review aimed to identify objective tools for technical skills assessment, providing evaluation statuses to guide research and inform implementation into training curricula. METHODS: A systematic literature search was conducted in accordance with the PRISMA guidelines. Ovid Embase/Medline, PubMed and Web of Science were searched. Inclusion criterion: robotic surgery technical skills tools. Exclusion criteria: non-technical, laparoscopy or open skills only. Manual tools and automated performance metrics (APMs) were analysed using Messick's concept of validity and the Oxford Centre of Evidence-Based Medicine (OCEBM) Levels of Evidence and Recommendation (LoR). A bespoke tool analysed artificial intelligence (AI) studies. The Modified Downs-Black checklist was used to assess risk of bias. RESULTS: Two hundred and forty-seven studies were analysed, identifying: 8 global rating scales, 26 procedure-/task-specific tools, 3 main error-based methods, 10 simulators, 28 studies analysing APMs and 53 AI studies. Global Evaluative Assessment of Robotic Skills and the da Vinci Skills Simulator were the most evaluated tools at LoR 1 (OCEBM). Three procedure-specific tools, 3 error-based methods and 1 non-simulator APMs reached LoR 2. AI models estimated outcomes (skill or clinical), demonstrating superior accuracy rates in the laboratory with 60 per cent of methods reporting accuracies over 90 per cent, compared to real surgery ranging from 67 to 100 per cent. CONCLUSIONS: Manual and automated assessment tools for robotic surgery are not well validated and require further evaluation before use in accreditation processes.PROSPERO: registration ID CRD42022304901.


BACKGROUND: Robotic surgery is increasingly used worldwide to treat many different diseases. The robot is controlled by a surgeon, which may give them greater precision and better outcomes for patients. However, surgeons' robotic skills should be assessed properly, to make sure patients are safe, to improve feedback and for exam assessments for certification to indicate competency. This should be done by experts, using assessment tools that have been agreed upon and proven to work. AIM: This review's aim was to find and explain which training and examination tools are best for assessing surgeons' robotic skills and to find out what gaps remain requiring future research. METHOD: This review searched for all available studies looking at assessment tools in robotic surgery and summarized their findings using several different methods. FINDINGS AND CONCLUSION: Two hundred and forty-seven studies were looked at, finding many assessment tools. Further research is needed for operation-specific and automatic assessment tools before they should be used in the clinical setting.


Asunto(s)
Laparoscopía , Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Procedimientos Quirúrgicos Robotizados/educación , Inteligencia Artificial , Competencia Clínica , Laparoscopía/educación
3.
Artículo en Inglés | MEDLINE | ID: mdl-38610108

RESUMEN

INTRODUCTION: There is a growing emphasis on proficiency-based progression within surgical training. To enable this, clearly defined metrics for those newly acquired surgical skills are needed. These can be formulated in objective assessment tools. The aim of the present study was to systematically review the literature reporting on available tools for objective assessment of minimally invasive gynecological surgery (simulated) performance and evaluate their reliability and validity. MATERIAL AND METHODS: A systematic search (1989-2022) was conducted in MEDLINE, Embase, PubMed, Web of Science in accordance with PRISMA. The trial was registered with the Prospective Register of Systematic Reviews (PROSPERO) ID: CRD42022376552. Randomized controlled trials, prospective comparative studies, prospective single-group (with pre- and post-training assessment) or consensus studies that reported on the development, validation or usage of assessment tools of surgical performance in minimally invasive gynecological surgery, were included. Three independent assessors assessed study setting and validity evidence according to a contemporary framework of validity, which was adapted from Messick's validity framework. Methodological quality of included studies was assessed using the modified medical education research study quality instrument (MERSQI) checklist. Heterogeneity in data reporting on types of tools, data collection, study design, definition of expertise (novice vs. experts) and statistical values prevented a meaningful meta-analysis. RESULTS: A total of 19 746 titles and abstracts were screened of which 72 articles met the inclusion criteria. A total of 37 different assessment tools were identified of which 13 represented manual global assessment tools, 13 manual procedure-specific assessment tools and 11 automated performance metrices. Only two tools showed substantive evidence of validity. Reliability and validity per tool were provided. No assessment tools showed direct correlation between tool scores and patient related outcomes. CONCLUSIONS: Existing objective assessment tools lack evidence on predicting patient outcomes and suffer from limitations in transferability outside of the research environment, particularly for automated performance metrics. Future research should prioritize filling these gaps while integrating advanced technologies like kinematic data and AI for robust, objective surgical skill assessment within gynecological advanced surgical training programs.

4.
Br J Surg ; 110(11): 1535-1542, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37611141

RESUMEN

BACKGROUND: Surgical errors are acts or omissions resulting in negative consequences and/or increased operating time. This study describes surgeon-reported errors in laparoscopic cholecystectomy. METHODS: Intraoperative videos were uploaded and annotated on Touch SurgeryTM Enterprise. Participants evaluated videos for severity using a 10-point intraoperative cholecystitis grading score, and errors using Observational Clinical Human Reliability Assessment, which includes skill, consequence, and mechanism classifications. RESULTS: Nine videos were assessed by 8 participants (3 junior (specialist trainee (ST) 3-5), 2 senior trainees (ST6-8), and 3 consultants). Participants identified 550 errors. Positive relationships were seen between total operating time and error count (r2 = 0.284, P < 0.001), intraoperative grade score and error count (r2 = 0.578, P = 0.001), and intraoperative grade score and total operating time (r2 = 0.157, P < 0.001). Error counts differed significantly across intraoperative phases (H(6) = 47.06, P < 0.001), most frequently at dissection of the hepatocystic triangle (total 282; median 33.5 (i.q.r. 23.5-47.8, range 15-63)), ligation/division of cystic structures (total 124; median 13.5 (i.q.r. 12-19.3, range 10-26)), and gallbladder dissection (total 117; median 14.5 (i.q.r. 10.3-18.8, range 6-26)). There were no significant differences in error counts between juniors, seniors, and consultants (H(2) = 0.03, P = 0.987). Errors were classified differently. For dissection of the hepatocystic triangle, thermal injuries (50 in total) were frequently classified as executional, consequential errors; trainees classified thermal injuries as step done with excessive force, speed, depth, distance, time or rotation (29 out of 50), whereas consultants classified them as incorrect orientation (6 out of 50). For ligation/division of cystic structures, inappropriate clipping (60 errors in total), procedural errors were reported by junior trainees (6 out of 60), but not consultants. For gallbladder dissection, inappropriate dissection (20 errors in total) was reported in incorrect planes by consultants and seniors (6 out of 20), but not by juniors. Poor economy of movement (11 errors in total) was reported more by consultants (8 out of 11) than trainees (3 out of 11). CONCLUSION: This study suggests that surgical experience influences error interpretation, but the benefits for surgical training are currently unclear.


Asunto(s)
Colecistectomía Laparoscópica , Humanos , Colecistectomía Laparoscópica/métodos , Disección , Vesícula Biliar , Ligadura , Reproducibilidad de los Resultados
5.
Gastrointest Endosc ; 97(4): 646-654, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36460087

RESUMEN

BACKGROUND AND AIMS: We aimed to develop a computer-aided characterization system that could support the diagnosis of dysplasia in Barrett's esophagus (BE) on magnification endoscopy. METHODS: Videos were collected in high-definition magnification white-light and virtual chromoendoscopy with i-scan (Pentax Hoya, Japan) imaging in patients with dysplastic and nondysplastic BE (NDBE) from 4 centers. We trained a neural network with a Resnet101 architecture to classify frames as dysplastic or nondysplastic. The network was tested on 3 different scenarios: high-quality still images, all available video frames, and a selected sequence within each video. RESULTS: Fifty-seven patients, each with videos of magnification areas of BE (34 dysplasia, 23 NDBE), were included. Performance was evaluated by a leave-1-patient-out cross-validation method. In all, 60,174 (39,347 dysplasia, 20,827 NDBE) magnification video frames were used to train the network. The testing set included 49,726 i-scan-3/optical enhancement magnification frames. On 350 high-quality still images, the network achieved a sensitivity of 94%, specificity of 86%, and area under the receiver operator curve (AUROC) of 96%. On all 49,726 available video frames, the network achieved a sensitivity of 92%, specificity of 82%, and AUROC of 95%. On a selected sequence of frames per case (total of 11,471 frames), we used an exponentially weighted moving average of classifications on consecutive frames to characterize dysplasia. The network achieved a sensitivity of 92%, specificity of 84%, and AUROC of 96%. The mean assessment speed per frame was 0.0135 seconds (SD ± 0.006). CONCLUSION: Our network can characterize BE dysplasia with high accuracy and speed on high-quality magnification images and sequence of video frames, moving it toward real-time automated diagnosis.


Asunto(s)
Esófago de Barrett , Neoplasias Esofágicas , Humanos , Esófago de Barrett/diagnóstico , Neoplasias Esofágicas/diagnóstico por imagen , Esofagoscopía/métodos , Hiperplasia , Computadores
6.
J Gastroenterol Hepatol ; 38(5): 768-774, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36652526

RESUMEN

BACKGROUND AND AIM: Lack of visual recognition of colorectal polyps may lead to interval cancers. The mechanisms contributing to perceptual variation, particularly for subtle and advanced colorectal neoplasia, have scarcely been investigated. We aimed to evaluate visual recognition errors and provide novel mechanistic insights. METHODS: Eleven participants (seven trainees and four medical students) evaluated images from the UCL polyp perception dataset, containing 25 polyps, using eye-tracking equipment. Gaze errors were defined as those where the lesion was not observed according to eye-tracking technology. Cognitive errors occurred when lesions were observed but not recognized as polyps by participants. A video study was also performed including 39 subtle polyps, where polyp recognition performance was compared with a convolutional neural network. RESULTS: Cognitive errors occurred more frequently than gaze errors overall (65.6%), with a significantly higher proportion in trainees (P = 0.0264). In the video validation, the convolutional neural network detected significantly more polyps than trainees and medical students, with per-polyp sensitivities of 79.5%, 30.0%, and 15.4%, respectively. CONCLUSIONS: Cognitive errors were the most common reason for visual recognition errors. The impact of interventions such as artificial intelligence, particularly on different types of perceptual errors, needs further investigation including potential effects on learning curves. To facilitate future research, a publicly accessible visual perception colonoscopy polyp database was created.


Asunto(s)
Pólipos del Colon , Neoplasias Colorrectales , Humanos , Pólipos del Colon/diagnóstico , Pólipos del Colon/patología , Tecnología de Seguimiento Ocular , Inteligencia Artificial , Colonoscopía/métodos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/patología
7.
Surg Endosc ; 37(11): 8690-8707, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37516693

RESUMEN

BACKGROUND: Surgery generates a vast amount of data from each procedure. Particularly video data provides significant value for surgical research, clinical outcome assessment, quality control, and education. The data lifecycle is influenced by various factors, including data structure, acquisition, storage, and sharing; data use and exploration, and finally data governance, which encompasses all ethical and legal regulations associated with the data. There is a universal need among stakeholders in surgical data science to establish standardized frameworks that address all aspects of this lifecycle to ensure data quality and purpose. METHODS: Working groups were formed, among 48 representatives from academia and industry, including clinicians, computer scientists and industry representatives. These working groups focused on: Data Use, Data Structure, Data Exploration, and Data Governance. After working group and panel discussions, a modified Delphi process was conducted. RESULTS: The resulting Delphi consensus provides conceptualized and structured recommendations for each domain related to surgical video data. We identified the key stakeholders within the data lifecycle and formulated comprehensive, easily understandable, and widely applicable guidelines for data utilization. Standardization of data structure should encompass format and quality, data sources, documentation, metadata, and account for biases within the data. To foster scientific data exploration, datasets should reflect diversity and remain adaptable to future applications. Data governance must be transparent to all stakeholders, addressing legal and ethical considerations surrounding the data. CONCLUSION: This consensus presents essential recommendations around the generation of standardized and diverse surgical video databanks, accounting for multiple stakeholders involved in data generation and use throughout its lifecycle. Following the SAGES annotation framework, we lay the foundation for standardization of data use, structure, and exploration. A detailed exploration of requirements for adequate data governance will follow.


Asunto(s)
Inteligencia Artificial , Mejoramiento de la Calidad , Humanos , Consenso , Recolección de Datos
8.
Dig Endosc ; 35(5): 645-655, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36527309

RESUMEN

OBJECTIVES: Convolutional neural networks (CNN) for computer-aided diagnosis of polyps are often trained using high-quality still images in a single chromoendoscopy imaging modality with sessile serrated lesions (SSLs) often excluded. This study developed a CNN from videos to classify polyps as adenomatous or nonadenomatous using standard narrow-band imaging (NBI) and NBI-near focus (NBI-NF) and created a publicly accessible polyp video database. METHODS: We trained a CNN with 16,832 high and moderate quality frames from 229 polyp videos (56 SSLs). It was evaluated with 222 polyp videos (36 SSLs) across two test-sets. Test-set I consists of 14,320 frames (157 polyps, 111 diminutive). Test-set II, which is publicly accessible, 3317 video frames (65 polyps, 41 diminutive), which was benchmarked with three expert and three nonexpert endoscopists. RESULTS: Sensitivity for adenoma characterization was 91.6% in test-set I and 89.7% in test-set II. Specificity was 91.9% and 88.5%. Sensitivity for diminutive polyps was 89.9% and 87.5%; specificity 90.5% and 88.2%. In NBI-NF, sensitivity was 89.4% and 89.5%, with a specificity of 94.7% and 83.3%. In NBI, sensitivity was 85.3% and 91.7%, with a specificity of 87.5% and 90.0%, respectively. The CNN achieved preservation and incorporation of valuable endoscopic innovations (PIVI)-1 and PIVI-2 thresholds for each test-set. In the benchmarking of test-set II, the CNN was significantly more accurate than nonexperts (13.8% difference [95% confidence interval 3.2-23.6], P = 0.01) with no significant difference with experts. CONCLUSIONS: A single CNN can differentiate adenomas from SSLs and hyperplastic polyps in both NBI and NBI-NF. A publicly accessible NBI polyp video database was created and benchmarked.


Asunto(s)
Adenoma , Pólipos del Colon , Neoplasias Colorrectales , Aprendizaje Profundo , Humanos , Pólipos del Colon/diagnóstico por imagen , Pólipos del Colon/patología , Colonoscopía/métodos , Neoplasias Colorrectales/patología , Adenoma/diagnóstico por imagen , Adenoma/patología , Imagen de Banda Estrecha/métodos
9.
Sensors (Basel) ; 23(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37960645

RESUMEN

Microsurgery serves as the foundation for numerous operative procedures. Given its highly technical nature, the assessment of surgical skill becomes an essential component of clinical practice and microsurgery education. The interaction forces between surgical tools and tissues play a pivotal role in surgical success, making them a valuable indicator of surgical skill. In this study, we employ six distinct deep learning architectures (LSTM, GRU, Bi-LSTM, CLDNN, TCN, Transformer) specifically designed for the classification of surgical skill levels. We use force data obtained from a novel sensorized surgical glove utilized during a microsurgical task. To enhance the performance of our models, we propose six data augmentation techniques. The proposed frameworks are accompanied by a comprehensive analysis, both quantitative and qualitative, including experiments conducted with two cross-validation schemes and interpretable visualizations of the network's decision-making process. Our experimental results show that CLDNN and TCN are the top-performing models, achieving impressive accuracy rates of 96.16% and 97.45%, respectively. This not only underscores the effectiveness of our proposed architectures, but also serves as compelling evidence that the force data obtained through the sensorized surgical glove contains valuable information regarding surgical skill.


Asunto(s)
Aprendizaje Profundo , Microcirugia , Microcirugia/educación , Microcirugia/métodos , Competencia Clínica , Guantes Quirúrgicos
10.
Surg Innov ; 30(1): 45-49, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36377296

RESUMEN

BACKGROUND: Fluorescence angiography in colorectal surgery is a technique that may lead to lower anastomotic leak rates. However, the interpretation of the fluorescent signal is not standardised and there is a paucity of data regarding interobserver agreement. The aim of this study is to assess interobserver variability in selection of the transection point during fluorescence angiography before anastomosis. METHODS: An online survey with still images of fluorescence angiography was distributed through colorectal surgery channels containing images from 13 patients where several areas for transection were displayed to be chosen by raters. Agreement was assessed overall and between pre-planned rater cohorts (experts vs non-experts; trainees vs consultants; colorectal specialists vs non colorectal specialists), using Fleiss' kappa statistic. RESULTS: 101 raters had complete image ratings. No significant difference was found between raters when choosing a point of optimal bowel transection based on fluorescence angiography still images. There was no difference between pre-planned cohorts analysed (experts vs non-experts; trainees vs consultants; colorectal specialists vs non colorectal specialists). Agreement between these cohorts was poor (<.26). CONCLUSION: Whilst there is no learning curve for the technical adoption of FA, understanding the fluorescent signal characteristics is key to successful use. We found significant variation exists in interpretation of static fluorescence angiography data. Further efforts should be employed to standardise fluorescence angiography assessment.


Asunto(s)
Neoplasias Colorrectales , Humanos , Angiografía con Fluoresceína/métodos , Variaciones Dependientes del Observador , Neoplasias Colorrectales/cirugía , Verde de Indocianina , Anastomosis Quirúrgica/métodos , Fuga Anastomótica , Colorantes
11.
Dig Endosc ; 34(4): 862-869, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34748665

RESUMEN

OBJECTIVES: There is uncertainty regarding the efficacy of artificial intelligence (AI) software to detect advanced subtle neoplasia, particularly flat lesions and sessile serrated lesions (SSLs), due to low prevalence in testing datasets and prospective trials. This has been highlighted as a top research priority for the field. METHODS: An AI algorithm was evaluated on four video test datasets containing 173 polyps (35,114 polyp-positive frames and 634,988 polyp-negative frames) specifically enriched with flat lesions and SSLs, including a challenging dataset containing subtle advanced neoplasia. The challenging dataset was also evaluated by eight endoscopists (four independent, four trainees, according to the Joint Advisory Group on gastrointestinal endoscopy [JAG] standards in the UK). RESULTS: In the first two video datasets, the algorithm achieved per-polyp sensitivities of 100% and 98.9%. Per-frame sensitivities were 84.1% and 85.2%. In the subtle dataset, the algorithm detected a significantly higher number of polyps (P < 0.0001), compared to JAG-independent and trainee endoscopists, achieving per-polyp sensitivities of 79.5%, 37.2% and 11.5%, respectively. Furthermore, when considering subtle polyps detected by both the algorithm and at least one endoscopist, the AI detected polyps significantly faster on average. CONCLUSIONS: The AI based algorithm achieved high per-polyp sensitivities for advanced colorectal neoplasia, including flat lesions and SSLs, outperforming both JAG independent and trainees on a very challenging dataset containing subtle lesions that could have been overlooked easily and contribute to interval colorectal cancer. Further prospective trials should evaluate AI to detect subtle advanced neoplasia in higher risk populations for colorectal cancer.


Asunto(s)
Pólipos del Colon , Neoplasias Colorrectales , Algoritmos , Inteligencia Artificial , Pólipos del Colon/diagnóstico , Pólipos del Colon/patología , Colonoscopía , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/patología , Humanos
12.
Endoscopy ; 53(9): 893-901, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33167043

RESUMEN

BACKGROUND : Artificial intelligence (AI) research in colonoscopy is progressing rapidly but widespread clinical implementation is not yet a reality. We aimed to identify the top implementation research priorities. METHODS : An established modified Delphi approach for research priority setting was used. Fifteen international experts, including endoscopists and translational computer scientists/engineers, from nine countries participated in an online survey over 9 months. Questions related to AI implementation in colonoscopy were generated as a long-list in the first round, and then scored in two subsequent rounds to identify the top 10 research questions. RESULTS : The top 10 ranked questions were categorized into five themes. Theme 1: clinical trial design/end points (4 questions), related to optimum trial designs for polyp detection and characterization, determining the optimal end points for evaluation of AI, and demonstrating impact on interval cancer rates. Theme 2: technological developments (3 questions), including improving detection of more challenging and advanced lesions, reduction of false-positive rates, and minimizing latency. Theme 3: clinical adoption/integration (1 question), concerning the effective combination of detection and characterization into one workflow. Theme 4: data access/annotation (1 question), concerning more efficient or automated data annotation methods to reduce the burden on human experts. Theme 5: regulatory approval (1 question), related to making regulatory approval processes more efficient. CONCLUSIONS : This is the first reported international research priority setting exercise for AI in colonoscopy. The study findings should be used as a framework to guide future research with key stakeholders to accelerate the clinical implementation of AI in endoscopy.


Asunto(s)
Inteligencia Artificial , Colonoscopía , Técnica Delphi , Humanos
13.
World J Urol ; 39(8): 2883-2893, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33156361

RESUMEN

INTRODUCTION: Robot-assisted surgery is becoming increasingly adopted by multiple surgical specialties. There is evidence of inherent risks of utilising new technologies that are unfamiliar early in the learning curve. The development of standardised and validated training programmes is crucial to deliver safe introduction. In this review, we aim to evaluate the current evidence and opportunities to integrate novel technologies into modern digitalised robotic training curricula. METHODS: A systematic literature review of the current evidence for novel technologies in surgical training was conducted online and relevant publications and information were identified. Evaluation was made on how these technologies could further enable digitalisation of training. RESULTS: Overall, the quality of available studies was found to be low with current available evidence consisting largely of expert opinion, consensus statements and small qualitative studies. The review identified that there are several novel technologies already being utilised in robotic surgery training. There is also a trend towards standardised validated robotic training curricula. Currently, the majority of the validated curricula do not incorporate novel technologies and training is delivered with more traditional methods that includes centralisation of training services with wet laboratories that have access to cadavers and dedicated training robots. CONCLUSIONS: Improvements to training standards and understanding performance data have good potential to significantly lower complications in patients. Digitalisation automates data collection and brings data together for analysis. Machine learning has potential to develop automated performance feedback for trainees. Digitalised training aims to build on the current gold standards and to further improve the 'continuum of training' by integrating PBP training, 3D-printed models, telementoring, telemetry and machine learning.


Asunto(s)
Educación , Cirugía General/educación , Tutoría/tendencias , Procedimientos Quirúrgicos Robotizados/educación , Educación/métodos , Educación/organización & administración , Educación a Distancia/métodos , Humanos , Invenciones/tendencias , Modelos Anatómicos , Seguridad del Paciente , Procedimientos Quirúrgicos Robotizados/normas , Procedimientos Quirúrgicos Robotizados/tendencias , Urología
14.
Prenat Diagn ; 41(2): 271-277, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33103808

RESUMEN

OBJECTIVE: Widely accepted, validated and objective measures of ultrasound competency have not been established for clinical practice. Outcomes of training curricula are often based on arbitrary thresholds, such as the number of clinical cases completed. We aimed to define metrics against which competency could be measured. METHOD: We undertook a prospective, observational study of obstetric sonographers at a UK University Teaching Hospital. Participants were either experienced in fetal ultrasound (n = 10, >200 ultrasound examinations) or novice operators (n = 10, <25 ultrasound examinations). We recorded probe motion data during the performance of biometry on a commercially available mid-trimester phantom. RESULTS: We report that Dimensionless squared jerk, an assessment of deliberate hand movements, independent of movement duration, extent, spurious peaks and dimension differed significantly different between groups, 19.26 (SD 3.02) for experienced and 22.08 (SD 1.05, p = 0.01) for novice operators, respectively. Experienced operator performance, was associated with a shorter time to task completion of 176.46 s (SD 47.31) compared to 666.94 s (SD 490.36, p = 0.0004) for novice operators. Probe travel was also shorter for experienced operators 521.23 mm (SD 27.41) versus 2234.82 mm (SD 188.50, p = 0.007) when compared to novice operators. CONCLUSION: Our results represent progress toward an objective assessment of technical skill in obstetric ultrasound. Repeating this methodology in a clinical environment may develop insight into the generalisability of these findings into ultrasound education.


Asunto(s)
Competencia Clínica , Feto/diagnóstico por imagen , Mano , Movimiento , Ultrasonografía Prenatal/normas , Biometría , Femenino , Feto/anatomía & histología , Humanos , Fantasmas de Imagen , Embarazo
15.
Pituitary ; 24(6): 839-853, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34231079

RESUMEN

PURPOSE: Surgical workflow analysis seeks to systematically break down operations into hierarchal components. It facilitates education, training, and understanding of surgical variations. There are known educational demands and variations in surgical practice in endoscopic transsphenoidal approaches to pituitary adenomas. Through an iterative consensus process, we generated a surgical workflow reflective of contemporary surgical practice. METHODS: A mixed-methods consensus process composed of a literature review and iterative Delphi surveys was carried out within the Pituitary Society. Each round of the survey was repeated until data saturation and > 90% consensus was reached. RESULTS: There was a 100% response rate and no attrition across both Delphi rounds. Eighteen international expert panel members participated. An extensive workflow of 4 phases (nasal, sphenoid, sellar and closure) and 40 steps, with associated technical errors and adverse events, were agreed upon by 100% of panel members across rounds. Both core and case-specific or surgeon-specific variations in operative steps were captured. CONCLUSIONS: Through an international expert panel consensus, a workflow for the performance of endoscopic transsphenoidal pituitary adenoma resection has been generated. This workflow captures a wide range of contemporary operative practice. The agreed "core" steps will serve as a foundation for education, training, assessment and technological development (e.g. models and simulators). The "optional" steps highlight areas of heterogeneity of practice that will benefit from further research (e.g. methods of skull base repair). Further adjustments could be made to increase applicability around the world.


Asunto(s)
Adenoma , Neoplasias Hipofisarias , Adenoma/cirugía , Endoscopía , Humanos , Neoplasias Hipofisarias/cirugía , Estudios Retrospectivos , Hueso Esfenoides , Resultado del Tratamiento , Flujo de Trabajo
16.
Neurosurg Rev ; 44(3): 1273-1285, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32542428

RESUMEN

Compared with endovascular techniques, clipping of ruptured cerebral aneurysms has been shown to associate with increased morbidity in several studies. Despite this, clipping remains the preferred option for many aneurysms. The objective of this study is to describe the reported adverse events of open repair of ruptured cerebral aneurysms and their impact on patient outcome. The PubMed, Embase and Cochrane databases were searched between June 1999 and June 2019 to identify original studies of at least 100 patients undergoing surgical repair of ruptured cerebral aneurysms and in which adverse event rates were reported. Thirty-six studies reporting adverse events in a total of 12,410 operations for repair of ruptured cerebral aneurysms were included. Surgical adverse events were common with 36 event types reported including intraoperative rupture (median rate of 16.6%), arterial injury (median rate of 3.8%) and brain swelling (median rate 5.6%). Only 6 surgical events were statistically shown to associate with poor outcomes by any author and for intraoperative rupture (the most frequently analysed), there was an even split between authors finding a statistical association with poor outcome and those finding no association. Even with modern surgical techniques, the technical demands of surgical aneurysm repair continue to lead to a high rate of intraoperative adverse events. Despite this, it is not known which of these intraoperative events are the most important contributors to the poor outcomes often seen in these patients. More research directed towards identifying the events that most drive operative morbidity has the potential to improve outcomes for these patients.


Asunto(s)
Aneurisma Roto/cirugía , Procedimientos Endovasculares/efectos adversos , Aneurisma Intracraneal/cirugía , Complicaciones Intraoperatorias/etiología , Anciano , Aneurisma Roto/diagnóstico , Procedimientos Endovasculares/métodos , Humanos , Aneurisma Intracraneal/diagnóstico , Complicaciones Intraoperatorias/diagnóstico , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/etiología , Resultado del Tratamiento
17.
BMC Surg ; 21(1): 123, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33685437

RESUMEN

Surgical training in the UK and Ireland has faced challenges following the implementation of the European Working Time Directive and postgraduate training reform. The health services are undergoing a digital transformation; digital technology is remodelling the delivery of surgical care and surgical training. This review aims to critically evaluate key issues in laparoscopic general surgical training and the digital technology such as virtual and augmented reality, telementoring and automated workflow analysis and surgical skills assessment. We include pre-clinical, proof of concept research and commercial systems that are being developed to provide solutions. Digital surgical technology is evolving through interdisciplinary collaboration to provide widespread access to high-quality laparoscopic general surgery training and assessment. In the future this could lead to integrated, context-aware systems that support surgical teams in providing safer surgical care.


Asunto(s)
Tecnología Digital , Cirugía General , Laparoscopía , Cirugía General/educación , Humanos , Irlanda , Laparoscopía/educación , Reino Unido
18.
Int J Comput Vis ; 128(5): 1101-1117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343083

RESUMEN

Recovering 3D geometry from cameras in underwater applications involves the Refractive Structure-from-Motion problem where the non-linear distortion of light induced by a change of medium density invalidates the single viewpoint assumption. The pinhole-plus-distortion camera projection model suffers from a systematic geometric bias since refractive distortion depends on object distance. This leads to inaccurate camera pose and 3D shape estimation. To account for refraction, it is possible to use the axial camera model or to explicitly consider one or multiple parallel refractive interfaces whose orientations and positions with respect to the camera can be calibrated. Although it has been demonstrated that the refractive camera model is well-suited for underwater imaging, Refractive Structure-from-Motion remains particularly difficult to use in practice when considering the seldom studied case of a camera with a flat refractive interface. Our method applies to the case of underwater imaging systems whose entrance lens is in direct contact with the external medium. By adopting the refractive camera model, we provide a succinct derivation and expression for the refractive fundamental matrix and use this as the basis for a novel two-view reconstruction method for underwater imaging. For validation we use synthetic data to show the numerical properties of our method and we provide results on real data to demonstrate its practical application within laboratory settings and for medical applications in fluid-immersed endoscopy. We demonstrate our approach outperforms classic two-view Structure-from-Motion method relying on the pinhole-plus-distortion camera model.

19.
J Vasc Surg ; 69(5): 1482-1489, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30527939

RESUMEN

OBJECTIVE: Video motion analysis (VMA) uses fluoroscopic sequences to derive information on catheter and guidewire movement and is able to calculate two-dimensional catheter tip path length (PL) on the basis of frame-by-frame pixel coordinates. The objective of this study was to evaluate the effect of anatomic complexity on the efficiency of completion of defined stages of simulated carotid artery stenting as measured by VMA. METHODS: Twenty interventionists each performed a standardized easy, medium, and difficult carotid artery stenting case in random order on an ANGIO Mentor (Simbionix, Airport City, Israel) simulator. Videos of all procedures were analyzed using VMA software, and performance was expressed in terms of two-dimensional guidewire tip trajectory distance (PL). Comparisons of PL were used to identify differences in cannulation performance of the participants between the three cases of varying difficulty. The procedure was subdivided into four procedural phases: arch navigation, common carotid artery (CCA) cannulation, external carotid manipulation, and carotid lesion crossing. Comparisons of PL were used to identify differences in performance between the three cases of varying difficulty for each of the procedural phases. RESULTS: There were significant differences in PL in relation to anatomic complexity, with a stepwise increase in PL from easy to difficult cases: easy, median of 5000 pixels (interquartile range, 4075-5403 pixels); intermediate, 9059 (5974-14,553) pixels; difficult, 17,373 (11,495-26,594) pixels (P < .001). Similarly, during CCA cannulation, there was a stepwise increase in PL from easy to difficult cases: easy, 749 (603-1403) pixels; intermediate, 3274 (1544-8142) pixels; difficult, 8845 (5954-15,768) pixels (P < .001). There were no observed differences across the groups of anatomic difficulty for the phases of arch navigation, external carotid manipulation, and carotid lesion crossing. CONCLUSIONS: Increasing anatomic complexity leads to significant increases in PL of endovascular tools, in particular during CCA cannulation. This increase in tool movement may have a bearing on clinical outcome.


Asunto(s)
Angioplastia/educación , Estenosis Carotídea/terapia , Cateterismo Periférico , Competencia Clínica , Educación de Postgrado en Medicina/métodos , Destreza Motora , Entrenamiento Simulado , Adulto , Anciano , Anciano de 80 o más Años , Angioplastia/instrumentación , Estenosis Carotídea/diagnóstico por imagen , Cateterismo Periférico/instrumentación , Femenino , Humanos , Masculino , Estudios Prospectivos , Distribución Aleatoria , Índice de Severidad de la Enfermedad , Stents , Análisis y Desempeño de Tareas , Dispositivos de Acceso Vascular , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA