Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cell ; 179(4): 909-922.e12, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31668805

RESUMEN

The axoneme of motile cilia is the largest macromolecular machine of eukaryotic cells. In humans, impaired axoneme function causes a range of ciliopathies. Axoneme assembly, structure, and motility require a radially arranged set of doublet microtubules, each decorated in repeating patterns with non-tubulin components. We use single-particle cryo-electron microscopy to visualize and build an atomic model of the repeating structure of a native axonemal doublet microtubule, which reveals the identities, positions, repeat lengths, and interactions of 38 associated proteins, including 33 microtubule inner proteins (MIPs). The structure demonstrates how these proteins establish the unique architecture of doublet microtubules, maintain coherent periodicities along the axoneme, and stabilize the microtubules against the repeated mechanical stress induced by ciliary motility. Our work elucidates the architectural principles that underpin the assembly of this large, repetitive eukaryotic structure and provides a molecular basis for understanding the etiology of human ciliopathies.


Asunto(s)
Axonema/ultraestructura , Cilios/ultraestructura , Ciliopatías/patología , Microtúbulos/ultraestructura , Axonema/química , Axonema/genética , Movimiento Celular/genética , Cilios/química , Cilios/genética , Ciliopatías/genética , Ciliopatías/metabolismo , Microscopía por Crioelectrón , Humanos , Proteínas de Microtúbulos/química , Proteínas de Microtúbulos/ultraestructura , Microtúbulos/química , Microtúbulos/genética , Estrés Mecánico
2.
PLoS Genet ; 16(8): e1008691, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32764743

RESUMEN

Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C>T), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass tag (TMT) mass spectroscopy shows that FAP57 is missing, and the "g" inner dyneins (DHC7 and DHC3) and the "d" inner dynein (DHC2) are reduced, but the FAP57 paralog FBB7 is increased. Together, our data identify a homozygous variant in CFAP57 that causes PCD that is likely due to a defect in the inner dynein arm assembly process.


Asunto(s)
Axonema/metabolismo , Trastornos de la Motilidad Ciliar/genética , Codón sin Sentido , Dineínas/metabolismo , Proteínas/genética , Células 3T3 , Adulto , Animales , Axonema/fisiología , Células Cultivadas , Chlamydomonas reinhardtii , Cilios/metabolismo , Cilios/fisiología , Trastornos de la Motilidad Ciliar/patología , Secuencia Conservada , Humanos , Masculino , Ratones , Proteínas Asociadas a Microtúbulos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas/química , Proteínas/metabolismo , Mucosa Respiratoria/metabolismo
3.
Heliyon ; 10(8): e29315, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681551

RESUMEN

Two previously synthesized styrylquinolinium dyes, namely (E)-1-butyl-4-(4-(dimethylamino)styryl)quinolinium iodide (D36) and (E)-1-butyl-4-(4-hydroxystyryl)quinolinium iodide (D34), were compared in terms of their properties by single-crystal X-ray diffraction (XRD), Hirshfeld surface analysis, Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), fluorescence, and ultraviolet-visible (UV-Vis) spectroscopy, and 1H- and 13C-NMR methods. Both dyes D36 and D34 crystallized in the triclinic and monoclinic systems in the centrosymmetric space groups P-1 and P21/n, respectively. The unit cell of D36 contains two molecules of the dye, participating in weak intermolecular interactions, whereas that of D34 contains four formula units. The phenolic hydroxy group of D34 participates in the formation of a hydrogen bond with the iodide anion. The 4-styrylquinolinium moieties of the cationic dye molecules are nearly planar. The dihedral angle between the mean planes through the ten-membered quinolinium system and the benzene ring is 7.5° in D36 and 5.9(1)° in D34. The structural parameters planarity and bond length alternation (BLA) are discussed, which are important for the evaluation of the first hyperpolarizability ß at the molecular level, even in a centrosymmetric crystal. The UV-visible spectra of the dyes in 14 solvents of different polarities were investigated. The reversible solvatochromic behavior of the dyes is demonstrated experimentally and compared with known "binuclear dyes" by evaluating the Rezende model. Dye D36 does not fluoresce, and D34 has a very low emission in the solvents tested.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA