Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100641, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839159

RESUMEN

A bispecific antibody (BsAb) targeting the epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) pathways represents a novel approach to overcome resistance to targeted therapies in patients with non-small cell lung cancer. In this study, we sequentially screened a panel of BsAbs in a combinatorial approach to select the optimal bispecific molecule. The BsAbs were derived from different EGFR and MET parental monoclonal antibodies. Initially, molecules were screened for EGFR and MET binding on tumor cell lines and lack of agonistic activity toward MET. Hits were identified and further screened based on their potential to induce untoward cell proliferation and cross-phosphorylation of EGFR by MET via receptor colocalization in the absence of ligand. After the final step, we selected the EGFR and MET arms for the lead BsAb and added low fucose Fc engineering to generate amivantamab (JNJ-61186372). The crystal structure of the anti-MET Fab of amivantamab bound to MET was solved, and the interaction between the two molecules in atomic details was elucidated. Amivantamab antagonized the hepatocyte growth factor (HGF)-induced signaling by binding to MET Sema domain and thereby blocking HGF ß-chain-Sema engagement. The amivantamab EGFR epitope was mapped to EGFR domain III and residues K443, K465, I467, and S468. Furthermore, amivantamab showed superior antitumor activity over small molecule EGFR and MET inhibitors in the HCC827-HGF in vivo model. Based on its unique mode of action, amivantamab may provide benefit to patients with malignancies associated with aberrant EGFR and MET signaling.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Descubrimiento de Drogas , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/inmunología , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Proteínas Proto-Oncogénicas c-met/inmunología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Immunol ; 194(9): 4379-86, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25795760

RESUMEN

Trastuzumab has been used for the treatment of HER2-overexpressing breast cancer for more than a decade, but the mechanisms of action for the therapy are still being actively investigated. Ab-dependent cell-mediated cytotoxicity mediated by NK cells is well recognized as one of the key mechanisms of action for trastuzumab, but trastuzumab-mediated Ab-dependent cellular phagocytosis (ADCP) has not been established. In this study, we demonstrate that macrophages, by way of phagocytic engulfment, can mediate ADCP and cancer cell killing in the presence of trastuzumab. Increased infiltration of macrophages in the tumor tissue was associated with enhanced efficacy of trastuzumab whereas depletion of macrophages resulted in reduced antitumor efficacy in mouse xenograft tumor models. Among the four mouse FcγRs, FcγRIV exhibits the strongest binding affinity to trastuzumab. Knockdown of FcγRIV in mouse macrophages reduced cancer cell killing and ADCP activity triggered by trastuzumab. Consistently, an upregulation of FcγRIV expression by IFN-γ triggered an increased ADCP activity by trastuzumab. In an analogous fashion, IFN-γ priming of human macrophages increased the expression of FcγRIII, the ortholog of murine FcγRIV, and increased trastuzumab-mediated cancer cell killing. Thus, in two independent systems, the results indicated that activation of macrophages in combination with trastuzumab can serve as a therapeutic strategy for treating high HER2 breast cancer by boosting ADCP killing of cancer cells.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Receptor ErbB-2/metabolismo , Receptores de IgG/metabolismo , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Línea Celular Tumoral , Citotoxicidad Inmunológica/inmunología , Modelos Animales de Enfermedad , Expresión Génica , Xenoinjertos , Humanos , Ratones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Receptor ErbB-2/genética , Trastuzumab
3.
Methods ; 65(1): 114-26, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23872058

RESUMEN

The Fc variant of IgG2, designated as IgG2σ, was engineered with V234A/G237A /P238S/H268A/V309L/A330S/P331S substitutions to eliminate affinity for Fcγ receptors and C1q complement protein and consequently, immune effector functions. IgG2σ was compared to other previously well-characterized Fc 'muted' variants, including aglycosylated IgG1, IgG2m4 (H268Q/V309L/A330S/P331S, changes to IgG4), and IgG4 ProAlaAla (S228P/L234A/L235A) in its capacity to bind FcγRs and activate various immune-stimulatory responses. In contrast to the previously characterized muted Fc variants, which retain selective FcγR binding and effector functions, IgG2σ shows no detectable binding to the Fcγ receptors in affinity and avidity measurements, nor any detectable antibody-dependent cytotoxicity, phagocytosis, complement activity, or Fc-mediated cytokine release. Moreover, IgG2σ shows minimal immunogenic potential by T-cell epitope analysis. The circulating half-life of IgG2σ in monkeys is extended relative to IgG1 and IgG2, in spite of similar in vitro binding to recombinant FcRn. The three-dimensional structure of the Fc, needed for assessing the basis for the absence of effector function, was compared with that of IgG2 revealing a number of conformational differences near the hinge region of the CH2 domain that result from the amino acid substitutions. Modeling reveals that at least one of the key interactions with FcγRs is disrupted by a conformational change that reorients P329 to a position that prevents it from interacting with conserved W90 and W113 residues of the FcγRs. Inspection of the structure also indicated significant changes to the conformations of D270 and P329 in the CH2 domain that could negatively impact C1q binding. Thus, structural perturbations of the Fc provide a rationale for the loss of function. In toto, these properties of IgG2σ suggest that it is a superior alternative to previously described IgG variants of minimal effector function, for future therapeutic applications of non-immunostimulatory mAb and Fc-fusion platforms.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Factores Inmunológicos/química , Sustitución de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/farmacología , Afinidad de Anticuerpos , Citotoxicidad Celular Dependiente de Anticuerpos , Sitios de Unión , Cristalografía por Rayos X , Citocinas/metabolismo , Células HEK293 , Semivida , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/farmacología , Inmunoglobulina G/genética , Inmunoglobulina G/farmacología , Factores Inmunológicos/genética , Factores Inmunológicos/farmacología , Macaca fascicularis , Masculino , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Secundaria de Proteína , Receptor ErbB-2/inmunología , Receptores de IgG/química
4.
J Biol Chem ; 288(43): 30843-54, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23986451

RESUMEN

Molecularly engineered antibodies with fit-for-purpose properties will differentiate next generation antibody therapeutics from traditional IgG1 scaffolds. One requirement for engineering the most appropriate properties for a particular therapeutic area is an understanding of the intricacies of the target microenvironment in which the antibody is expected to function. Our group and others have demonstrated that proteases secreted by invasive tumors and pathological microorganisms are capable of cleaving human IgG1, the most commonly adopted isotype among monoclonal antibody therapeutics. Specific cleavage in the lower hinge of IgG1 results in a loss of Fc-mediated cell-killing functions without a concomitant loss of antigen binding capability or circulating antibody half-life. Proteolytic cleavage in the hinge region by tumor-associated or microbial proteases is postulated as a means of evading host immune responses, and antibodies engineered with potent cell-killing functions that are also resistant to hinge proteolysis are of interest. Mutation of the lower hinge region of an IgG1 resulted in protease resistance but also resulted in a profound loss of Fc-mediated cell-killing functions. In the present study, we demonstrate that specific mutations of the CH2 domain in conjunction with lower hinge mutations can restore and sometimes enhance cell-killing functions while still retaining protease resistance. By identifying mutations that can restore either complement- or Fcγ receptor-mediated functions on a protease-resistant scaffold, we were able to generate a novel protease-resistant platform with selective cell-killing functionality.


Asunto(s)
Anticuerpos Monoclonales , Citotoxicidad Celular Dependiente de Anticuerpos , Sitios de Unión de Anticuerpos , Ingeniería de Proteínas , Proteolisis , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Citotoxicidad Celular Dependiente de Anticuerpos/genética , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Sitios de Unión de Anticuerpos/genética , Sitios de Unión de Anticuerpos/inmunología , Línea Celular , Humanos , Inmunoglobulina G , Receptores de IgG/genética , Receptores de IgG/inmunología
5.
J Immunol ; 189(11): 5457-66, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23105143

RESUMEN

Tumor-associated macrophages (TAMs) have been shown to promote tumor progression, and increased TAM infiltration often correlates with poor prognosis. However, questions remain regarding the phenotype of macrophages within the tumor and their role in mAb-dependent cytotoxicity. This study demonstrates that whereas TAMs have protumor properties, they maintain Fc-dependent anti-tumor function. CD11b(+)CD14(+) TAMs isolated from primary human breast tumors expressed activating FcγRs. To model breast cancer TAMs in vitro, conditioned medium from breast cancer cells was used to drive human peripheral monocyte differentiation into macrophages. Tumor-conditioned macrophages were compared with in vitro derived M1 and M2a macrophages and were found to promote tumor cell invasion and express M2a markers, confirming their protumor potential. However, unlike M2a macrophages, tumor-conditioned macrophages expressed FcγRs and phagocytosed tumor cells in the presence of a tumor Ag-targeting mAb, unmasking an underappreciated tumoricidal capacity of TAMs. In vivo macrophage depletion reduced the efficacy of anti-CD142 against MDA-MB-231 xenograft growth and metastasis in SCID/beige mice, implicating a critical role for macrophages in Fc-dependent cell killing. M-CSF was identified in tumor-conditioned media and shown to be capable of differentiating macrophages with both pro- and anti-tumor properties. These results highlight the plasticity of TAMs, which are capable of promoting tumor progression and invasion while still retaining tumoricidal function in the presence of tumor-targeting mAbs.


Asunto(s)
Anticuerpos Antineoplásicos/inmunología , Antígenos de Neoplasias/inmunología , Neoplasias de la Mama/inmunología , Macrófagos/inmunología , Fagocitosis , Receptores de IgG/inmunología , Animales , Neoplasias de la Mama/patología , Antígeno CD11b/inmunología , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Medios de Cultivo Condicionados/farmacología , Progresión de la Enfermedad , Femenino , Humanos , Inmunofenotipificación , Receptores de Lipopolisacáridos/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones , Ratones SCID , Invasividad Neoplásica/inmunología , Trasplante de Neoplasias , Cultivo Primario de Células
6.
Biochem J ; 451(2): 165-75, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23384096

RESUMEN

Gene deletion studies in mice have revealed critical roles for IL (interleukin)-4 and -13 in asthma development, with the latter controlling lung airways resistance and mucus secretion. We have now developed human neutralizing monoclonal antibodies against human IL-13Rα1 (IL-13 receptor α1) subunit that prevent activation of the receptor complex by both IL-4 and IL-13. We describe the crystal structures of the Fab fragment of antibody 10G5H6 alone and in complex with D3 (ectodomain 3) of IL-13Rα1. Although the structure showed significant domain swapping within a D3 dimer, we showed that Arg(230), Phe(233), Tyr(250), Gln(252) and Leu(293) in each D3 monomer and Ser(32), Asn(102) and Trp(103) in 10G5H6 Fab are the key interacting residues at the interface of the 10G5H6 Fab-D3 complex. One of the most striking contacts is the insertion of the ligand-contacting residue Leu(293) of D3 into a deep pocket on the surface of 10G5H6 Fab, and this appears to be a central determinant of the high binding affinity and neutralizing activity of the antibody.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Epítopos , Subunidad alfa1 del Receptor de Interleucina-13/química , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Sitios de Unión/inmunología , Cristalografía por Rayos X , Dimerización , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Interleucina-13/inmunología , Interleucina-13/metabolismo , Subunidad alfa1 del Receptor de Interleucina-13/metabolismo , Interleucina-4/inmunología , Interleucina-4/metabolismo , Leucina/metabolismo , Ratones , Ratones Transgénicos , Estructura Terciaria de Proteína
7.
Antib Ther ; 7(2): 132-156, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38617189

RESUMEN

In calendar year 2023, the United States Food and Drug Administration (US FDA) approved a total of 55 new molecular entities, of which 12 were in the class of therapeutic antibodies. Besides antibody protein drugs, the US FDA also approved another five non-antibody protein drugs, making the broader class of protein drugs about 31% of the total approved drugs. Among the 12 therapeutic antibodies approved by the US FDA, 8 were relatively standard IgG formats, 3 were bivalent, bispecific antibodies and 1 was a trivalent, bispecific antibody. In 2023, no new antibody-drug conjugates, immunocytokines or chimeric antigen receptor-T cells were approved. Of the approved antibodies, two targeted programmed cell death receptor-1 (PD-1) for orphan indications, two targeted CD20 for diffuse large B cell lymphoma, two targeted different receptors (B-cell maturation antigen [BCMA] and G-coupled protein receptor class C, group 5, member D [GPRC5D]) for treatment of multiple myeloma, and one each that targeted amyloid-ß protofibrils for Alzheimer's disease, neonatal Fc receptor alpha-chain for myasthenia gravis, complement factor C5 for CD55 deficiency with hyper-activation of complement, angiopathic thrombosis and severe protein-losing enteropathy disease, interleukin (IL)-23p19 for severely active ulcerative colitis, IL-17A-F for plaque psoriasis and respiratory syncytial virus (RSV)-F protein for season-long RSV prophylaxis in infants.

8.
Viruses ; 16(5)2024 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-38793580

RESUMEN

Since the SARS-CoV-2 Omicron virus has gained dominance worldwide, its continual evolution with unpredictable mutations and patterns has revoked all authorized immunotherapeutics. Rapid viral evolution has also necessitated several rounds of vaccine updates in order to provide adequate immune protection. It remains imperative to understand how Omicron evolves into different subvariants and causes immune escape as this could help reevaluate the current intervention strategies mostly implemented in the clinics as emergency measures to counter the pandemic and, importantly, develop new solutions. Here, we provide a review focusing on the major events of Omicron viral evolution, including the features of spike mutation that lead to immune evasion against monoclonal antibody (mAb) therapy and vaccination, and suggest alternative durable options such as the ACE2-based experimental therapies superior to mAbs to address this unprecedented evolution of Omicron virus. In addition, this type of unique ACE2-based virus-trapping molecules can counter all zoonotic SARS coronaviruses, either from unknown animal hosts or from established wild-life reservoirs of SARS-CoV-2, and even seasonal alpha coronavirus NL63 that depends on human ACE2 for infection.


Asunto(s)
COVID-19 , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Humanos , COVID-19/inmunología , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Evolución Molecular , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Mutación , Vacunas contra la COVID-19/inmunología , Anticuerpos Antivirales/inmunología
9.
Emerg Microbes Infect ; 12(2): 2275598, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38078382

RESUMEN

The capacity of SARS-CoV-2 to evolve poses challenges to conventional prevention and treatment options such as vaccination and monoclonal antibodies, as they rely on viral receptor binding domain (RBD) sequences from previous strains. Additionally, animal CoVs, especially those of the SARS family, are now appreciated as a constant pandemic threat. We present here a new antiviral approach featuring inhalation delivery of a recombinant viral trap composed of ten copies of angiotensin-converting enzyme 2 (ACE2) fused to the IgM Fc. This ACE2 decamer viral trap is designed to inhibit SARS-CoV-2 entry function, regardless of viral RBD sequence variations as shown by its high neutralization potency against all known SARS-CoV-2 variants, including Omicron BQ.1, BQ.1.1, XBB.1 and XBB.1.5. In addition, it demonstrates potency against SARS-CoV-1, human NL63, as well as bat and pangolin CoVs. The multivalent trap is effective in both prophylactic and therapeutic settings since a single intranasal dosing confers protection in human ACE2 transgenic mice against viral challenges. Lastly, this molecule is stable at ambient temperature for more than twelve weeks and can sustain physical stress from aerosolization. These results demonstrate the potential of a decameric ACE2 viral trap as an inhalation solution for ACE2-dependent coronaviruses of current and future pandemic concerns.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Animales , Ratones , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus
10.
Cell Host Microbe ; 31(5): 751-765.e11, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37098341

RESUMEN

Treating and preventing infections by antimicrobial-resistant bacterial pathogens is a worldwide problem. Pathogens such as Staphylococcus aureus produce an array of virulence determinants, making it difficult to identify single targets for the development of vaccines or monoclonal therapies. We described a human-derived anti-S. aureus monoclonal antibody (mAb)-centyrin fusion protein ("mAbtyrin") that simultaneously targets multiple bacterial adhesins, resists proteolysis by bacterial protease GluV8, avoids Fc engagement by S. aureus IgG-binding proteins SpA and Sbi, and neutralizes pore-forming leukocidins via fusion with anti-toxin centyrins, while maintaining Fc- and complement-mediated functions. Compared with the parental mAb, mAbtyrin protected human phagocytes and boosted phagocyte-mediated killing. The mAbtyrin also reduced pathology, reduced bacterial burden, and protected from different types of infections in preclinical animal models. Finally, mAbtyrin synergized with vancomycin, enhancing pathogen clearance in an animal model of bacteremia. Altogether, these data establish the potential of multivalent mAbs for treating and preventing S. aureus diseases.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Humanos , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/microbiología , Anticuerpos Monoclonales/uso terapéutico , Fagocitos/metabolismo , Leucocidinas/metabolismo , Leucocidinas/uso terapéutico
11.
Breast Cancer Res ; 14(4): R116, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22873525

RESUMEN

INTRODUCTION: Recent studies reported that human IgG antibodies are susceptible to specific proteolytic cleavage in their lower hinge region, and the hinge cleavage results in a loss of Fc-mediated effector functions. Trastuzumab is a humanized IgG1 therapeutic monoclonal antibody for the treatment of HER2-overexpressing breast cancers, and its mechanisms of action consist of inhibition of HER2 signaling and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC). The objective of this study is to investigate the potential effect of proteinase hinge cleavage on the efficacy of trastuzumab using both a breast cancer cell culture method and an in vivo mouse xenograft tumor model. METHODS: Trastuzumab antibody was incubated with a panel of human matrix metalloproteinases, and proteolytic cleavage in the lower hinge region was detected using both western blotting and mass spectrometry. Single hinge cleaved trastuzumab (scIgG-T) was purified and evaluated for its ability to mediate ADCC and inhibition of breast cancer cell proliferation in vitro as well as anti-tumor efficacy in the mouse xenograft tumor model. Infiltrated immune cells were detected in tumor tissues by immunohistochemistry. RESULTS: scIgG-T retains HER2 antigen binding activity and inhibits HER2-mediated downstream signaling and cell proliferation in vitro when compared with the intact trastuzumab. However, scIgG-T lost Fc-mediated ADCC activity in vitro, and had significantly reduced anti-tumor efficacy in a mouse xenograft tumor model. Immunohistochemistry showed reduced immune cell infiltration in tumor tissues treated with scIgG-T when compared with those treated with the intact trastuzumab, which is consistent with the decreased ADCC mediated by scIgG-T in vitro. CONCLUSION: Trastuzumab can be cleaved by matrix metalloproteinases within the lower hinge. scIgG-T exhibited a significantly reduced anti-tumor efficacy in vivo due to the weakened immune effector function such as ADCC. The results suggest that the lower hinge cleavage of trastuzumab can occur in the tumor microenvironment where matrix metalloproteinases often have high levels of expression and scIgG-T might compromise its anti-tumor efficacy in the clinic. However, further studies are needed to validate these hypotheses in the clinical setting.


Asunto(s)
Anticuerpos Monoclonales Humanizados/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Metaloproteinasas de la Matriz/metabolismo , Ratones , Datos de Secuencia Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , Unión Proteica , Proteolisis , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Receptores de IgG/metabolismo , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto
12.
BioDrugs ; 36(3): 231-323, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35476216

RESUMEN

The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Anticuerpos Antivirales/uso terapéutico , COVID-19/terapia , Preescolar , Humanos , Inmunización Pasiva , Inmunoglobulina G , Pandemias , Glicoproteína de la Espiga del Coronavirus , Sueroterapia para COVID-19
13.
Antibodies (Basel) ; 8(3)2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31544847

RESUMEN

The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.

14.
Sci Transl Med ; 11(475)2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651319

RESUMEN

A key aspect underlying the severity of infections caused by Staphylococcus aureus is the abundance of virulence factors that the pathogen uses to thwart critical components of the human immune response. One such mechanism involves the destruction of host immune cells by cytolytic toxins secreted by S. aureus, including five bicomponent leukocidins: PVL, HlgAB, HlgCB, LukED, and LukAB. Purified leukocidins can lyse immune cells ex vivo, and systemic injections of purified LukED or HlgAB can acutely kill mice. Here, we describe the generation and characterization of centyrins that bind S. aureus leukocidins with high affinity and protect primary human immune cells from toxin-mediated cytolysis. Centyrins are small protein scaffolds derived from the fibronectin type III-binding domain of the human protein tenascin-C. Although centyrins are potent in tissue culture assays, their short serum half-lives limit their efficacies in vivo. By extending the serum half-lives of centyrins through their fusion to an albumin-binding consensus domain, we demonstrate the in vivo efficacy of these biologics in a murine intoxication model and in models of both prophylactic and therapeutic treatment of live S. aureus systemic infections. These biologics that target S. aureus virulence factors have potential for treating and preventing serious staphylococcal infections.


Asunto(s)
Factores Biológicos/farmacología , Leucocidinas/metabolismo , Pruebas de Neutralización , Staphylococcus aureus/metabolismo , Secuencia de Aminoácidos , Animales , Citoprotección/efectos de los fármacos , Citotoxicidad Inmunológica , Hemólisis/efectos de los fármacos , Humanos , Leucocidinas/química , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Fagocitos/efectos de los fármacos , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/efectos de los fármacos
15.
Protein Cell ; 9(1): 86-120, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28822103

RESUMEN

As of May 1, 2017, 74 antibody-based molecules have been approved by a regulatory authority in a major market. Additionally, there are 70 and 575 antibody-based molecules in phase III and phase I/II clinical trials, respectively. These total 719 antibody-based clinical stage molecules include 493 naked IgGs, 87 antibody-drug conjugates, 61 bispecific antibodies, 37 total Fc fusion proteins, 17 radioimmunoglobulins, 13 antibody fragments, and 11 immunocytokines. New uses for these antibodies are being discovered each year. For oncology, many of the exciting new approaches involve antibody modulation of T-cells. There are over 80 antibodies in clinical trials targeting T cell checkpoints, 26 T-cell-redirected bispecific antibodies, and 145 chimeric antigen receptor (CAR) cell-based candidates (all currently in phase I or II clinical trials), totaling more than 250 T cell interacting clinical stage antibody-based candidates. Finally, significant progress has been made recently on routes of delivery, including delivery of proteins across the blood-brain barrier, oral delivery to the gut, delivery to the cellular cytosol, and gene- and viral-based delivery of antibodies. Thus, there are currently at least 864 antibody-based clinical stage molecules or cells, with incredible diversity in how they are constructed and what activities they impart. These are followed by a next wave of novel molecules, approaches, and new methods and routes of delivery, demonstrating that the field of antibody-based biologics is very innovative and diverse in its approaches to fulfill their promise to treat unmet medical needs.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Ingeniería de Proteínas/métodos , Ingeniería de Proteínas/tendencias , Animales , Anticuerpos Biespecíficos/metabolismo , Sistemas de Liberación de Medicamentos , Humanos , Inmunoconjugados/metabolismo , Linfocitos T/metabolismo
16.
Antib Ther ; 1(2): 65-74, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30406214

RESUMEN

The Chinese Antibody Society (CAS) convened the second annual conference in Cambridge, MA, USA on 29 April 2018. More than 600 members from around the world attended the meeting. Invited speakers discussed the latest advancements in therapeutic antibodies with an emphasis on the progress made in China. The meeting covered a vast variety of topics including the current status of therapeutic antibodies, the progress of immuno-oncology, and biosimilars in China. The conference presentations also included the development of several novel antibodies such as antibodies related to weight loss, T-cell receptor-mimicking antibodies that target intracellular antigens, and tumor-targeting antibodies that utilize both innate and adaptive immune pathways. At the meeting, the CAS announced the launch of its official journal-Antibody Therapeutics-in collaboration with Oxford University Press. The conference was concluded by a panel discussion on how to bring a therapeutic drug developed in China to the USA for clinical trials.

17.
J Immunol Methods ; 322(1-2): 94-103, 2007 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-17362979

RESUMEN

Screening antibodies from phage displayed in vitro libraries and from affinity maturation of lead antibodies requires testing of antibody fragments (scFvs and Fabs) for function and binding affinities. Crude scFv or Fab periplasmic preparations from Escherichia coli are often not pure and/or concentrated enough for use in functional and affinity assays. We have developed an automated high-throughput approach for small and large-scale expression and purification of His-tagged scFvs and Fabs using the Qiagen BioRobot 3000 LS with optimized application software. This automated procedure enabled us to rapidly evaluate antibody fragments in functional and surface plasmon resonance (SPR) assays. We have used these procedures to make thousands of purified scFv/Fabs for several antibody maturation campaigns and significantly decreased the time needed to select the best candidates. The assay results from these purified samples were used to prioritize candidates before converting them to IgG. This protocol can process up to 300 small-scale and up to 72 large-scale scFvs or Fabs per week per full-time employee (FTE).


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Fragmentos Fc de Inmunoglobulinas/aislamiento & purificación , Robótica/instrumentación , Animales , Escherichia coli/genética , Humanos , Inmunoensayo , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Cinética , Biblioteca de Péptidos , Programas Informáticos , Resonancia por Plasmón de Superficie
18.
BioDrugs ; 31(4): 317-334, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28669112

RESUMEN

There has been a resurgence in gene therapy efforts that is partly fueled by the identification and understanding of new gene delivery vectors. Adeno-associated virus (AAV) is a non-enveloped virus that can be engineered to deliver DNA to target cells, and has attracted a significant amount of attention in the field, especially in clinical-stage experimental therapeutic strategies. The ability to generate recombinant AAV particles lacking any viral genes and containing DNA sequences of interest for various therapeutic applications has thus far proven to be one of the safest strategies for gene therapies. This review will provide an overview of some important factors to consider in the use of AAV as a vector for gene therapy.


Asunto(s)
Dependovirus/genética , Sistemas de Liberación de Medicamentos/métodos , Terapia Genética/métodos , Vectores Genéticos , Animales , Cápside , Línea Celular , Dependovirus/inmunología , Vectores Genéticos/administración & dosificación , Humanos , Insectos , Transfección
19.
Trends Pharmacol Sci ; 37(3): 231-241, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26719219

RESUMEN

The growing incidence of serious infections mediated by methicillin-resistant Staphylococcus aureus (MRSA) strains poses a significant risk to public health. This risk is exacerbated by a prolonged void in the discovery and development of truly novel antibiotics and the absence of a vaccine. These gaps have created renewed interest in the use of biologics in the prevention and treatment of serious staphylococcal infections. In this review, we focus on efforts towards the discovery and development of antibody-based biologic agents and their potential as clinical agents in the management of serious S. aureus infections. Recent promising data for monoclonal antibodies (mAbs) targeting anthrax and Ebola highlight the potential of antibody-based biologics as therapeutic agents for serious infections.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Factores Biológicos/farmacología , Staphylococcus aureus Resistente a Meticilina/inmunología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/terapia , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Factores Biológicos/inmunología , Factores Biológicos/uso terapéutico , Humanos , Infecciones Estafilocócicas/microbiología
20.
BioDrugs ; 29(4): 215-39, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26177629

RESUMEN

The purpose of making a "biobetter" biologic is to improve on the salient characteristics of a known biologic for which there is, minimally, clinical proof of concept or, maximally, marketed product data. There already are several examples in which second-generation or biobetter biologics have been generated by improving the pharmacokinetic properties of an innovative drug, including Neulasta(®) [a PEGylated, longer-half-life version of Neupogen(®) (filgrastim)] and Aranesp(®) [a longer-half-life version of Epogen(®) (epoetin-α)]. This review describes the use of protein fusion technologies such as Fc fusion proteins, fusion to human serum albumin, fusion to carboxy-terminal peptide, and other polypeptide fusion approaches to make biobetter drugs with more desirable pharmacokinetic profiles.


Asunto(s)
Productos Biológicos/farmacocinética , Diseño de Fármacos , Proteínas Recombinantes de Fusión/farmacocinética , Animales , Productos Biológicos/química , Química Farmacéutica/métodos , Semivida , Humanos , Péptidos/química , Péptidos/farmacocinética , Proteínas Recombinantes de Fusión/química , Albúmina Sérica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA