RESUMEN
Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson's disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aß pathology in AD models.
Asunto(s)
Enfermedad de Alzheimer , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Modelos Animales de Enfermedad , Canales de Potencial de Receptor Transitorio , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Autofagia/efectos de los fármacos , Ratones , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Humanos , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/metabolismo , Masculino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Transducción de Señal/efectos de los fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genéticaRESUMEN
Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 15d-PGJ2 promotes TFEB translocation from the cytoplasm into the nucleus to induce autophagy and lysosome biogenesis via reactive oxygen species (ROS) production rather than mTORC1 inactivation. Surprisingly, TFEB promotes rather than inhibits apoptosis in response to 15d-PGJ2. Mechanistically, ROS-mediated TFEB translocation into the nucleus transcriptionally upregulates the expression of ATF4, which is required for apoptosis elicited by 15d-PGJ2. Additionally, inhibition of TFEB activation by ROS scavenger N-acetyl cysteine or inhibition of protein synthesis by cycloheximide effectively compromises ATF4 upregulation and apoptosis in response to 15d-PGJ2. Collectively, these results indicate that ROS-induced TFEB activation exerts a novel role in promoting apoptosis besides its role in regulating autophagy in response to 15d-PGJ2. This work not only evidences how TFEB is activated by 15d-PGJ2, but also unveils a previously unexplored role of ROS-dependent activation of TFEB in modulating cell apoptosis in response to 15d-PGJ2.
Asunto(s)
Prostaglandina D2 , Prostaglandinas , Apoptosis , Autofagia , Ciclopentanos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacología , Prostaglandinas/farmacología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Increasing evidence shows that autophagy impairment is involved in the pathogenesis and progression of neurodegenerative diseases including Parkinson's disease (PD). We previously identified a natural alkaloid named corynoxine B (Cory B) as a neuronal autophagy inducer. However, its brain permeability is relatively low, which hinders its potential use in treating PD. Thus we synthesized various derivatives of Cory B to find more potent autophagy inducers with improved brain bioavailability. In this study, we evaluated the autophagy-enhancing effect of CB6 derivative and its neuroprotective action against PD in vitro and in vivo. We showed that CB6 (5-40 µM) dose-dependently accelerated autophagy flux in cultured N2a neural cells through activating the PIK3C3 complex and promoting PI3P production. In MPP+-treated PC12 cells, CB6 inhibited cell apoptosis and increased cell viability by inducing autophagy. In MPTP-induced mouse model of PD, oral administration of CB6 (10, 20 mg· kg-1· d-1, for 21 days) significantly improved motor dysfunction and prevented the loss of dopaminergic neurons in the striatum and substantia nigra pars compacta. Collectively, compound CB6 is a brain-permeable autophagy enhancer via PIK3C3 complex activation, which may help the prevention or treatment of PD.
Asunto(s)
Alcaloides , Fármacos Neuroprotectores , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Alcaloides/farmacología , Animales , Autofagia , Fosfatidilinositol 3-Quinasas Clase III/farmacología , Neuronas Dopaminérgicas , Indoles , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/patología , Ratas , Compuestos de EspiroRESUMEN
Extracellular clustering of amyloid-ß (Aß) and an impaired autophagy lysosomal pathway (ALP) are the hallmark features in the early stages of incurable Alzheimer's disease (AD). There is a pressing need to find or develop new small molecules for diagnostics and therapeutics for the early stages of AD. Herein, we report a small molecule, namely F-SLCOOH, which can bind and detect Aß1-42, Iowa mutation Aß, Dutch mutation Aß fibrils and oligomers exhibiting enhanced emission with high affinity. Importantly, F-SLCOOH can readily pass through the blood-brain barrier and shows highly selective binding toward the extracellular Aß aggregates in real-time in live animal imaging of a 5XFAD mice model. In addition, a high concentration of F-SLCOOH in both brain and plasma of wildtype mice after intraperitoneal administration was found. The ex vivo confocal imaging of hippocampal brain slices indicated excellent colocalization of F-SLCOOH with Aß positive NU1, 4G8, 6E10 A11 antibodies and THS staining dye, affirming its excellent Aß specificity and targetability. The molecular docking studies have provided insight into the unique and specific binding of F-SLCOOH with various Aß species. Importantly, F-SLCOOH exhibits remarkable anti-fibrillation properties against toxic Aß aggregate formation of Aß1-42, Iowa mutation Aß, and Dutch mutation Aß. F-SLCOOH treatment also exerts high neuroprotective functions and promotes autophagy lysosomal biogenesis in neuronal AD cell models. In summary, the present results suggest that F-SLCOOH is a highly promising theranostic agent for diagnosis and therapeutics of AD.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Lisosomas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Ratones , Péptidos beta-Amiloides/metabolismo , Lisosomas/metabolismo , Humanos , Mutación , Simulación del Acoplamiento Molecular , Placa Amiloide/metabolismo , Nanomedicina Teranóstica , Ratones TransgénicosRESUMEN
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles in the brain. The overexpression of amyloid-ß precursor protein (APP) in an AD brain results in the binding of APP intracellular domain (AICD) to Fe65 protein via the C-terminal Fe65-PTB2 interaction, which then triggers the secretion of amyloid-ß and the consequent pathogenesis of AD. Apparently, targeting the interaction between APP and Fe65 can offer a promising therapeutic approach for AD. Recently, exosome, a type of extracellular vesicle with diameter around 30-200 nm, has gained much attention as a potential delivery tool for brain diseases, including AD, due to their ability to cross the blood-brain barrier, their efficient uptake by autologous cells, and their ability to be surface-modified with target-specific receptor ligands. Here, the engineering of hippocampus neuron cell-derived exosomes to overexpress Fe65, enabled the development of a novel exosome-based targeted drug delivery system, which carried Corynoxine-B (Cory-B, an autophagy inducer) to the APP overexpressed-neuron cells in the brain of AD mice. The Fe65-engineered HT22 hippocampus neuron cell-derived exosomes (Fe65-EXO) loaded with Cory-B (Fe65-EXO-Cory-B) hijacked the signaling and blocked the natural interaction between Fe65 and APP, enabling APP-targeted delivery of Cory-B. Notably, Fe65-EXO-Cory-B induced autophagy in APP-expressing neuronal cells, leading to amelioration of the cognitive decline and pathogenesis in AD mice, demonstrating the potential of Fe65-EXO-Cory-B as an effective therapeutic intervention for AD.
Asunto(s)
Enfermedad de Alzheimer , Exosomas , Ratones , Animales , Enfermedad de Alzheimer/patología , Exosomas/genética , Exosomas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Cognición , Neuronas/patologíaRESUMEN
The autophagy-lysosomal pathway (ALP) is a major cellular machinery involved in the clearance of aggregated proteins in Alzheimer disease (AD). However, ALP is dramatically impaired during AD pathogenesis via accumulation of toxic amyloid beta (Aß) and phosphorylated-Tau (phospho-Tau) proteins in the brain. Therefore, activation of ALP may prevent the increased production of Aß and phospho-Tau in AD. Peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that can activate autophagy, and transcriptionally regulate transcription factor EB (TFEB) which is a key regulator of ALP. This suggests that targeting PPARα, to reduce ALP impairment, could be a viable strategy for AD therapy. In this study, we investigated the anti-AD activity of Caudatin, an active constituent of Cynanchum otophyllum (a traditional Chinese medicinal herb, Qing Yang Shen; QYS). We found that Caudatin can bind to PPARα as a ligand and augment the expression of ALP in microglial cells and in the brain of 3XTg-AD mice model. Moreover, Caudatin could activate PPARα and transcriptionally regulates TFEB-augmented lysosomal degradation of Aß and phosphor-Tau aggregates in AD cell models. Oral administration of Caudatin decreased AD pathogenesis and ameliorated the cognitive dysfunction in 3XTg-AD mouse model. Conclusively, Caudatin can be a potential AD therapeutic agent via activation of PPARα-dependent ALP.
RESUMEN
Alzheimer's disease (AD) is an age-associated neurodegenerative disease; it is the most common cause of senile dementia. Klotho, a single-pass transmembrane protein primarily generated in the brain and kidney, is active in a variety of metabolic pathways involved in controlling neurodegeneration and ageing. Recently, many studies have found that the upregulation of Klotho can improve pathological cognitive deficits in an AD mice model and have demonstrated that Klotho plays a role in the induction of autophagy, a major contributing factor for AD. Despite the close association between Klotho and neurodegenerative diseases, such as AD, the underlying mechanism by which Klotho contributes to AD remains poorly understood. In this paper, we will introduce the expression, location and structure of Klotho and its biological functions. Specifically, this review is devoted to the correlation of Klotho protein and the AD phenotype, such as the effect of Klotho in upregulating the amyloid-beta clearance and in inducing autophagy for the clearance of toxic proteins, by regulating the autophagy lysosomal pathway (ALP). In summary, the results of multiple studies point out that targeting Klotho would be a potential therapeutic strategy in AD treatment.
RESUMEN
BACKGROUND: Collective evidences have indicated that intracellular accumulation of hyperphosphorylated tau forms neurofibrillary tangles in the brain, which impairs memory, cognition and affects social activities in Alzheimer's disease (AD). PURPOSE: To investigate the tau-reducing, and memory-enhancing properties of protopine (PRO), a natural alkaloid isolated from Chinese herbal medicine Corydalis yanhusuo (Yanhusuo in Chinese). STUDY DESIGN: By using Histone deacetylase 6 (HDAC6) profiling and immunoprecipitation assays, we assessed that PRO mediated the heat shock protein 90 (HSP90) chaperonic activities for the degradation of pathological tau in AD cell culture models. To study the efficacy of PRO in vivo, we employed 3xTg-AD and P301S tau mice models. METHODS: Liquid chromatography/quadrupole time-of-flight mass spectrometry was used to analyze the pharmacokinetic profile of PRO. Seven-month-old 3xTg-AD mice and 1.5-month-old P301S mice were administered PRO (1 and 2.5 mg/kg) orally every day. Morris water maze, contextual fear conditioning and rotarod assays were applied for studying memory functions. Sarkosyl differential centrifugation was used to analyze soluble and insoluble tau. Immunohistochemical analysis were performed to determine tau deposits in AD mice's brain sections. Molecular docking, binding affinity studies and primary cell culture studies were performed to demonstrate the mechanism of action of PRO in silico and in vitro. RESULTS: Our pharmacokinetic profiling demonstrated that PRO significantly entered the brain at a concentration of 289.47 ng/g, and specifically attenuated tau pathology, improved learning and memory functions in both 3xTg-AD and P301S mice. Docking, binding affinity studies, and fluorometric assays demonstrated that PRO directly bound to the catalytic domain 1 (CD1) of HDAC6 and down-regulated its activity. In primary cortical neurons, PRO enhanced acetylation of α-tubulin, indicating HDAC6 inhibition. Meanwhile, PRO promoted the ubiquitination of tau and recruited heat shock protein 70 (HSP70) and heat shock cognate complex 71 (HSC70) for the degradation of pathological tau via the ubiquitin-proteasomal system (UPS). CONCLUSION: We identified PRO as a natural HDAC6 inhibitor that attenuated tau pathology and improved memory dysfunctions in AD mice. The findings from this study provides a strong justification for future clinical development of plant-derived protopine as a novel agent for the treatment of tau-related neurodegenerative diseases.
Asunto(s)
Enfermedad de Alzheimer , Histona Desacetilasa 6 , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Benzofenantridinas , Alcaloides de Berberina , Modelos Animales de Enfermedad , Histona Desacetilasa 6/antagonistas & inhibidores , Ratones , Ratones Transgénicos , Simulación del Acoplamiento Molecular , Proteínas tauRESUMEN
Accumulation of amyloid-ß (Aß) oligomers and phosphorylated Tau aggregates are crucial pathological events or factors that cause progressive neuronal loss, and cognitive impairments in Alzheimer's disease (AD). Current medications for AD have failed to halt, much less reverse this neurodegenerative disorder; therefore, there is an urgent need for the development of effective and safe drugs for AD therapy. In the present study, the in vivo therapeutic efficacy of an Aß-oligomer-targeted fluorescent probe, F-SLOH, was extensively investigated in 5XFAD and 3XTg-AD mouse models. We have shown that F-SLOH exhibits an efficient inhibitory activity against Aß aggregation in vivo, and acts as an effective theranostic agent for the treatment of multiple neuropathological changes in AD mouse models. F-SLOH has been found to significantly reduce not only the levels of Aß oligomers, Tau aggregates and plaques but also the levels of amyloid precursor protein (APP) and its metabolites via autophagy lysosomal degradation pathway (ALP) in the brains of 5XFAD and 3XTg-AD mice. It also reduces astrocyte activation and microgliosis ultimately alleviating neuro-inflammation. Furthermore, F-SLOH mitigates hyperphosphorylated Tau aggregates, synaptic deficits and ameliorates synaptic memory function, and cognitive impairment in AD mouse models. The mechanistic studies have shown that F-SLOH promotes the clearance of C-terminal fragment 15 (CTF15) of APP and Paired helical filaments of Tau (PHF1) in stable cell models via the activation of transcription factor EB (TFEB). Moreover, F-SLOH promotes ALP and lysosomal biogenesis for the clearance of soluble, insoluble Aß, and phospho Tau. Our results unambiguously reveal effective etiological capabilities of theranostic F-SLOH to target and intervene multiple neuropathological changes in AD mouse models. Therefore, F-SLOH demonstrates tremendous therapeutic potential for treating AD in its early stage.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Cognición , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Nanomedicina Teranóstica , Proteínas tau/metabolismoRESUMEN
Emerging evidence from Alzheimer's disease (AD) patients suggests that reducing tau pathology can restore cognitive and memory loss. To reduce tau pathology, it is critical to find brain-permeable tau-degrading small molecules that are safe and effective. HDAC6 inhibition has long been considered a safe and effective therapy for tau pathology. Recently, we identified protopine as a dibenzazecine alkaloid with anti-HDAC6 and anti-AD activities. In this study, we synthesized and tested novel protopine derivatives for their pharmacological action against AD. Among them, bromo-protopine (PRO-Br) demonstrated a two-fold increase in anti-HDAC6 activity and improved anti-tau activities compared to the parent compound in both in vitro and in vivo AD models. Furthermore, molecular docking results showed that PRO-Br binds to HDAC6, with a ∆G value of -8.4 kcal/mol and an IC50 value of 1.51 µM. In neuronal cell lines, PRO-Br reduced pathological tau by inducing chaperone-mediated autophagy (CMA). In 3xTg-AD and P301S tau mice models, PRO-Br specifically decreased the pathogenic hyperphosphorylated tau clumps and led to the restoration of memory functions. In addition, PRO-Br treatment promoted the clearance of pathogenic tau by enhancing the expression of molecular chaperones (HSC70) and lysosomal markers (LAMP2A) via CMA in AD models. Our data strongly suggest that administration of the brain-permeable protopine derivative PRO-Br, could be a viable anti-tau therapeutic strategy for AD.
RESUMEN
Parkinson's disease (PD) is a common neurodegenerative disease featured by progressive degeneration of nigrostriatal dopaminergic neurons (DA) accompanied with motor function impairment. Accumulating evidence has demonstrated that natural compounds from herbs have potent anti-PD efficacy in PD models. Among those compounds, resveratrol, a polyphenol found in many common plants and fruits, is more effective against PD. Resveratrol has displayed a potent neuroprotective efficacy in several PD animal models. However, there is still no systematic analysis of the quality of methodological design of these studies, nor of their results. In this review, we retrieved and analyzed 18 studies describing the therapeutic effect of resveratrol on PD animal models. There are 5 main kinds of PD rodent models involved in the 18 articles, including chemical-induced (MPTP, rotenone, 6-OHDA, paraquat, and maneb) and transgenic PD models. The neuroprotective mechanisms of resveratrol were mainly concentrated on the antioxidation, anti-inflammation, ameliorating mitochondrial dysfunction, and motor function. We discussed the disadvantages of different PD animal models, and we used meta-analysis approach to evaluate the results of the selected studies and used SYRCLE's risk of bias tool to evaluate the methodological quality. Our analytical approach minimized the bias of different studies. We have also summarized the pharmacological mechanisms of resveratrol on PD models as reported by the researchers. The results of this study support the notion that resveratrol has significant neuroprotective effects on different PD models quantified using qualitative and quantitative methods. The collective information in our review can guide researchers to further plan their future experiments without any hassle regarding preclinical and clinical studies. In addition, this collective assessment of animal studies can provide a qualitative analysis of different PD animal models, either to guide further testing of these models or to avoid unnecessary duplication in their future research.
RESUMEN
Neurodegenerative diseases (NDs) are common chronic diseases related to progressive damage of the nervous system. Globally, the number of people with an ND is dramatically increasing consistent with the fast aging of society and one of the common features of NDs is the abnormal aggregation of diverse proteins. Autophagy is the main process by which misfolded proteins and damaged organelles are removed from cells. It has been found that the impairment of autophagy is associated with many NDs, suggesting that autophagy has a vital role in the neurodegeneration process. Recently, more and more studies have reported that autophagy inducers display a protective role in different ND experimental models, suggesting that enhancement of autophagy could be a potential therapy for NDs. In this review, the evidence for beneficial effects of traditional Chinese medicine (TCM) regulate autophagy in the models of Alzheimer's disease (AD), Parkinson's disease (PD), and other NDs are presented and common autophagy-related mechanisms are identified. The results demonstrate that TCM which regulate autophagy are potential therapeutic candidates for ND treatment.
Asunto(s)
Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Degeneración Nerviosa , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/efectos de los fármacos , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patologíaRESUMEN
BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid ß plaques (Aß) and neurofibrillary tangles (NFTs) is the key pathological hallmark of AD. Accumulating evidence suggest that impairment of autophagy-lysosomal pathway (ALP) plays key roles in AD pathology. PURPOSE: The present study aims to assess the neuroprotective effects of Qingyangshen (QYS), a Chinese herbal medicine, in AD cellular and animal models and to determine its underlying mechanisms involving ALP regulation. METHODS: QYS extract was prepared and its chemical components were characterized by LC/MS. Then the pharmacokinetics and acute toxicity of QYS extract were evaluated. The neuroprotective effects of QYS extract were determined in 3XTg AD mice, by using a series of behavioral tests and biochemical assays, and the mechanisms were examined in vitro. RESULTS: Oral administration of QYS extract improved learning and spatial memory, reduced carboxy-terminal fragments (CTFs), amyloid precursor protein (APP), Aß and Tau aggregates, and inhibited microgliosis and astrocytosis in the brains of 3XTg mice. Mechanistically, QYS extract increased the expression of PPARα and TFEB, and promoted ALP both in vivo and in vitro. CONCLUSION: QYS attenuates AD pathology, and improves cognitive function in 3XTg mice, which may be mediated by activation of PPARα-TFEB pathway and the subsequent ALP enhancement. Therefore, QYS may be a promising herbal material for further anti-AD drug discovery.
Asunto(s)
Enfermedad de Alzheimer , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Medicamentos Herbarios Chinos/farmacología , PPAR alfa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Proteínas tauRESUMEN
Phage display is effective in screening peptides that mimic venom's neutralizing epitopes. A phage display cyclized heptapeptide library (C7C library) was panned with purified divalent antivenin IgG, which neutralizes Naja naja atra venom (NAV) and Bungarus multicinctus venom (BMV). The selected heptapeptide sequences were aligned with known protein sequences of NAV and BMV in GenBank. One of the four consensus sequences, L/PKSSLL, mimicked the crucial epitope on Loop III of Taiwan cobra cardiotoxin that is associated with the venom's lethal potency. In dot blot analysis, several clones showed varying reactivities for NAV monovalent antivenin and lesser cross-reactions with BMV monovalent antivenin. The KSSLLRN-carrying phage occurred four times in selected clones and showed the strongest reactivity to NAV monovalent antivenin. Furthermore, the QDSLLPS-carrying phage also presented significant dot blot signal, indicating that the SLL sequence shared by these two clones may be a crucial antibody-binding site.
Asunto(s)
Proteínas Cardiotóxicas de Elápidos/química , Proteínas Cardiotóxicas de Elápidos/inmunología , Secuencia de Consenso , Epítopos/química , Epítopos/inmunología , Imitación Molecular , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Proteínas Cardiotóxicas de Elápidos/genética , Mapeo Epitopo , Epítopos/genética , Femenino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Pruebas de Neutralización , Biblioteca de Péptidos , Estructura Secundaria de ProteínaRESUMEN
Seven new lignanamides, lyciumamides D-J (1-4 and 9-11), together with nine known analogues (5-8 and 12-16), were isolated from the root bark of Lycium chinense. The structures of the isolated compounds were elucidated on the basis of NMR spectroscopic and HRESIMS data. All isolated compounds were evaluated for antihyperlipidemic activities in HepG2 cells. The primary structure-activity relationships were discussed.
Asunto(s)
Hipolipemiantes/farmacología , Lignanos/farmacología , Lycium/química , Células Hep G2 , Humanos , Hipolipemiantes/aislamiento & purificación , Lignanos/aislamiento & purificación , Estructura Molecular , Corteza de la Planta/química , Raíces de Plantas/química , Relación Estructura-ActividadRESUMEN
OBJECTIVES: To investigate the antidiabetic, antihyperlipidaemic and antioxidant activity of total flavonoids in Selaginella tamariscina (Beauv.) Spring (TFST) in a mouse model of diabetes. METHODS: Normal mice, mice fed with a high-fat emulsion diet and streptozotocin (STZ)-induced diabetic mice were treated with TFST for 6 weeks. Serum glucose, insulin and lipid, hepatic steatosis, production of the protein visfatin and antioxidant indices were evaluated. KEY FINDINGS: TFST significantly decreased the concentration of fasting blood glucose, total cholesterol, triglycerides and low-density-lipoprotein cholesterol, while it increased the levels of insulin and high-density-lipoprotein cholesterol in diabetic mice. TFST also improved the results of the oral glucose tolerance test to a certain degree. Furthermore, both the free fatty acid levels in the liver and hepatic steatosis were ameliorated by TFST treatment. These changes may be be associated with decreased production of visfatin. Administration of TFST also significantly decreased the levels of malondialdehyde, nitric oxide and inducible nitric oxide synthase and increased the content of glutathione and the activity of superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase in the liver. No change in blood glucose levels were observed in the normal mice treated with TFST. CONCLUSIONS: TFST showed an excellent effect in reducing the high blood glucose level but had no effect on normal blood glucose level. The antidiabetic activity of TFST could be explained by its antioxidant and antihyperlipidaemic activity, which finally elevated the insulin sensitivity of liver.