Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 42(3): 305-325, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35045729

RESUMEN

BACKGROUND: ANG (angiogenin) is essential for cellular adaptation to endoplasmic reticulum (ER) stress, a process closely associated with cardiovascular diseases, including atherosclerosis. We aimed to investigate the role of ANG in the progression of atherosclerosis and elucidate its underlying molecular mechanisms. METHODS: We constructed adenoassociated virus 9 ANG overexpression vectors and endothelial ANG- and ApoE (apolipoprotein E)-deficient mice to determine the effects of ANG on ER stress and atherosclerotic lesions. RNA sequencing of endothelial ANG- and ApoE-deficient mice identified ANG-dependent downregulation of ST3GAL5 (ST3 beta-galactoside alpha-2,3-sialyltransferase 5) expression, and the direct regulation of ST3GAL5 by ANG was verified by chromatin immunoprecipitation sequencing and luciferase reporter assay results. RESULTS: Reanalysis of expression profiling datasets indicated decreased ANG levels in patients' atherosclerotic lesions, and these data were validated in aortas from ApoE-/- mice. ER stress marker and adhesion molecule levels, aortic root lesions and macrophage deposition were substantially reduced in ApoE-/- mice injected with an adenoassociated virus 9 ANG without signal peptide (ANG-ΔSP) overexpression vector compared with empty and full-length ANG overexpression vectors. Endothelial ANG deficiency significantly elevated ER stress and increased adhesion molecule expression, which aggravated atherosclerotic lesions and enhanced THP-1 monocyte adhesion to endothelial cells in vivo and in vitro, respectively. Furthermore, ANG-ΔSP overexpression significantly attenuated oxidized low-density lipoprotein-induced ER stress and THP-1 monocyte adhesion to endothelial cells, which were reversed by ST3GAL5 inhibition. CONCLUSIONS: These results suggest that endothelial intracellular ANG is a novel therapeutic against atherosclerosis and exerts atheroprotective effects via ST3GAL5-mediated ER stress suppression.


Asunto(s)
Aterosclerosis/prevención & control , Estrés del Retículo Endoplásmico/fisiología , Ribonucleasa Pancreática/metabolismo , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Noqueados , Ratones Noqueados para ApoE , Modelos Cardiovasculares , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasa Pancreática/deficiencia , Ribonucleasa Pancreática/genética , Sialiltransferasas/antagonistas & inhibidores , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Regulación hacia Arriba
2.
Biochem Biophys Res Commun ; 611: 91-98, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35483224

RESUMEN

Pressure overload induced cardiac remodeling is associated with a complex spectrum of pathophysiological mechanisms. As inflammatory cells, macrophages maintain a critical position in mechanical stress-induced myocardial remodeling. HMGB1 is a highly conserved, ubiquitous protein in various types of cells whose biological roles are closely dependent on subcellular sites. However, whether HMGB1 expressed in macrophages performs the protective or pathological responses in cardiac remodeling is unknown. In this study, we generated the myeloid-specific HMGB1 knockout mice and detected the effects of macrophage HMGB1 in response to pathophysiological stress. Our data showed HMGB1 in macrophages played a protective role against the pressure overload induced cardiac pathophysiology. The deletion of HMGB1 in macrophages gains more differentiation of M1-type pro-inflammatory macrophage during the mechanical stress-induced myocardial remodeling, thereby aggravating the inflammatory response in whole heart, resulting in accelerated deterioration of cardiac function. Moreover, in vitro data also validated HMGB1 got involved in the process of macrophage polarization. Macrophages without HMGB1 are more inclined to differentiate into M1 during the stretch process. In summary, the present results indicated that loss of HMGB1 in macrophages can exacerbate heart failure through increased differentiation of pro-inflammatory macrophages and enhanced inflammatory response.


Asunto(s)
Proteína HMGB1 , Animales , Proteína HMGB1/metabolismo , Corazón , Macrófagos/metabolismo , Ratones , Miocardio/metabolismo , Remodelación Ventricular/fisiología
3.
Kidney Blood Press Res ; 47(2): 135-146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34852339

RESUMEN

BACKGROUND: This study aims to compare whether 2 different routes of renal denervation (RDN) from the intima and adventitia of the renal artery can reduce renal fibrosis in a pig model of hypertension induced by a high-fat diet and to explore possible molecular mechanisms. METHODS: Twenty-four Bama miniature pigs were randomly divided into a control group (normal diet, n = 6) or a hypertension model group (high-fat diet, n = 18). The model group was randomly divided into the intima-RDN group (n = 6), the adventitia-RDN group (n = 6), or the renal arteriography-only group (sham group, n = 6). All animals were fed separately. The model group was fed a high-fat diet after the operation, and the control group was fed conventionally for 6 months. After 6 months, renal artery angiography was performed again to observe the condition of the renal arteries, after which all animals were euthanized. The blood pressure and blood biochemical results of each group were evaluated 6 months after the operation; kidney tissue morphology and collagen fiber content were examined by hematoxylin-eosin staining and Masson staining; superoxide dismutase activity and the malondialdehyde content of kidney tissue were assessed by a biochemical enzyme method; the protein expression level of transforming growth factor-ß 1 (TGF-ß1), α-smooth muscle actin (α-SMA), and Smad3 was assessed by Western blot, and electron microscopy was used to examine changes in the kidney microstructure. RESULTS: After 6 months of a high-fat diet, the blood lipid levels of the model group were significantly higher compared to baseline and to that of the control group during the same period (all showed p < 0.05); the blood lipid levels of the control group did not change significantly from baseline (p > 0.05). The degree of glomerular damage caused by hyperlipidemia in the intima-RDN group and the adventitia-RDN group was significantly lower than that of the sham and control groups, and the renal fibrosis area percentage was also significantly lower (p < 0.05). Electron microscopy showed that both the intima-RDN group and the adventitia-RDN group had a more even distribution of chromosomes and less mitochondrial swelling compared with the sham group. CONCLUSION: RDN from the adventitia of the renal artery and RDN from the intima of the renal artery have the similar advantages of delaying high-fat-induced renal fibrosis. The antifibrotic effect of RDN may be related to inhibition of the TGF-ß1/Smad3 pathway.


Asunto(s)
Dieta Alta en Grasa , Arteria Renal , Adventicia , Animales , Grosor Intima-Media Carotídeo , Desnervación , Dieta Alta en Grasa/efectos adversos , Fibrosis , Riñón/patología , Obesidad/patología , Porcinos
4.
J Cell Mol Med ; 25(5): 2572-2583, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33484110

RESUMEN

Dilated cardiomyopathy (DCM) is a severe life-threatening disease worldwide, and the underlying mechanisms remain unclear. Circular RNAs (circRNAs) have been reported to play important roles in various cardiovascular diseases and can function as competitive endogenous RNAs (ceRNAs). However, their role in human DCM has not been fully elucidated. In the present study, heart samples from DCM patients and healthy controls were used to identify circRNAs by RNA sequencing. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to validate differentially expressed circRNAs and mRNAs. A total of 9585 circRNAs and 22050 mRNAs were detected in the two groups. Overall, 213 circRNAs and 617 mRNAs were significantly up-regulated in the DCM group compared with the control group. Similarly, 85 circRNAs and 1125 mRNAs were significantly down-regulated. According to the ceRNA theory, circRNAs can indirectly interact with mRNAs by directly binding to microRNAs (miRNAs), and circRNAs and mRNAs should be concurrently either up-regulated or down-regulated. Based on this theory, we constructed two circRNA-miRNA-mRNA networks by using the RNA sequencing data and prediction by proprietary software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to probe the potential functions of differentially expressed circRNAs. In conclusion, this study revealed that the expression of cardiac circRNAs was altered in human DCM and explored the potential functions of circRNAs by constructing ceRNA networks. These findings provide a foundation for future studies of circRNAs in DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Interferencia de ARN , ARN Circular , ARN Mensajero , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/fisiopatología , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Reproducibilidad de los Resultados
5.
Basic Res Cardiol ; 116(1): 65, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34914018

RESUMEN

Current evidence indicates that coronary microcirculation is a key target for protecting against cardiac ischemia-reperfusion (I/R) injury. Mitochondrial calcium uniporter (MCU) complex activation and mitochondrial calcium ([Ca2+]m) overload are underlying mechanisms involved in cardiovascular disease. Histidine triad nucleotide-binding 2 (HINT2) has been reported to modulate [Ca2+]m via the MCU complex, and our previous work demonstrated that HINT2 improved cardiomyocyte survival and preserved heart function in mice with cardiac ischemia. This study aimed to explore the benefits of HINT2 on cardiac microcirculation in I/R injury with a focus on mitochondria, the MCU complex, and [Ca2+]m overload in endothelial cells. The present work demonstrated that HINT2 overexpression significantly reduced the no-reflow area and improved microvascular perfusion in I/R-injured mouse hearts, potentially by promoting endothelial nitric oxide synthase (eNOS) expression and phosphorylation. Microvascular barrier function was compromised by reperfusion injury, but was repaired by HINT2 overexpression via inhibiting VE-Cadherin phosphorylation at Tyr731 and enhancing the VE-Cadherin/ß-Catenin interaction. In addition, HINT2 overexpression inhibited the inflammatory response by suppressing vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Mitochondrial fission occurred in cardiac microvascular endothelial cells (CMECs) subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury and resulted in mitochondrial dysfunction and mitochondrion-dependent apoptosis, the effects of which were largely relieved by HINT2 overexpression. Additional experiments confirmed that [Ca2+]m overload was an initiating factor for mitochondrial fission and that HINT2 suppressed [Ca2+]m overload via modulation of the MCU complex through directly interacting with MCU in CMECs. Regaining [Ca2+]m overload by spermine, an MCU agonist, abolished all the protective effects of HINT2 on OGD/R-injured CMECs and I/R-injured cardiac microcirculation. In conclusion, the present report demonstrated that HINT2 overexpression inhibited MCU complex-mitochondrial calcium overload-mitochondrial fission and apoptosis pathway, and thereby attenuated cardiac microvascular ischemia-reperfusion injury.


Asunto(s)
Canales de Calcio/metabolismo , Calcio , Hidrolasas/metabolismo , Proteínas Mitocondriales/metabolismo , Daño por Reperfusión , Animales , Calcio/metabolismo , Células Endoteliales/metabolismo , Ratones , Mitocondrias , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismo
6.
BMC Cardiovasc Disord ; 21(1): 620, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34963447

RESUMEN

BACKGROUND: It is well established that body mass index (BMI) and troponins are independently associated. However, whether the obesity could cause myocardial injury independent of coronary heart disease (CHD) remains unclear. This study focuses on the relationship between BMI and troponins, and whether this relationship is being attenuated when CHD is accounted for. METHODS: In populations without acute ischemic events, 383 patients with coronary artery stenosis less than 75% were included, that is, people who have not yet reached the indications for coronary intervention, and of them 70 patients being obese according to BMI ≥ 28 kg/m2. Continuous variables were represented as mean ± SD or median(inter quartile range[IQR]). Chi-square test was adopted for categorical data. Correlations between variables were evaluated by Spearman analysis, multiple regression or logistic regression. RESULTS: The circulating hs-cTnT level was higher in the obese group [8(6,11) ng/L vs. 6(4,9) ng/L; p < 0.001). In subgroup analysis based on the presence or absence of coronary heart disease(CHD), the adjusted ß(95%CI) for circulating hs-cTnT exhibited a proportional relationship with BMI when the non-obesity were defined as the reference[ß; 2.22(95%CI, 0.73 to 3.71) in non-CHD, 5.58(95%CI, 0.70 to 10.46) in CHD, p < 0.05]. Additionally, the degree of coronary stenosis has shown a positive correlation with circulating hs-cTnT (rho = 0.1162; p < 0.05). CONCLUSION: When CHD is taken into account, obesity is independently associated to the elevation of circulating hs-cTnT, a biomarker of myocardial injury, potentially indicating the impact of obesity on non-ischemic subclinical myocardial injury.


Asunto(s)
Cardiopatías/etiología , Obesidad/complicaciones , Troponina T/sangre , Función Ventricular Izquierda , Remodelación Ventricular , Anciano , Biomarcadores/sangre , Índice de Masa Corporal , Estudios Transversales , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Cardiopatías/sangre , Cardiopatías/diagnóstico , Cardiopatías/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/diagnóstico , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Medición de Riesgo , Regulación hacia Arriba
7.
BMC Cardiovasc Disord ; 20(1): 176, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32295540

RESUMEN

BACKGROUND: Renal denervation (RDN) targeting the sympathetic nerves in the renal arterial adventitia as a treatment of resistant hypertension can cause endothelial injury and vascular wall injury. This study aims to evaluate the risk of atherosclerosis induced by RDN in renal arteries. METHODS: A total of 15 minipigs were randomly assigned to 3 groups: (1) control group, (2) sham group, and (3) RDN group (n = 5 per group). All pigs were fed a high-fat diet (HFD) for 6 months after appropriate treatment. The degree of intimal thickening of renal artery and the conversion of endothelin 1 (ET-1) receptors were evaluated by histological staining. Western blot was used to assess the expression of nitric oxide (NO) synthesis signaling pathway, ET-1 and its receptors, NADPH oxidase 2 (NOX2) and 4-hydroxynonenal (4-HNE) proteins, and the activation of NF-kappa B (NF-κB). RESULTS: The histological staining results suggested that compared to the sham treatment, RDN led to significant intimal thickening and significantly promoted the production of endothelin B receptor (ETBR) in vascular smooth muscle cells (VSMCs). Western blotting analysis indicated that RDN significantly suppressed the expression of AMPK/Akt/eNOS signaling pathway proteins, and decreased the production of NO, and increased the expression of endothelin system proteins including endothelin-1 (ET-1), endothelin converting enzyme 1 (ECE1), endothelin A receptor (ETAR) and ETBR; and upregulated the expression of NOX2 and 4-HNE proteins and enhanced the activation of NF-kappa B (NF-κB) when compared with the sham treatment (all p < 0.05). There were no significant differences between the control and sham groups (all p > 0.05). CONCLUSIONS: RDN aggravated endothelial endocrine dysfunction and intimal thickening, and increased the risk of atherosclerosis in renal arteries of HFD-fed pigs.


Asunto(s)
Aterosclerosis/etiología , Dieta Alta en Grasa , Células Endoteliales/metabolismo , Neointima , Obesidad/metabolismo , Arteria Renal/inervación , Arteria Renal/metabolismo , Simpatectomía/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Aldehídos/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Modelos Animales de Enfermedad , Células Endoteliales/patología , Masculino , NADPH Oxidasa 2/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Endotelina/metabolismo , Arteria Renal/patología , Transducción de Señal , Porcinos , Porcinos Enanos
8.
BMC Cardiovasc Disord ; 20(1): 323, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631244

RESUMEN

BACKGROUND: Coronary artery disease (CAD) and atrial fibrillation (AF) frequently coexist in clinical practice, making it challenging for the treating physician to choose anticoagulation and antiplatelet therapies. The aim of this study was to investigate antithrombotic strategies and assess related adverse outcomes in stable coronary artery disease (SCAD) and acute coronary syndrome (ACS) patients with AF when the CHA2DS2-VASc score was ≥2. METHODS: We performed a retrospective study and collected data from a computer-based patient record management system in Zhengzhou University People's Hospital in China. In total, 2978 patients with a hospital discharge diagnosis of CAD and concomitant AF who met the inclusion criteria were enrolled from January 1, 2012 to December 31, 2016, and data from 2050 patients were finally analysed. The χ2 test was used to compare the incidences of clinical endpoints between the SCAD+AF group and the ACS + AF group. Multivariable Cox regression analysis was performed to identify independent predictive factors of adverse outcomes in both groups. RESULTS: Oral anticoagulant (OAC) monotherapy was the most common antithrombotic therapy in SCAD+AF patients (49.55%), while double antiplatelet therapy (DAPT) was the most common treatment in ACS + AF patients (54.19%) at discharge. OAC monotherapy significantly increased and the use of single antiplatelet therapy (SAPT) decreased during follow-up (34 ± 13 months) when compared to their use at discharge in the SCAD+AF group (all p < 0.001). In the ACS + AF group, the proportion of patients using DAPT decreased notably, while the proportions of patients using SAPT and dual therapy (DT) combining OAC with SAPT increased significantly during follow-up (all p < 0.001) compared to the proportions at discharge. According to multivariable Cox regression analysis, age, hypertension and prior stroke were independent risk factors for ischaemic stroke in the SCAD+AF group and ACS + AF group (all p < 0.05). OAC was an independent protective factor for ischaemic stroke in both groups (all p < 0.05). Previous bleeding independently increased the risk of haemorrhage in both groups (all p < 0.01). CONCLUSIONS: In this study, the proportion of anticoagulant-antiplatelet combined therapy was low in ACS + AF patients with high stroke risk. In clinical practice, the awareness of anticoagulation needs to be strengthened regarding patients with CAD and AF.


Asunto(s)
Síndrome Coronario Agudo/tratamiento farmacológico , Anticoagulantes/administración & dosificación , Fibrilación Atrial/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Terapia Antiplaquetaria Doble , Fibrinolíticos/administración & dosificación , Accidente Cerebrovascular Isquémico/prevención & control , Inhibidores de Agregación Plaquetaria/administración & dosificación , Trombosis/prevención & control , Síndrome Coronario Agudo/diagnóstico , Síndrome Coronario Agudo/mortalidad , Administración Oral , Anciano , Anticoagulantes/efectos adversos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/mortalidad , China , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/mortalidad , Terapia Antiplaquetaria Doble/efectos adversos , Femenino , Fibrinolíticos/efectos adversos , Hemorragia/inducido químicamente , Humanos , Accidente Cerebrovascular Isquémico/mortalidad , Masculino , Inhibidores de Agregación Plaquetaria/efectos adversos , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Trombosis/mortalidad , Factores de Tiempo , Resultado del Tratamiento
9.
BMC Cardiovasc Disord ; 19(1): 67, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902047

RESUMEN

BACKGROUND: Resistant hypertension and renal sympathetic hyperactivity are closely linked, and catheter-based renal denervation (RDN) is regarded as a new treatment strategy. However, the acute changes in vascular morphology and relaxation function have yet to be evaluated, and these may be important for the efficacy and safety of the procedure. In this study, we explored these questions by conventional temperature-controlled cardiac radiofrequency catheter-based RDN in a pig model. METHODS: Six mini-pigs were randomly divided into the renal denervation (RDN) group (n = 3) and the Sham-RDN group (n = 3). Animals in the RDN group underwent unilateral radiofrequency ablation, and those in the Sham-RDN group underwent the same procedure except for the ablation. The pigs were examined by angiography pre- and post-RDN and were euthanized immediately thereafter. Renal arteries were processed for histological and molecular biology analyses as well as for in vitro vascular tension testing. RESULTS: Compared with the Sham-RDN group, the RDN caused vascular intima and media injury, renal nerve vacuolization, mild collagen fiber hyperplasia and elastic fiber cleavage (all p < 0.05). The RDN group also significantly exhibited nitric oxide synthase pathway inhibition and decreased endothelium-independent vascular relaxation function Compared to the Sham-RDN group (all p < 0.05). CONCLUSIONS: In this porcine model, renal artery denervation led to vascular wall injury and endothelial dysfunction in the acute phase, which negatively affected vascular relaxation function. Thus, this process may be detrimental to the prognosis and progress of hypertension patients.


Asunto(s)
Ablación por Catéter/efectos adversos , Riñón/irrigación sanguínea , Arteria Renal/inervación , Simpatectomía/efectos adversos , Remodelación Vascular , Vasodilatación , Animales , Ablación por Catéter/instrumentación , Catéteres , Masculino , Modelos Animales , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Arteria Renal/metabolismo , Arteria Renal/patología , Arteria Renal/fisiopatología , Transducción de Señal , Porcinos , Porcinos Enanos , Simpatectomía/instrumentación , Simpatectomía/métodos
10.
Biomedicines ; 11(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37761020

RESUMEN

The initiation of atherosclerotic plaque is characterized by endothelial cell inflammation. In light of gasdermin E's (GSDME) role in pyroptosis and inflammation, this study elucidates its function in atherosclerosis onset. Employing Gsdme- and apolipoprotein E-deficient (Gsdme-/-/ApoE-/-) and ApoE-/- mice, an atherosclerosis model was created on a Western diet (WD). In vitro examinations with human umbilical vein endothelial cells (HUVECs) included oxidized low-density lipoprotein (ox-LDL) exposure. To explore the downstream mechanisms linked to GSDME, we utilized an agonist targeting the stimulator of the interferon genes (STING) pathway. The results showed significant GSDME activation in ApoE-/- mice arterial tissues, corresponding with atherogenesis. Gsdme-/-/ApoE-/- mice displayed fewer plaques and decreased vascular inflammation. Meanwhile, GSDME's presence was confirmed in endothelial cells. GSDME inhibition reduced the endothelial inflammation induced by ox-LDL. GSDME was linked to mitochondrial damage in endothelial cells, leading to an increase in cytoplasmic double-stranded DNA (dsDNA). Notably, STING activation partially offset the effects of GSDME inhibition in both in vivo and in vitro settings. Our findings underscore the pivotal role of GSDME in endothelial cells during atherogenesis and vascular inflammation, highlighting its influence on mitochondrial damage and the STING pathway, suggesting a potential therapeutic target for vascular pathologies.

11.
Front Pharmacol ; 14: 1184588, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593179

RESUMEN

Pyroptosis is a form of pro-inflammatory cell death that can be mediated by gasdermin D (GSDMD) activation induced by inflammatory caspases such as caspase-1. Emerging evidence suggests that targeting GSDMD activation or pyroptosis may facilitate the reduction of vascular inflammation and atherosclerotic lesion development. The current study investigated the therapeutic effects of inhibition of GSDMD activation by the novel GSDMD inhibitor N-Benzyloxycarbonyl-Leu-Leu-Ser-Asp(OMe)-fluoromethylketone (Z-LLSD-FMK), the specific caspase-1 inhibitor N-Benzyloxycarbonyl-Tyr-Val-Ala-Asp(OMe)-fluoromethylketone (Z-YVAD-FMK), and a combination of both on atherosclerosis in ApoE-/- mice fed a western diet at 5 weeks of age, and further determined the efficacy of these polypeptide inhibitors in bone marrow-derived macrophages (BMDMs). In vivo studies there was plaque formation, GSDMD activation, and caspase-1 activation in aortas, which increased gradually from 6 to 18 weeks of age, and increased markedly at 14 and 18 weeks of age. ApoE-/- mice were administered Z-LLSD-FMK (200 µg/day), Z-YVAD-FMK (200 µg/day), a combination of both, or vehicle control intraperitoneally from 14 to 18 weeks of age. Treatment significantly reduced lesion formation, macrophage infiltration in lesions, protein levels of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pyroptosis-related proteins such as activated caspase-1, activated GSDMD, cleaved interleukin(IL)-1ß, and high mobility group box 1 in aortas. No overt differences in plasma lipid contents were detected. In vitro treatment with these polypeptide inhibitors dramatically decreased the percentage of propidium iodide-positive BMDMs, the release of lactate dehydrogenase and IL-1ß, and protein levels of pyroptosis-related proteins both in supernatants and cell lysates elevated by lipopolysaccharide + nigericin. Notably however, there were no significant differences in the above-mentioned results between the Z-LLSD-FMK group and the Z-YVAD-FMK group, and the combination of both did not yield enhanced effects. These findings indicate that suppression of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and lesion development in ApoE-/- mice.

12.
ESC Heart Fail ; 9(4): 2325-2335, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35474306

RESUMEN

AIMS: Right ventricular pacing (RVP) dependence could impair left ventricular ejection fraction (LVEF). This study aimed to illuminate the relationship between RVP proportion and LVEF, as well as disclosing independent predictors of RVP dependence. METHODS AND RESULTS: Patients indicated for permanent pacemaker implantation were included (2016-2020). The ventricular pacing lead was placed in right ventricular apex or septum. Pacing mode programming followed universal standard. Electrocardiographic, echocardiographic, and serological parameters were collected. RVP dependence was defined according to its influence on LVEF. This study was of case-control design. Included patients were matched by potentially confounding factors through propensity score matching. A total of 1183 patients were included, and the mean duration of follow-up was 24 months. Percentage of RVP < 80% hardly influenced LVEF; however, LVEF tended to decrease with higher RVP proportion. High degree/complete atrioventricular block (AVB) [odds ratio (OR) = 5.71, 95% confidence interval (CI): 3.66-8.85], atrial fibrillation (AF) (OR = 2.04, 95% CI: 1.47-2.82), percutaneous coronary intervention (PCI) (OR = 2.89, 95% CI: 1.24-6.76), maximum heart rate (HRmax ) < 110 b.p.m. (OR = 2.74, 95% CI: 1.58-4.76), QRS duration > 120 ms (OR = 2.46, 95% CI: 1.42-4.27), QTc interval > 470 ms (OR = 2.01, 95% CI: 1.33-3.05), and pulmonary artery systolic pressure (PASP) > 40 mmHg (OR = 1.93, 95% CI: 1.46-2.56) were proved to predict RVP dependence. CONCLUSIONS: High RVP percentage (>80%) indicating RVP dependence significantly correlates with poor prognosis of cardiac function. High degree/complete AVB, AF, ischaemic aetiology, PCI history, HRmax  < 110 b.p.m., QRS duration > 120 ms, QTc interval > 470 ms, and PASP > 40 mmHg were verified as independent risk factors of RVP dependence.


Asunto(s)
Fibrilación Atrial , Bloqueo Atrioventricular , Marcapaso Artificial , Intervención Coronaria Percutánea , Fibrilación Atrial/etiología , Bloqueo Atrioventricular/epidemiología , Bloqueo Atrioventricular/etiología , Bloqueo Atrioventricular/terapia , Estimulación Cardíaca Artificial/efectos adversos , Estimulación Cardíaca Artificial/métodos , Humanos , Marcapaso Artificial/efectos adversos , Factores de Riesgo , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología
13.
Curr Pharm Des ; 28(9): 751-759, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34951571

RESUMEN

BACKGROUND AND OBJECTIVE: Myocardial infarction (MI) leads to pathological cardiac remodeling and heart failure. Sodium tanshinone IIA sulfonate (STS) shows to possess therapeutic potential. The present study aimed to explore the potential role of STS in ventricular remodeling post-MI. METHODS: Mice were randomly divided into sham, MI + normal saline (NS) and MI + STS (20.8 mg/kg/day intraperitoneally) groups. MI was established following left anterior descending artery ligation. Cardiac function was evaluated using echocardiography. Scar size and myocardial fibrosis-associated markers were detected using Masson's trichrome staining and western blot analysis (WB). Necrosis and inflammation were assessed using H&E staining, lactate dehydrogenase (LDH) detection, ELISA, immunohistochemical staining, and WB. Furthermore, angiogenesis markers and associated proteins were detected using immunohistochemical staining and WB. RESULTS: Mice treated with STS exhibited significant improvements in cardiac function, smaller scar size, and low expression levels of α-smooth muscle actin and collagen I and III at 28 days following surgery, compared with the NS-treated group. Moreover, treatment with STS reduced eosinophil necrosis, the infiltration of inflammatory cells, plasma levels of LDH, high mobility group protein B1, interleukin-1ß and tumor necrosis factor- α, and protein expression of these cytokines at 3 days. Macrophage infiltration was also decreased in the STS group in the early phase. Additionally, CD31+ vascular density, protein levels of hypoxia-inducible factor- 1α, and vascular endothelial growth factor were elevated in the STS-treated mice at 28 days. CONCLUSION: STS improved pathological remodeling post-MI, and the associated therapeutic effects may be a result of a decrease in myocardial necrosis, modulation of inflammation, and an increase in angiogenesis.


Asunto(s)
Infarto del Miocardio , Remodelación Ventricular , Animales , Cicatriz/patología , Modelos Animales de Enfermedad , Humanos , Inflamación/metabolismo , Ratones , Infarto del Miocardio/tratamiento farmacológico , Miocardio/metabolismo , Neovascularización Patológica/metabolismo , Fenantrenos , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Cell Death Discov ; 6: 106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101708

RESUMEN

Cardiac growth and remodelling are key biological processes influencing the physiological performance of the heart, and a previous study showed a critical role for intracellular HMGB1 in vitro. However, the in vivo study, which used conditional Hmgb1 ablation, did not show a significant effect on cellular or organic function. We have demonstrated the extracellular effect of HMGB1 as a pro-inflammatory molecule on cardiac remodelling. In this study, we found that HMGB1 deletion by cTnT-Cre in mouse hearts altered glucocorticoid receptor (GR) function and glycolipid metabolism, eventually leading to growth retardation, small heart and heart failure. The subcellular morphology did not show a significant change caused by HMGB1 knockout. The heart showed significant elevation of glycolysis, free fatty acid deposition and related enzyme changes. Transcriptomic analysis revealed a list of differentially expressed genes that coincide with glucocorticoid receptor function in neonatal mice and a significant increase in inflammatory genes in adult mice. Cardiac HMGB1 knockout led to a series of changes in PGC-1α, UCP3 and GyK, which were the cause of metabolic changes and further impacted cardiac function. Ckmm-Cre Hmgb1fl/fl mice did not show a specific phenotype, which was consistent with the reported negative result of cardiomyocyte-specific Hmgb1 deletion via MHC-Cre. We concluded that HMGB1 plays essential roles in maintaining normal cardiac growth, and different phenotype from cardiac-specific HMGB1-deficient mice may be caused by the cross with mice of different Cre strains.

15.
Eur J Med Res ; 25(1): 22, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32552871

RESUMEN

BACKGROUND: This study aims to evaluate the effects and safety of laparoscopic-based perivascular renal sympathetic nerve denervation (RDN) in a porcine model fed a high-fat diet. METHOD: Thirty-six high-fat diet-fed Bama minipigs were randomly divided into an RDN group (n = 18), in which minipigs received laparoscopic-based perivascular RDN, and a sham group (n = 18). All pigs were fed the high-fat diet after the operation to establish a model of obesity-induced hypertension. Bama pigs in the RDN and sham groups were killed at 3 time points [2 days after RDN (n = 6), day 90 (n = 6) and day 180 (n = 6)]. RESULT: The systolic blood pressure (SBP) and noradrenaline (NE) concentration in the kidney tissue were significantly lower in the RDN group than in the sham group at 2 days (113.83 ± 3.26 mmHg vs 129.67 ± 3.32 mmHg, P = 0.011, and 112.02 ± 17.34 ng/g vs 268.48 ± 20.61 ng/g, P < 0.001, respectively), 90 days (116.83 ± 3.88 mmHg vs 145.00 ± 4.22 mmHg, P = 0.001, respectively) and 180 days (129.33 ± 2.87 mmHg vs 168.57 ± 2.86 mmHg, P < 0.001, and 152.15 ± 16.61 ng/g vs 318.97 ± 24.84 ng/g, P < 0.001, respectively) after the operation. The diastolic blood pressure (DBP) was significantly lower in the RDN group than in sham group at 90 and 180 days after the operation (72.17 ± 2.7 mmHg vs 81.50 ± 2.22 mmHg, P = 0.037, and 76.83 ± 2.75 mmHg vs 86.33 ± 2.22 mmHg P = 0.021, respectively). Based on the pathological evaluation, the renal sympathetic nerve fascicles were successfully disrupted by radiofrequency energy after laparoscopic-based perivascular RDN, but the intima was intact. Tyrosine hydroxylase (TH) expression was decreased, while the expression of the S100 protein was increased in treated renal arteries after RDN. CONCLUSIONS: Laparoscopic-based perivascular RDN prevented the occurrence and development of hypertension, and thus it may be an efficient and safe method for controlling blood pressure in an experimental model.


Asunto(s)
Presión Sanguínea/fisiología , Hipertensión/fisiopatología , Riñón/cirugía , Laparoscopía , Animales , Ablación por Catéter/métodos , Estudios de Factibilidad , Hipertensión/prevención & control , Riñón/inervación , Riñón/patología , Laparoscopía/métodos , Masculino , Modelos Animales , Porcinos , Porcinos Enanos , Simpatectomía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA