Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 78(3): 506-521.e6, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386543

RESUMEN

Higher-order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we find that large (>7.3 kb) DNA methylation nadirs (termed "grand canyons") can form long loops connecting anchor loci that may be dozens of megabases (Mb) apart, as well as inter-chromosomal links. The interacting loci cover a total of ∼3.5 Mb of the human genome. The strongest interactions are associated with repressive marks made by the Polycomb complex and are diminished upon EZH2 inhibitor treatment. The data are suggestive of the formation of these loops by interactions between repressive elements in the loci, forming a genomic subcompartment, rather than by cohesion/CTCF-mediated extrusion. Interestingly, unlike previously characterized subcompartments, these interactions are present only in particular cell types, such as stem and progenitor cells. Our work reveals that H3K27me3-marked large DNA methylation grand canyons represent a set of very-long-range loops associated with cellular identity.


Asunto(s)
Cromatina/química , Cromatina/genética , Metilación de ADN , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Hibridación Fluorescente in Situ , Lisina/genética , Lisina/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción SOXB1/genética , Proteína de la Caja Homeótica de Baja Estatura/genética , Factores de Transcripción/genética
2.
Am J Hum Genet ; 109(2): 270-281, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063063

RESUMEN

In recent years, exome sequencing (ES) has shown great utility in the diagnoses of Mendelian disorders. However, after rigorous filtering, a typical ES analysis still involves the interpretation of hundreds of variants, which greatly hinders the rapid identification of causative genes. Since the interpretations of ES data require comprehensive clinical analyses, taking clinical expertise into consideration can speed the molecular diagnoses of Mendelian disorders. To leverage clinical expertise to prioritize candidate genes, we developed PhenoApt, a phenotype-driven gene prioritization tool that allows users to assign a customized weight to each phenotype, via a machine-learning algorithm. Using the ability to rank causative genes in top-10 lists as an evaluation metric, baseline analysis demonstrated that PhenoApt outperformed previous phenotype-driven gene prioritization tools by a relative increase of 22.7%-140.0% in three independent, real-world, multi-center cohorts (cohort 1, n = 185; cohort 2, n = 784; and cohort 3, n = 208). Additional trials showed that, by adding weights to clinical indications, which should be explained by the causative gene, PhenoApt performance was improved by a relative increase of 37.3% in cohort 2 (n = 471) and 21.4% in cohort 3 (n = 208). Moreover, PhenoApt could assign an intrinsic weight to each phenotype based on the likelihood of its being a Mendelian trait using term frequency-inverse document frequency techniques. When clinical indications were assigned with intrinsic weights, PhenoApt performance was improved by a relative increase of 23.7% in cohort 2 and 15.5% in cohort 3. For the integration of PhenoApt into clinical practice, we developed a user-friendly website and a command-line tool.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Pérdida Auditiva Sensorineural/genética , Discapacidad Intelectual/genética , Aprendizaje Automático , Microcefalia/genética , Nistagmo Congénito/genética , Escoliosis/genética , Estudios de Cohortes , Biología Computacional , Bases de Datos Genéticas , Exoma , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/patología , Pruebas Genéticas , Genotipo , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/patología , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Microcefalia/diagnóstico , Microcefalia/patología , Nistagmo Congénito/diagnóstico , Nistagmo Congénito/patología , Fenotipo , Escoliosis/diagnóstico , Escoliosis/patología , Programas Informáticos , Secuenciación del Exoma
3.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36642414

RESUMEN

The proliferation of single-cell multimodal sequencing technologies has enabled us to understand cellular heterogeneity with multiple views, providing novel and actionable biological insights into the disease-driving mechanisms. Here, we propose a comprehensive end-to-end single-cell multimodal analysis framework named Deep Parametric Inference (DPI). DPI transforms single-cell multimodal data into a multimodal parameter space by inferring individual modal parameters. Analysis of cord blood mononuclear cells (CBMC) reveals that the multimodal parameter space can characterize the heterogeneity of cells more comprehensively than individual modalities. Furthermore, comparisons with the state-of-the-art methods on multiple datasets show that DPI has superior performance. Additionally, DPI can reference and query cell types without batch effects. As a result, DPI can successfully analyze the progression of COVID-19 disease in peripheral blood mononuclear cells (PBMC). Notably, we further propose a cell state vector field and analyze the transformation pattern of bone marrow cells (BMC) states. In conclusion, DPI is a powerful single-cell multimodal analysis framework that can provide new biological insights into biomedical researchers. The python packages, datasets and user-friendly manuals of DPI are freely available at https://github.com/studentiz/dpi.


Asunto(s)
COVID-19 , Leucocitos Mononucleares , Humanos , Análisis de la Célula Individual/métodos , Biología Computacional/métodos
4.
Bioinformatics ; 40(1)2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141207

RESUMEN

MOTIVATION: The utilization of single-cell bisulfite sequencing (scBS-seq) methods allows for precise analysis of DNA methylation patterns at the individual cell level, enabling the identification of rare populations, revealing cell-specific epigenetic changes, and improving differential methylation analysis. Nonetheless, the presence of sparse data and an overabundance of zeros and ones, attributed to limited sequencing depth and coverage, frequently results in reduced precision accuracy during the process of differential methylation detection using scBS-seq. Consequently, there is a pressing demand for an innovative differential methylation analysis approach that effectively tackles these data characteristics and enhances recognition accuracy. RESULTS: We propose a novel beta mixture approach called scDMV for analyzing methylation differences in single-cell bisulfite sequencing data, which effectively handles excess zeros and ones and accommodates low-input sequencing. Our extensive simulation studies demonstrate that the scDMV approach outperforms several alternative methods in terms of sensitivity, precision, and controlling the false positive rate. Moreover, in real data applications, we observe that scDMV exhibits higher precision and sensitivity in identifying differentially methylated regions, even with low-input samples. In addition, scDMV reveals important information for GO enrichment analysis with single-cell whole-genome sequencing data that are often overlooked by other methods. AVAILABILITY AND IMPLEMENTATION: The scDMV method, along with a comprehensive tutorial, can be accessed as an R package on the following GitHub repository: https://github.com/PLX-m/scDMV.


Asunto(s)
Metilación de ADN , Sulfitos , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma
5.
Mol Psychiatry ; 29(10): 3024-3039, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38654124

RESUMEN

Pathogenic mutant huntingtin (mHTT) infiltrates the adult Huntington's disease (HD) brain and impairs fetal corticogenesis. However, most HD animal models rarely recapitulate neuroanatomical alterations in adult HD and developing brains. Thus, the human cortical organoid (hCO) is an alternative approach to decode mHTT pathogenesis precisely during human corticogenesis. Here, we replicated the altered corticogenesis in the HD fetal brain using HD patient-derived hCOs. Our HD-hCOs had pathological phenotypes, including deficient junctional complexes in the neural tubes, delayed postmitotic neuronal maturation, dysregulated fate specification of cortical neuron subtypes, and abnormalities in early HD subcortical projections during corticogenesis, revealing a causal link between impaired progenitor cells and chaotic cortical neuronal layering in the HD brain. We identified novel long, oriented, and enriched polyQ assemblies of HTTs that hold large flat Golgi stacks and scaffold clathrin+ vesicles in the neural tubes of hCOs. Flat Golgi stacks conjugated polyQ assemblies by ADP-ribosylation factor 1 (ARF1). Inhibiting ARF1 activation with Brefeldin A (BFA) disassociated polyQ assemblies from Golgi. PolyQ assembles with mHTT scaffolded fewer ARF1 and formed shorter polyQ assembles with fewer and shorter Golgi and clathrin vesicles in neural tubes of HD-hCOs compared with those in hCOs. Inhibiting the activation of ARF1 by BFA in healthy hCOs replicated impaired junctional complexes in the neural tubes. Together, endogenous polyQ assemblies with mHTT reduced the Golgi recruiting ARF1 in the neuroepithelium, impaired the Golgi structure and activities, and altered the corticogenesis in HD-hCO.


Asunto(s)
Factor 1 de Ribosilacion-ADP , Aparato de Golgi , Proteína Huntingtina , Enfermedad de Huntington , Organoides , Humanos , Organoides/metabolismo , Organoides/efectos de los fármacos , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Aparato de Golgi/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Neurogénesis/fisiología , Mutación/genética , Encéfalo/metabolismo , Animales
6.
J Cell Mol Med ; 28(7): e18200, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38506069

RESUMEN

Diabetic retinopathy (DR) is one of leading causes of vision loss in adults with increasing prevalence worldwide. Increasing evidence has emphasized the importance of gut microbiome in the aetiology and development of DR. However, the causal relationship between gut microbes and DR remains largely unknown. To investigate the causal associations of DR with gut microbes and DR risk factors, we employed two-sample Mendelian Randomization (MR) analyses to estimate the causal effects of 207 gut microbes on DR outcomes. Inputs for MR included Genome-wide Association Study (GWAS) summary statistics of 207 taxa of gut microbes (the Dutch Microbiome Project) and 21 risk factors for DR. The GWAS summary statistics data of DR was from the FinnGen Research Project. Data analysis was performed in May 2023. We identified eight bacterial taxa that exhibited significant causal associations with DR (FDR < 0.05). Among them, genus Collinsella and species Collinsella aerofaciens were associated with increased risk of DR, while the species Bacteroides faecis, Burkholderiales bacterium_1_1_47, Ruminococcus torques, Streptococcus salivarius, genus Burkholderiales_noname and family Burkholderiales_noname showed protective effects against DR. Notably, we found that the causal effect of species Streptococcus salivarius on DR was mediated through the level of host fasting glucose, a well-established risk factor for DR. Our results reveal that specific gut microbes may be causally linked to DR via mediating host metabolic risk factors, highlighting potential novel therapeutic or preventive targets for DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Streptococcus salivarius , Adulto , Humanos , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Ayuno , Glucosa
7.
J Biol Chem ; 299(9): 105130, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543366

RESUMEN

Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators in various biological processes. However, due to their low expression, their systematic characterization is difficult to determine. Here, we performed transcript annotation by a newly developed computational pipeline, termed RNA-seq and small RNA-seq combined strategy (RSCS), in a wide variety of cellular contexts. Thousands of high-confidence potential novel transcripts were identified by the RSCS, and the reliability of the transcriptome was verified by analysis of transcript structure, base composition, and sequence complexity. Evidenced by the length comparison, the frequency of the core promoter and the polyadenylation signal motifs, and the locations of transcription start and end sites, the transcripts appear to be full length. Furthermore, taking advantage of our strategy, we identified a large number of endogenous retrovirus-associated lncRNAs, and a novel endogenous retrovirus-lncRNA that was functionally involved in control of Yap1 expression and essential for early embryogenesis was identified. In summary, the RSCS can generate a more complete and precise transcriptome, and our findings greatly expanded the transcriptome annotation for the mammalian community.


Asunto(s)
Anotación de Secuencia Molecular , ARN Largo no Codificante , RNA-Seq , Animales , Desarrollo Embrionario/genética , Mamíferos/embriología , Mamíferos/genética , Anotación de Secuencia Molecular/métodos , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Retroviridae/genética , ARN Largo no Codificante/genética , RNA-Seq/métodos , Sitio de Iniciación de la Transcripción , Transcriptoma/genética , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo
8.
Am J Hum Genet ; 108(2): 337-345, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33434492

RESUMEN

Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is associated with congenital absence of the uterus, cervix, and the upper part of the vagina; it is a sex-limited trait. Disrupted development of the Müllerian ducts (MD)/Wölffian ducts (WD) through multifactorial mechanisms has been proposed to underlie MRKHS. In this study, exome sequencing (ES) was performed on a Chinese discovery cohort (442 affected subjects and 941 female control subjects) and a replication MRKHS cohort (150 affected subjects of mixed ethnicity from North America, South America, and Europe). Phenotypic follow-up of the female reproductive system was performed on an additional cohort of PAX8-associated congenital hypothyroidism (CH) (n = 5, Chinese). By analyzing 19 candidate genes essential for MD/WD development, we identified 12 likely gene-disrupting (LGD) variants in 7 genes: PAX8 (n = 4), BMP4 (n = 2), BMP7 (n = 2), TBX6 (n = 1), HOXA10 (n = 1), EMX2 (n = 1), and WNT9B (n = 1), while LGD variants in these genes were not detected in control samples (p = 1.27E-06). Interestingly, a sex-limited penetrance with paternal inheritance was observed in multiple families. One additional PAX8 LGD variant from the replication cohort and two missense variants from both cohorts were revealed to cause loss-of-function of the protein. From the PAX8-associated CH cohort, we identified one individual presenting a syndromic condition characterized by CH and MRKHS (CH-MRKHS). Our study demonstrates the comprehensive utilization of knowledge from developmental biology toward elucidating genetic perturbations, i.e., rare pathogenic alleles involving the same loci, contributing to human birth defects.


Asunto(s)
Trastornos del Desarrollo Sexual 46, XX/genética , Anomalías Congénitas/genética , Conductos Paramesonéfricos/anomalías , Conductos Paramesonéfricos/crecimiento & desarrollo , Mutación , Conductos Mesonéfricos/crecimiento & desarrollo , Adulto , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 7/genética , Codón sin Sentido , Femenino , Estudios de Asociación Genética , Pleiotropía Genética , Proteínas Homeobox A10/genética , Proteínas de Homeodominio/genética , Humanos , Factor de Transcripción PAX8/genética , Herencia Paterna , Penetrancia , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Proteínas Wnt/genética , Conductos Mesonéfricos/anomalías
9.
Exp Eye Res ; : 110109, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326774

RESUMEN

Keratoconus (KC) is a complex corneal disorder with a well-recognized genetic component. In this study, we aimed to expand the genetic spectrum of 200 Chinese patients with keratoconus and their unaffected parents. Trio-based whole-exome sequencing was performed in 200 patients with sporadic keratoconus and their unaffected parents. The variants identified in candidate genes for keratoconus were analyzed using multiple bioinformatics tools. Finally, we identified 7 variants in 5 candidate genes for keratoconus in 5 patients. The c.T464C variant in the IMPDH1 gene was defined as likely pathogenic according to the guidelines of the American College of Medical Genetics and Genomics, and the remaining variants in candidate genes (TRANK1, SLC4A11, CERKL, IFT172) were defined as uncertain significance. Our results expand the genetic spectrum in KC, highlight the genetic heterogeneity of this disease and provide important clues for future functional validation.

10.
Mol Cell Biochem ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980592

RESUMEN

Melanoma is a primary malignant tumor with high lethality, which occurs in the skin and eye tissues, while the molecular mechanisms of melanomagenesis remain largely unknown. Here, we show that death-associated protein-like 1 (DAPL1) expression is lower in melanoma tissues than in paracancerous tissues or nevus tissues, and Uveal melanoma patients with lower DAPL1 expression have a poorer survival rate than those with higher expression of DAPL1. Overexpression of DAPL1 inhibits proliferation of cultured melanoma cells, whereas knockdown of DAPL1 increases cell proliferation. Tumor transplantation experiment results also demonstrate that DAPL1 inhibits tumorigenesis of melanoma cells both in subretinal and subcutaneous tissues of nude mice in vivo. Finally, DAPL1 inhibits proliferation of melanoma cells by increasing the protein level of P21 via decreasing the ubiquitin mediated degradation of P21 and promoting its stability. Conversely, knockdown of P21 neutralizes the effects of inhibition of DAPL1 on melanoma cell proliferation and enhances the severity of melanoma tumorigenesis. These results suggest that DAPL1 is a novel melanoma tumor suppressor gene and thus a potential therapeutic target for melanoma.

11.
Nucleic Acids Res ; 50(D1): D848-D857, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34551435

RESUMEN

From industry to food to health, bacteria play an important role in all facets of life. Some of the most important bacteria have been purposely engineered to produce commercial quantities of antibiotics and therapeutics, and non-classical secretion systems are at the forefront of these technologies. Unlike the classical Sec or Tat pathways, non-classically secreted proteins share few common characteristics and use much more diverse secretion pathways for protein transport. Systematically categorizing and investigating the non-classically secreted proteins will enable a deeper understanding of their associated secretion mechanisms and provide a landscape of the Gram-positive secretion pathway distribution. We therefore developed PncsHub (https://pncshub.erc.monash.edu/), the first universal platform for comprehensively annotating and analyzing Gram-positive bacterial non-classically secreted proteins. PncsHub catalogs 4,914 non-classically secreted proteins, which are delicately categorized into 8 subtypes (including the 'unknown' subtype) and annotated with data compiled from up to 26 resources and visualisation tools. It incorporates state-of-the-art predictors to identify new and homologous non-classically secreted proteins and includes three analytical modules to visualise the relationships between known and putative non-classically secreted proteins. As such, PncsHub aims to provide integrated services for investigating, predicting and identifying non-classically secreted proteins to promote hypothesis-driven laboratory-based experiments.


Asunto(s)
Proteínas Bacterianas/genética , Bases de Datos de Proteínas , Bacterias Grampositivas/genética , Interfaz Usuario-Computador , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/metabolismo , Internet , Anotación de Secuencia Molecular , Filogenia , Transporte de Proteínas
12.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34663731

RESUMEN

The genetic origins of nanoscale extracellular vesicles in our body fluids remains unclear. Here, we perform a tracking analysis of urinary exosomes via RNA sequencing, revealing that urine exosomes mostly express tissue-specific genes for the bladder and have close cell-genetic relationships to the endothelial cell, basal cell, monocyte, and dendritic cell. Tracking the differentially expressed genes of cancers and corresponding enrichment analysis show urine exosomes are intensively involved in immune activities, indicating that they may be harnessed as reliable biomarkers of noninvasive liquid biopsy in cancer genomic diagnostics and precision medicine.


Asunto(s)
Exosomas/metabolismo , Neoplasias/patología , Orina , Humanos , Biopsia Líquida , Neoplasias/metabolismo
13.
Hum Mol Genet ; 30(13): 1247-1258, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33949668

RESUMEN

The systematic identification of host genetic risk factors is essential for the understanding and treatment of coronavirus disease 2019 (COVID-19). By performing a meta-analysis of two independent genome-wide association summary datasets (N = 680 128), a novel locus at 21q22.11 was identified to be associated with COVID-19 infection (rs9976829 in IFNAR2-IL10RB, odds ratio = 1.16, 95% confidence interval = 1.09-1.23, P = 2.57 × 10-6). The rs9976829 represents a strong splicing quantitative trait locus for both IFNAR2 and IL10RB genes, especially in lung tissue (P = 1.8 × 10-24). Integrative genomics analysis of combining genome-wide association study with expression quantitative trait locus data showed the expression variations of IFNAR2 and IL10RB have prominent effects on COVID-19 in various types of tissues, especially in lung tissue. The majority of IFNAR2-expressing cells were dendritic cells (40%) and plasmacytoid dendritic cells (38.5%), and IL10RB-expressing cells were mainly nonclassical monocytes (29.6%). IFNAR2 and IL10RB are targeted by several interferons-related drugs. Together, our results uncover 21q22.11 as a novel susceptibility locus for COVID-19, in which individuals with G alleles of rs9976829 have a higher probability of COVID-19 susceptibility than those with non-G alleles.


Asunto(s)
COVID-19/genética , Cromosomas Humanos Par 21 , Subunidad beta del Receptor de Interleucina-10/genética , Receptor de Interferón alfa y beta/genética , Alelos , Antivirales/farmacología , COVID-19/inmunología , Citocinas/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica/métodos , Humanos , Terapia Molecular Dirigida , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Tratamiento Farmacológico de COVID-19
14.
Mol Genet Genomics ; 298(5): 1059-1071, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37277661

RESUMEN

High myopia (HM), which is characterized by oxidative stress, is one of the leading causes of visual impairment and blindness across the world. Family and population genetic studies have uncovered nuclear-genome variants in proteins functioned in the mitochondria. However, whether mitochondrial DNA mutations are involved in HM remains unexplored. Here, we performed the first large-scale whole-mitochondrial genome study in 9613 HM cases and 9606 control subjects of Han Chinese ancestry for identifying HM-associated mitochondrial variants. The single-variant association analysis identified nine novel genetic variants associated with HM reaching the entire mitochondrial wide significance level, including rs370378529 in ND2 with an odds ratio (OR) of 5.25. Interestingly, eight out of nine variants were predominantly located in related sub-haplogroups, i.e. m.5261G > A in B4b1c, m.12280A > G in G2a4, m.7912G > A in D4a3b, m.94G > A in D4e1, m.14857 T > C in D4e3, m.14280A > G in D5a2, m.16272A > G in G2a4, m.8718A > G in M71 and F1a3, indicating that the sub-haplogroup background can increase the susceptible risk for high myopia. The polygenic risk score analysis of the target and validation cohorts indicated a high accuracy for predicting HM with mtDNA variants (AUC = 0.641). Cumulatively, our findings highlight the critical roles of mitochondrial variants in untangling the genetic etiology of HM.


Asunto(s)
Pueblos del Este de Asia , Miopía , Humanos , ADN Mitocondrial/genética , Haplotipos/genética , Mitocondrias/genética , Mutación , Miopía/genética
15.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32382761

RESUMEN

Long noncoding RNAs (lncRNAs) have been associated with cancer immunity regulation and the tumor microenvironment (TME). However, functions of lncRNAs of tumor-infiltrating B lymphocytes (TIL-Bs) and their clinical significance have not yet been fully elucidated. In the present study, a machine learning-based computational framework is presented for the identification of lncRNA signature of TIL-Bs (named 'TILBlncSig') through integrative analysis of immune, lncRNA and clinical profiles. The TILBlncSig comprising eight lncRNAs (TNRC6C-AS1, WASIR2, GUSBP11, OGFRP1, AC090515.2, PART1, MAFG-DT and LINC01184) was identified from the list of 141 B-cell-specific lncRNAs. The TILBlncSig was capable of distinguishing worse compared with improved survival outcomes across different independent patient datasets and was also independent of other clinical covariates. Functional characterization of TILBlncSig revealed it to be an indicator of infiltration of mononuclear immune cells (i.e. natural killer cells, B-cells and mast cells), and it was associated with hallmarks of cancer, as well as immunosuppressive phenotype. Furthermore, the TILBlncSig revealed predictive value for the survival outcome and immunotherapy response of patients with anti-programmed death-1 (PD-1) therapy and added significant predictive power to current immune checkpoint gene markers. The present study has highlighted the value of the TILBlncSig as an indicator of immune cell infiltration in the TME from a noncoding RNA perspective and strengthened the potential application of lncRNAs as predictive biomarkers of immunotherapy response, which warrants further investigation.


Asunto(s)
Linfocitos B/metabolismo , Inmunoterapia , Linfocitos Infiltrantes de Tumor/metabolismo , ARN Largo no Codificante/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Humanos , Aprendizaje Automático , Pronóstico , Reproducibilidad de los Resultados , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/patología
16.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33367533

RESUMEN

Uveal melanoma (UVM) is the most common primary intraocular human malignancy with a high mortality rate. Aberrant DNA methylation has rapidly emerged as a diagnostic and prognostic signature in many cancers. However, such DNA methylation signature available in UVM remains limited. In this study, we performed a genome-wide integrative analysis of methylome and transcriptome and identified 40 methylation-driven prognostic genes (MDPGs) associated with the tumorigenesis and progression of UVM. Then, we proposed a machine-learning-based discovery and validation strategy to identify a DNA methylation-driven signature (10MeSig) composing of 10 MDPGs (AZGP1, BAI1, CCDC74A, FUT3, PLCD1, S100A4, SCN8A, SEMA3B, SLC25A38 and SLC44A3), which stratified 80 patients of the discovery cohort into two risk subtypes with significantly different overall survival (HR = 29, 95% CI: 6.7-126, P < 0.001). The 10MeSig was validated subsequently in an independent cohort with 57 patients and yielded a similar prognostic value (HR = 2.1, 95% CI: 1.2-3.7, P = 0.006). Multivariable Cox regression analysis showed that the 10MeSig is an independent predictive factor for the survival of patients with UVM. With a prospective validation study, this 10MeSig will improve clinical decisions and provide new insights into the pathogenesis of UVM.


Asunto(s)
Metilación de ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Aprendizaje Automático , Melanoma , Proteínas de Neoplasias , Transcriptoma , Neoplasias de la Úvea , Adulto , Anciano , Anciano de 80 o más Años , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/mortalidad , Persona de Mediana Edad , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Valor Predictivo de las Pruebas , Tasa de Supervivencia , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/mortalidad
17.
Proc Natl Acad Sci U S A ; 117(52): 33628-33638, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318192

RESUMEN

Retinoblastoma (Rb) is the most prevalent intraocular malignancy in children, with a worldwide survival rate <30%. We have developed a cancerous model of Rb in retinal organoids derived from genetically engineered human embryonic stem cells (hESCs) with a biallelic mutagenesis of the RB1 gene. These organoid Rbs exhibit properties highly consistent with Rb tumorigenesis, transcriptome, and genome-wide methylation. Single-cell sequencing analysis suggests that Rb originated from ARR3-positive maturing cone precursors during development, which was further validated by immunostaining. Notably, we found that the PI3K-Akt pathway was aberrantly deregulated and its activator spleen tyrosine kinase (SYK) was significantly up-regulated. In addition, SYK inhibitors led to remarkable cell apoptosis in cancerous organoids. In conclusion, we have established an organoid Rb model derived from genetically engineered hESCs in a dish that has enabled us to trace the cell of origin and to test novel candidate therapeutic agents for human Rb, shedding light on the development and therapeutics of other malignancies.


Asunto(s)
Células Madre Embrionarias Humanas/patología , Organoides/patología , Retinoblastoma/patología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Carcinogénesis/patología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones Endogámicos NOD , Mutagénesis/genética , Mutación/genética , Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Transcriptoma/genética
18.
Brief Bioinform ; 21(5): 1742-1755, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31665214

RESUMEN

Emerging evidence revealed the critical roles of long non-coding RNAs (lncRNAs) in maintaining genomic instability. However, identification of genome instability-associated lncRNAs and their clinical significance in cancers remain largely unexplored. Here, we developed a mutator hypothesis-derived computational frame combining lncRNA expression profiles and somatic mutation profiles in a tumor genome and identified 128 novel genomic instability-associated lncRNAs in breast cancer as a case study. We then identified a genome instability-derived two lncRNA-based gene signature (GILncSig) that stratified patients into high- and low-risk groups with significantly different outcome and was further validated in multiple independent patient cohorts. Furthermore, the GILncSig correlated with genomic mutation rate in both ovarian cancer and breast cancer, indicating its potential as a measurement of the degree of genome instability. The GILncSig was able to divide TP53 wide-type patients into two risk groups, with the low-risk group showing significantly improved outcome and the high-risk group showing no significant difference compared with those with TP53 mutation. In summary, this study provided a critical approach and resource for further studies examining the role of lncRNAs in genome instability and introduced a potential new avenue for identifying genomic instability-associated cancer biomarkers.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Inestabilidad Genómica , Mutación , ARN Largo no Codificante/genética , Biología Computacional/métodos , Femenino , Humanos , Neoplasias , Resultado del Tratamiento
19.
Bioinformatics ; 37(23): 4350-4356, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34185079

RESUMEN

MOTIVATION: The mathematically optimal solution in computational protein folding simulations does not always correspond to the native structure, due to the imperfection of the energy force fields. There is therefore a need to search for more diverse suboptimal solutions in order to identify the states close to the native. We propose a novel multimodal optimization protocol to improve the conformation sampling efficiency and modeling accuracy of de novo protein structure folding simulations. RESULTS: A distance-assisted multimodal optimization sampling algorithm, MMpred, is proposed for de novo protein structure prediction. The protocol consists of three stages: The first is a modal exploration stage, in which a structural similarity evaluation model DMscore is designed to control the diversity of conformations, generating a population of diverse structures in different low-energy basins. The second is a modal maintaining stage, where an adaptive clustering algorithm MNDcluster is proposed to divide the populations and merge the modal by adjusting the annealing temperature to locate the promising basins. In the last stage of modal exploitation, a greedy search strategy is used to accelerate the convergence of the modal. Distance constraint information is used to construct the conformation scoring model to guide sampling. MMpred is tested on a large set of 320 non-redundant proteins, where MMpred obtains models with TM-score≥0.5 on 291 cases, which is 28% higher than that of Rosetta guided with the same set of distance constraints. In addition, on 320 benchmark proteins, the enhanced version of MMpred (E-MMpred) has 167 targets better than trRosetta when the best of five models are evaluated. The average TM-score of the best model of E-MMpred is 0.732, which is comparable to trRosetta (0.730). AVAILABILITY AND IMPLEMENTATION: The source code and executable are freely available at https://github.com/iobio-zjut/MMpred. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , Proteínas , Conformación Proteica , Biología Computacional/métodos , Proteínas/química , Programas Informáticos , Algoritmos
20.
Blood ; 135(11): 845-856, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31932841

RESUMEN

Mutations in the epigenetic regulators DNMT3A and IDH1/2 co-occur in patients with acute myeloid leukemia and lymphoma. In this study, these 2 epigenetic mutations cooperated to induce leukemia. Leukemia-initiating cells from Dnmt3a-/- mice that express an IDH2 neomorphic mutant have a megakaryocyte-erythroid progenitor-like immunophenotype, activate a stem-cell-like gene signature, and repress differentiated progenitor genes. We observed an epigenomic dysregulation with the gain of repressive H3K9 trimethylation and loss of H3K9 acetylation in diseased mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). HDAC inhibitors rapidly reversed the H3K9 methylation/acetylation imbalance in diseased mouse HSPCs while reducing the leukemia burden. In addition, using targeted metabolomic profiling for the first time in mouse leukemia models, we also showed that prostaglandin E2 is overproduced in double-mutant HSPCs, rendering them sensitive to prostaglandin synthesis inhibition. These data revealed that Dnmt3a and Idh2 mutations are synergistic events in leukemogenesis and that HSPCs carrying both mutations are sensitive to induced differentiation by the inhibition of both prostaglandin synthesis and HDAC, which may reveal new therapeutic opportunities for patients carrying IDH1/2 mutations.


Asunto(s)
Transformación Celular Neoplásica/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Neoplasias Hematológicas/genética , Hematopoyesis/genética , Isocitrato Deshidrogenasa/genética , Mutación , Animales , Línea Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Secuenciación de Inmunoprecipitación de Cromatina , Metilación de ADN , ADN Metiltransferasa 3A , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Histonas/metabolismo , Humanos , Metaboloma , Metabolómica/métodos , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA