Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 148(11): 882-898, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37350296

RESUMEN

BACKGROUND: Pericytes have been implicated in tissue repair, remodeling, and fibrosis. Although the mammalian heart contains abundant pericytes, their fate and involvement in myocardial disease remains unknown. METHODS: We used NG2Dsred;PDGFRαEGFP pericyte:fibroblast dual reporter mice and inducible NG2CreER mice to study the fate and phenotypic modulation of pericytes in myocardial infarction. The transcriptomic profile of pericyte-derived cells was studied using polymerase chain reaction arrays and single-cell RNA sequencing. The role of transforming growth factor-ß (TGF-ß) signaling in regulation of pericyte phenotype was investigated in vivo using pericyte-specific TGF-ß receptor 2 knockout mice and in vitro using cultured human placental pericytes. RESULTS: In normal hearts, neuron/glial antigen 2 (NG2) and platelet-derived growth factor receptor α (PDGFRα) identified distinct nonoverlapping populations of pericytes and fibroblasts, respectively. After infarction, a population of cells expressing both pericyte and fibroblast markers emerged. Lineage tracing demonstrated that in the infarcted region, a subpopulation of pericytes exhibited transient expression of fibroblast markers. Pericyte-derived cells accounted for ~4% of PDGFRα+ infarct fibroblasts during the proliferative phase of repair. Pericyte-derived fibroblasts were overactive, expressing higher levels of extracellular matrix genes, integrins, matricellular proteins, and growth factors, when compared with fibroblasts from other cellular sources. Another subset of pericytes contributed to infarct angiogenesis by forming a mural cell coat, stabilizing infarct neovessels. Single-cell RNA sequencing showed that NG2 lineage cells diversify after infarction and exhibit increased expression of matrix genes, and a cluster with high expression of fibroblast identity markers emerges. Trajectory analysis suggested that diversification of infarct pericytes may be driven by proliferating cells. In vitro and in vivo studies identified TGF-ß as a potentially causative mediator in fibrogenic activation of infarct pericytes. However, pericyte-specific TGF-ß receptor 2 disruption had no significant effects on infarct myofibroblast infiltration and collagen deposition. Pericyte-specific TGF-ß signaling was involved in vascular maturation, mediating formation of a mural cell coat investing infarct neovessels and protecting from dilative remodeling. CONCLUSIONS: In the healing infarct, cardiac pericytes upregulate expression of fibrosis-associated genes, exhibiting matrix-synthetic and matrix-remodeling profiles. A fraction of infarct pericytes exhibits expression of fibroblast identity markers. Pericyte-specific TGF-ß signaling plays a central role in maturation of the infarct vasculature and protects from adverse dilative remodeling, but it does not modulate fibrotic remodeling.


Asunto(s)
Infarto del Miocardio , Pericitos , Embarazo , Ratones , Femenino , Humanos , Animales , Pericitos/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Placenta/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Fibrosis , Ratones Noqueados , Fenotipo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Mamíferos
2.
J Neuroeng Rehabil ; 21(1): 101, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872209

RESUMEN

BACKGROUND: In post-stroke rehabilitation, functional connectivity (FC), motor-related cortical potential (MRCP), and gait activities are common measures related to recovery outcomes. However, the interrelationship between FC, MRCP, gait activities, and bipedal distinguishability have yet to be investigated. METHODS: Ten participants were equipped with EEG devices and inertial measurement units (IMUs) while performing lower limb motor preparation (MP) and motor execution (ME) tasks. MRCP, FCs, and bipedal distinguishability were extracted from the EEG signals, while the change in knee degree during the ME phase was calculated from the gait data. FCs were analyzed with pairwise Pearson's correlation, and the brain-wide FC was fed into support vector machine (SVM) for bipedal classification. RESULTS: Parietal-frontocentral connectivity (PFCC) dysconnection and MRCP desynchronization were related to the MP and ME phases, respectively. Hemiplegic limb movement exhibited higher PFCC strength than nonhemiplegic limb movement. Bipedal classification had a short-lived peak of 75.1% in the pre-movement phase. These results contribute to a better understanding of the neurophysiological functions during motor tasks, with respect to localized MRCP and nonlocalized FC activities. The difference in PFCCs between both limbs could be a marker to understand the motor function of the brain of post-stroke patients. CONCLUSIONS: In this study, we discovered that PFCCs are temporally dependent on lower limb gait movement and MRCP. The PFCCs are also related to the lower limb motor performance of post-stroke patients. The detection of motor intentions allows the development of bipedal brain-controlled exoskeletons for lower limb active rehabilitation.


Asunto(s)
Electroencefalografía , Marcha , Lóbulo Parietal , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Masculino , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Femenino , Persona de Mediana Edad , Marcha/fisiología , Lóbulo Parietal/fisiopatología , Lóbulo Parietal/fisiología , Potenciales Evocados Motores/fisiología , Lóbulo Frontal/fisiopatología , Lóbulo Frontal/fisiología , Anciano , Adulto , Corteza Motora/fisiopatología , Corteza Motora/fisiología , Máquina de Vectores de Soporte
3.
Public Health ; 229: 144-150, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442596

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the individual and combined effects of maternal smoking during pregnancy (MSDP) and personal smoking on mortality and life expectancy. STUDY DESIGN: A prospective cohort study based on the UK Biobank, with a median follow-up of 12.47 years. METHODS: This study employed multivariate Cox regression to determine the relative risks of mortality from all causes and specific diseases according to maternal and/or personal smoking status and pack-years of smoking (0, 1-20, 21-30, >30). Additionally, this study estimated the additive interaction between the two exposures. Life table analyses were performed using the estimated age-specific mortality rates to forecast life expectancy. RESULTS: Results indicated that MSDP elevated the risk of all-cause mortality (HR = 1.12, 95% CI: 1.09-1.15) and mortality due to neoplasms (HR = 1.10, 95% CI: 1.06-1.12), circulatory (HR = 1.13, 95% CI: 1.06-1.19), respiratory (HR = 1.27, 95% CI: 1.16-1.40) and digestive system diseases (HR = 1.22, 95% CI: 1.08-1.38). Notably, both multiplicative and additive interactions were observed between maternal and personal smoking, with Relative Excess Risk due to Interaction (RERI) values for mortality from all causes, neoplasms, circulatory, and respiratory diseases being 0.21, 0.22, 0.16, and 0.76, respectively. This study also found a trend towards shorter gained life expectancy when maternal smoking and increasing pack-years of personal smoking were combined. CONCLUSIONS: In this cohort study of UK Biobank, MSDP was associated with an increased risk of all-cause mortality and reduced life expectancy, suggesting that quitting smoking during pregnancy might have health and longevity benefits for both generations.


Asunto(s)
Esperanza de Vida , Neoplasias , Femenino , Embarazo , Humanos , Causas de Muerte , Estudios de Cohortes , Estudios Prospectivos , Fumar/efectos adversos , Factores de Riesgo
4.
Biochem Biophys Res Commun ; 675: 41-45, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451216

RESUMEN

ω-transaminase has attracted growing attention for chiral amine synthesis, although it commonly suffers from severe by-product inhibition. ω-transaminase CrmG is critical for the biosynthesis of Caerulomycin A, a natural product that possesses broad bioactivity, including immunosuppressive and anti-cancer. Compared to L-Arg, amino donor L-Glu, L-Gln or L-Ala is more preferred by CrmG. In this study, we determined the crystal structure of CrmG in complex with amino donor L-Arg, unveiling the detailed binding mode. Specifically, L-Arg exhibits an extensive contact with aromatic residues F207 and W223 on the roof of CrmG active site via cation-π network. This interaction may render the deamination by-product of L-Arg to be an inhibitor against PMP-bound CrmG by stabilizing its flexible roof, thus reducing the reactivity of L-Arg as an amino donor for CrmG. These data provide further evidence to support our previous proposal that CrmG can overcome inhibition from those by-products that are not able to stabilize the flexible roof of active site in PMP-bound CrmG. Thus, our result can not only facilitate the biosynthesis of CRM A but also be beneficial for the rational design of ω-transaminase to bypass by-product inhibition.


Asunto(s)
Arginina , Transaminasas , Transaminasas/metabolismo , Dominio Catalítico
5.
Hepatology ; 75(5): 1169-1180, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580885

RESUMEN

BACKGROUND AND AIMS: Lipoprotein lipase (LPL) is responsible for the lipolytic processing of triglyceride-rich lipoproteins, the deficiency of which causes severe hypertriglyceridemia. Liver LPL expression is high in suckling rodents but relatively low at adulthood. However, the regulatory mechanism and functional significance of liver LPL expression are incompletely understood. We have established the zinc finger protein ZBTB20 as a critical factor for hepatic lipogenesis. Here, we evaluated the role of ZBTB20 in regulating liver Lpl gene transcription and plasma triglyceride metabolism. APPROACH AND RESULTS: Hepatocyte-specific inactivation of ZBTB20 in mice led to a remarkable increase in LPL expression at the mRNA and protein levels in adult liver, in which LPL protein was mainly localized onto sinusoidal epithelial cells and Kupffer cells. As a result, the LPL activity in postheparin plasma was substantially increased, and postprandial plasma triglyceride clearance was significantly enhanced, whereas plasma triglyceride levels were decreased. The dysregulated liver LPL expression and low plasma triglyceride levels in ZBTB20-deficient mice were normalized by inactivating hepatic LPL expression. ZBTB20 deficiency protected the mice against high-fat diet-induced hyperlipidemia without causing excessive triglyceride accumulation in the liver. Chromatin immunoprecipitation and gel-shift assay studies revealed that ZBTB20 binds to the LPL promoter in the liver. A luciferase reporter assay revealed that ZBTB20 inhibits the transcriptional activity of LPL promoter. The regulation of LPL expression by ZBTB20 is liver-specific under physiological conditions. CONCLUSIONS: Liver ZBTB20 serves as a key regulator of LPL expression and plasma triglyceride metabolism and could be a therapeutic target for hypertriglyceridemia.


Asunto(s)
Dominio BTB-POZ , Hipertrigliceridemia , Animales , Hepatocitos/metabolismo , Hipertrigliceridemia/etiología , Hipertrigliceridemia/metabolismo , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Hígado/metabolismo , Ratones , Factores de Transcripción/metabolismo , Transcripción Genética , Triglicéridos/metabolismo , Dedos de Zinc
6.
Eur Radiol ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938382

RESUMEN

OBJECTIVES: To develop and validate a contrast-enhanced computed tomography (CECT)-based radiomics nomogram for the preoperative evaluation of Ki-67 proliferation status in pancreatic ductal adenocarcinoma (PDAC). METHODS: In this two-center retrospective study, a total of 181 patients (95 in the training cohort; 42 in the testing cohort, and 44 in the external validation cohort) with PDAC who underwent CECT examination were included. Radiomic features were extracted from portal venous phase images. The radiomics signatures were built by using two feature-selecting methods (relief and recursive feature elimination) and four classifiers (support vector machine, naive Bayes, linear discriminant analysis (LDA), and logistic regression (LR)). Multivariate LR was used to build a clinical model and radiomics-clinical nomogram. The predictive performances of the models were evaluated using area under receiver operating characteristic curve (AUC) and decision curve analysis (DCA). RESULTS: The relief selector and LDA classifier using twelve features built the optimal radiomics signature, with AUCs of 0.948, 0.927, and 0.824 in the training, testing, and external validation cohorts, respectively. The radiomics-clinical nomogram incorporating the optimal radiomics signature, CT-reported lymph node status, and CA19-9 showed better predictive performance with AUCs of 0.976, 0.955, and 0.882 in the training, testing, and external validation cohorts, respectively. The calibration curve and DCA demonstrated goodness-of-fit and improved benefits in clinical practice of the nomogram. CONCLUSIONS: The radiomics-clinical nomogram is an effective and non-invasive computer-aided tool to predict the Ki-67 expression status in patients with PDAC. CLINICAL RELEVANCE STATEMENT: The radiomics-clinical nomogram is an effective and non-invasive computer-aided tool to predict the Ki-67 expression status in patients with pancreatic ductal adenocarcinoma. KEY POINTS: The radiomics analysis could be helpful to predict Ki-67 expression status in patients with pancreatic ductal adenocarcinoma (PDAC). The radiomics-clinical nomogram integrated with the radiomics signature, clinical data, and CT radiological features could significantly improve the differential diagnosis of Ki-67 expression status. The radiomics-clinical nomogram showed satisfactory calibration and net benefit for discriminating high and low Ki-67 expression status in PDAC.

7.
Inflamm Res ; 72(12): 2221-2235, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37930383

RESUMEN

OBJECTIVE: Sepsis may often result in acute lung injury (ALI), with a high mortality and morbidity. Available evidence indicates that activation of NLRP3 inflammasome to induce macrophage inflammation plays a crucial role in the inflammation progression of ALI and lidocaine can attenuate inflammatory responses. We hypothesized that lidocaine may attenuate inflammatory response and sepsis-induced ALI by inhibiting potassium efflux-dependent NLRP3 activation. METHODS: C57BL/6N mice were randomized and divided into six groups (n = 6) receiving different treatments. Lung vascular permeability and histological changes in the lungs were evaluated by Evans blue dye, bronchoalveolar lavage analysis and hematoxylin and eosin staining. J774A.1 macrophages were divided into 12 groups receiving different treatments. The expression of both NLRP3 inflammasome activation-related protein and P2X7 in the macrophages was measured by immunofluorescence staining and Western blots. The whole cell currents were determined by a voltage-patch clamp technique. RESULTS: Challenge with LPS led to ALI in mice with an increased lung injury score (0.54 ± 0.09), which was significantly attenuated by lidocaine pretreatment (0.20 ± 0.08, P < 0.0001). Lidocaine pretreatment significantly decreased the NLRP3 activation and IL-1ß release in the macrophages. Furthermore, lidocaine pretreatment down-regulated the expression of P2X7 receptors, inhibited LPS- and ATP-induced sodium (Na+) inward flow, and maintained the intracellular K+ level in the macrophages. In addition, activation of Na+ influx did not eliminate anti-inflammatory effect of lidocaine. The activation of NLRP3 could be suppressed by extracellular K+ level in a dose-dependent model. However, lidocaine pretreatment eliminated NLRP3 activation and IL-1ß release induced by K+ efflux, and decreased outward K+ current and extracellular K+ level in the macrophages challenged by LPS/ATP. CONCLUSIONS: Lidocaine pretreatment can attenuate the sepsis-induced ALI by an anti-inflammatory mechanism of inhibiting K+ efflux-dependent NLRP3 activation.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos , Ratones Endogámicos C57BL , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/inducido químicamente , Inflamación/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Adenosina Trifosfato
8.
Phys Chem Chem Phys ; 25(43): 29437-29443, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37846752

RESUMEN

The extremely difficult ambipolar doping activation greatly hinders the outstanding performance of diamond for electronic devices. The main concern has been devoted to surface conduction by two-dimensional (2D) carriers. 2D hole gas (2DHG) in the diamond is induced by surface transfer doping dominated by the adsorbate's status and faces stability issues. Meanwhile, a feasible way to generate the other essential ambipolar carrier-2D electron gas (2DEG) is still lacking. We propose that the well-lattice-matched diamond/cBN(111) interfaces can spontaneously induce 2D ambipolar carriers with a giant density of 4.17 × 1014 cm-2, an order higher than other competitors. 2DEG and 2DHG can be separately achieved near the hetero-interfaces consisting of C-N and C-B bonds, respectively. Interestingly, the robust 2D charges are derived from a novel bulk-induced polarization-discontinuity at the interfaces, which can be attributed to an unexpected non-zero formal polarization of centrosymmetric cBN along the [111] direction. The existence of 2D ambipolar carriers at the diamond/cBN(111) interfaces has resolved the missing n-type conduction in diamond, thus opening up possibilities for complementary logic applications. Additionally, the high density of quantum-confined 2D ambipolar carriers provides an excellent platform for strongly correlated systems, which could lead to novel quantum information processing applications.

9.
Clin Oral Investig ; 27(1): 305-312, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36214938

RESUMEN

OBJECTIVE: Dysphagia is one of the major complications of oral cancer patients, and is disturbing thousands of patients worldwide. Our study aim to evaluate the clinical efficacy of prosthesis combined with swallowing training on palatal defect and dysphagia in post-operative oral cancer patients. MATERIALS AND METHODS: Sixteen oral cancer patients with palatal defect and dysphagia post-operation were treated with removable prosthesis and individualized swallowing function training. Swallowing function of patients before and after treatment was analyzed and compared by videofluoroscopic swallowing examination. The severity of depression and life quality were evaluated by Depression Scale (SDS) and Functional Assessment of Cancer Therapy-Head and Neck (FACT-H&N) scores, respectively. RESULTS: Oral transit time (OTT) significantly shortened after treatment (P < 0.01), and Penetration-Aspiration Scale (PAS) scores was significantly higher after treatment (P < 0.001). Different consistency bolus showed different risk of aspiration. Thickened liquids were related to lower PAS scores (P < 0.001). SDS standard score was significantly lower after treatment (P < 0.05). The total score of FACT-H&N after treatment was significantly higher (P < 0.05). No patients came back for regressed swallowing function during the follow-up period (17.06 ± 2.376 months). CONCLUSION: Removable prosthesis and swallowing training can significantly improve swallowing function, reduce depression degree, and improve quality of life (QOL). CLINICAL RELEVANCE: Removable prosthesis combined with swallowing training is a cheap and effective method to improve QOL in patients with palate defect and dysphagia after oral cancer.


Asunto(s)
Trastornos de Deglución , Implantes Dentales , Neoplasias de la Boca , Humanos , Trastornos de Deglución/etiología , Deglución , Estudios Prospectivos , Calidad de Vida , Neoplasias de la Boca/complicaciones , Hueso Paladar
10.
Water Sci Technol ; 87(1): 304-317, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36640039

RESUMEN

In this study, a novel peroxydisulfate (PDS) activator (CF-nZVI-JE) was prepared via in-situ loading nano zero-valent iron (nZVI) on Juncus effusus (JE) followed with wrapping a layer of cellulose film (CF). The CF-nZVI-JE had the same 3D structure as the JE, being easy to separate from aqueous solution. The loaded nZVI existed single nanoparticles with a size of 60-100 nm except chain-type agglomeration of nanoparticles due to the stabilization of JE fibers. The activation performance of the CF-nZVI-JE for PDS was evaluated with Rhodamine B (Rh B) as a representative pollutant. Under the optimal activating conditions, the degradation rate of Rh B reached 99% within 30 min in the CF-nZVI-JE/PDS system. After five cycles, the degradation rate of Rh B was still over 85%, suggesting that the CF-nZVI-JE had good reusability. More interestingly, SO4·- and ·OH radicals were simultaneously detected in the CF-nZVI-JE/PDS system, but only SO4·- existed in the JE-ZVI/PDS system, suggesting the different activation mechanism. Meanwhile, the introduction of CF not only facilitated to the mineralization of Rh B but also significantly reduced the release amount of iron ions. Hence, the CF-nZVI-JE can be employed as a promising PDS activator for the treatment of organic wastewater.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Hierro/química , Rodaminas , Aguas Residuales , Agua , Contaminantes Químicos del Agua/química
11.
J Mol Cell Cardiol ; 171: 1-15, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35780861

RESUMEN

TGF-ßs regulate macrophage responses, by activating Smad2/3. We have previously demonstrated that macrophage-specific Smad3 stimulates phagocytosis and mediates anti-inflammatory macrophage transition in the infarcted heart. However, the role of macrophage Smad2 signaling in myocardial infarction remains unknown. We studied the role of macrophage-specific Smad2 signaling in healing mouse infarcts, and we explored the basis for the distinct effects of Smad2 and Smad3. In infarct macrophages, Smad3 activation preceded Smad2 activation. In contrast to the effects of Smad3 loss, myeloid cell-specific Smad2 disruption had no effects on mortality, ventricular dysfunction and adverse remodeling, after myocardial infarction. Macrophage Smad2 loss modestly, but transiently increased myofibroblast density in the infarct, but did not affect phagocytic removal of dead cells, macrophage infiltration, collagen deposition, and scar remodeling. In isolated macrophages, TGF-ß1, -ß2 and -ß3, activated both Smad2 and Smad3, whereas BMP6 triggered only Smad3 activation. Smad2 and Smad3 had similar patterns of nuclear translocation in response to TGF-ß1. RNA-sequencing showed that Smad3, and not Smad2, was the main mediator of transcriptional effects of TGF-ß on macrophages. Smad3 loss resulted in differential expression of genes associated with RAR/RXR signaling, cholesterol biosynthesis and lipid metabolism. In both isolated bone marrow-derived macrophages and in infarct macrophages, Smad3 mediated synthesis of Nr1d2 and Rara, two genes encoding nuclear receptors, that may be involved in regulation of their phagocytic and anti-inflammatory properties. In conclusion, the in vivo and in vitro effects of TGF-ß on macrophage function involve Smad3, and not Smad2.


Asunto(s)
Infarto del Miocardio , Proteína Smad2 , Proteína smad3 , Animales , Colesterol , Colágeno/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Fenotipo , ARN , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
12.
BMC Genomics ; 23(1): 551, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35918639

RESUMEN

BACKGROUND: In cold regions, low temperature is the main limiting factor affecting grape production. As an important breeding resource, V. amurensis Rupr. has played a crucial role in the discovery of genes which confer cold resistance in grapes. Thus far, many cold-resistance genes have been reported based on the study of V. amurensis. In order to identify more candidate genes related to cold resistance in V. amurensis, QTL mapping and RNA-seq was conducted based on the hybrid population and different cold-resistance cultivars in this study. RESULTS: In this study, highly cold-resistant grape cultivar 'Shuangyou' (SY) which belongs to V. amurensis, and cold-sensitive cultivar 'Red Globe' (RG) which belongs to Vitis vinifera L. were used to identify cold resistance genes. Cold-resistance quantitative trait locus (QTL) mapping was performed based on genetic population construction through interspecific crossing of 'Shuangyou' and 'Red Globe'. Additionally, transcriptome analysis was conducted for the dormant buds of these two cultivars at different periods. Based on transcriptome analysis and QTL mapping, many new structural genes and transcription factors which relate to V. amurensis cold resistance were discovered, including CORs (VaCOR413IM), GSTs (VaGST-APIC, VaGST-PARB, VaGSTF9 and VaGSTF13), ARFs (VaIAA27 and VaSAUR71), ERFs (VaAIL1), MYBs (VaMYBR2, VaMYBLL and VaMYB3R-1) and bHLHs (VaICE1 and VabHLH30). CONCLUSIONS: This discovery of candidate cold-resistance genes will provide an important theoretical reference for grape cold-resistance mechanisms, research, and cold-resistant grape cultivar breeding in the future.


Asunto(s)
Vitis , Mapeo Cromosómico , Fitomejoramiento , Sitios de Carácter Cuantitativo , RNA-Seq , Vitis/genética
13.
Breast Cancer Res Treat ; 193(1): 121-138, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35262831

RESUMEN

BACKGROUND: Neoadjuvant chemotherapy (NAC) plays an important role in the management of locally advanced breast cancer. It allows for downstaging of tumors, potentially allowing for breast conservation. NAC also allows for in-vivo testing of the tumors' response to chemotherapy and provides important prognostic information. There are currently no clearly defined clinical models that incorporate imaging with clinical data to predict response to NAC. Thus, the aim of this work is to develop a predictive AI model based on routine CT imaging and clinical parameters to predict response to NAC. METHODS: The CT scans of 324 patients with NAC from multiple centers in Singapore were used in this study. Four different radiomics models were built for predicting pathological complete response (pCR): first two were based on textural features extracted from peri-tumoral and tumoral regions, the third model based on novel space-resolved radiomics which extract feature maps using voxel-based radiomics and the fourth model based on deep learning (DL). Clinical parameters were included to build a final prognostic model. RESULTS: The best performing models were based on space-resolved and DL approaches. Space-resolved radiomics improves the clinical AUCs of pCR prediction from 0.743 (0.650 to 0.831) to 0.775 (0.685 to 0.860) and our DL model improved it from 0.743 (0.650 to 0.831) to 0.772 (0.685 to 0.853). The tumoral radiomics model performs the worst with no improvement of the AUC from the clinical model. The peri-tumoral combined model gives moderate performance with an AUC of 0.765 (0.671 to 0.855). CONCLUSIONS: Radiomics features extracted from diagnostic CT augment the predictive ability of pCR when combined with clinical features. The novel space-resolved radiomics and DL radiomics approaches outperformed conventional radiomics techniques.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Humanos , Pronóstico , Estudios Retrospectivos
15.
J Cell Mol Med ; 25(21): 10279-10290, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34658138

RESUMEN

Tumour-derived DNA found in the plasma of cancer patients provides the probability to detect somatic mutations from circulating cell-free DNA (cfDNA) in plasma samples. However, clonal hematopoiesis (CH) mutations affect the accuracy of liquid biopsy for cancer diagnosis and treatment. Here, we integrated landscape of CH mutations in 11,725 pan-cancer patients of Chinese and explored effects of CH on liquid biopsies in real-world. We first identified 5933 CHs based on panel sequencing of matched DNA of white blood cell and cfDNA on 301 genes for 5100 patients, in which CH number of patients had positive correlation with their diagnosis age. We observed that canonical genes related to CH, including DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2 and SF3B1, were dominant in the Chinese cohort and 13.29% of CH mutations only appeared in the Chinese cohort compared with the Western cohort. Analysis of CH gene distribution bias indicated that CH tended to appear in genes with functions of tyrosine kinase regulation, PI3K-Akt signalling and TP53 activity, suggesting unfavourable effects of CH mutations in cancer patients. We further confirmed effect of driver genes carried by CH on somatic mutations in liquid biopsy of cancer patients. Forty-eight actionable somatic mutations in 17 driver genes were considered CH genes in 92 patients (1.80%) of the Chinese cohort, implying potential impacts of CH on clinical decision-making. Taken together, this study exhibits strong evidence that gene mutations from CH interfere accuracy of liquid biopsies using cfDNA in cancer diagnosis and treatment in real-world.


Asunto(s)
Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células , Hematopoyesis Clonal/genética , Biopsia Líquida , Mutación , China/epidemiología , Estudios de Cohortes , Biología Computacional/métodos , Biblioteca de Genes , Ontología de Genes , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biopsia Líquida/métodos , Neoplasias/diagnóstico , Neoplasias/epidemiología , Neoplasias/genética
16.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L787-L801, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34405715

RESUMEN

Mechanical ventilation is a life-sustaining therapy for patients with respiratory failure but can cause further lung damage known as ventilator-induced lung injury (VILI). However, the intrinsic molecular mechanisms underlying recovery of VILI remain unknown. Phagocytosis of apoptotic cells (also known as efferocytosis) is a key mechanism orchestrating successful resolution of inflammation. Here we show the positive regulation of macrophage Toll-like receptor (TLR) 4 in efferocytosis and resolution of VILI. Mice were depleted of alveolar macrophages and then subjected to injurious ventilation (tidal volume, 20 mL/kg) for 4 h. On day 1 after mechanical ventilation, Tlr4+/+ or Tlr4-/- bone marrow-derived macrophages (BMDMs) were intratracheally administered to alveolar macrophage-depleted mice. We observed that mice depleted of alveolar macrophages exhibited defective resolution of neutrophilic inflammation, exuded protein, lung edema, and lung tissue injury after ventilation, whereas these delayed responses were reversed by administration of Tlr4+/+ BMDMs. Importantly, these proresolving effects by Tlr4+/+ BMDMs were abolished in mice receiving Tlr4-/- BMDMs. The number of macrophages containing apoptotic cells or bodies in bronchoalveolar lavage fluid was much less in mice receiving Tlr4-/- BMDMs than that in those receiving Tlr4+/+ BMDMs. Macrophage TLR4 deletion facilitated a disintegrin and metalloprotease 17 maturation and enhanced Mer cleavage in response to mechanical ventilation. Heat shock protein 70 dramatically increased Mer tyrosine kinase surface expression, phagocytosis of apoptotic neutrophils, and rescued the inflammatory phenotype in alveolar macrophage-depleted mice receiving Tlr4+/+ BMDMs, but not Tlr4-/- BMDMs. Our results suggest that macrophage TLR4 promotes resolution of VILI via modulation of Mer-mediated efferocytosis.


Asunto(s)
Macrófagos Alveolares/metabolismo , Neutrófilos/inmunología , Fagocitosis/fisiología , Receptor Toll-Like 4/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Proteína ADAM17/metabolismo , Animales , Apoptosis/fisiología , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Recuento de Células , Células Cultivadas , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Pulmón/patología , Macrófagos Alveolares/trasplante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Respiración Artificial/efectos adversos , Transducción de Señal , Tirosina Quinasa c-Mer/metabolismo
17.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L568-L582, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33565367

RESUMEN

Ventilator-induced lung injury is associated with an increase in mortality in patients with respiratory dysfunction, although mechanical ventilation is an essential intervention implemented in the intensive care unit. Intrinsic molecular mechanisms for minimizing lung inflammatory injury during mechanical ventilation remain poorly defined. We hypothesize that Yes-associated protein (YAP) expression in endothelial cells protects the lung against ventilator-induced injury. Wild-type and endothelial-specific YAP-deficient mice were subjected to a low (7 mL/kg) or high (21 mL/kg) tidal volume (VT) ventilation for 4 h. Infiltration of inflammatory cells into the lung, vascular permeability, lung histopathology, and the levels of inflammatory cytokines were measured. Here, we showed that mechanical ventilation with high VT upregulated YAP protein expression in pulmonary endothelial cells. Endothelial-specific YAP knockout mice following high VT ventilation exhibited increased neutrophil counts and protein content in bronchoalveolar lavage fluid, Evans blue leakage, and histological lung injury compared with wild-type littermate controls. Deletion of YAP in endothelial cells exaggerated vascular endothelial (VE)-cadherin phosphorylation, downregulation of vascular endothelial protein tyrosine phosphatase (VE-PTP), and dissociation of VE-cadherin and catenins following mechanical ventilation. Importantly, exogenous expression of wild-type VE-PTP in the pulmonary vasculature rescued YAP ablation-induced increases in neutrophil counts and protein content in bronchoalveolar lavage fluid, vascular leakage, and histological lung injury as well as VE-cadherin phosphorylation and dissociation from catenins following ventilation. These data demonstrate that YAP expression in endothelial cells suppresses lung inflammatory response and edema formation by modulating VE-PTP-mediated VE-cadherin phosphorylation and thus plays a protective role in ventilator-induced lung injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Permeabilidad Capilar , Endotelio Vascular/metabolismo , Pulmón/metabolismo , Neutrófilos/inmunología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Femenino , Pulmón/citología , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo , Fosforilación , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Proteínas Señalizadoras YAP
18.
Phytopathology ; 111(4): 659-670, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33635092

RESUMEN

Grape white rot (Coniothyrium diplodiella) is a major fungal disease affecting grape yield and quality. Quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits of grapevine. This study was conducted to construct a high-density map and conduct QTL mapping for grapevine white rot resistance. A mapping population with 177 genotypes was developed from interspecific hybridization of a white rot-resistant cultivar (Vitis vinifera × V. labrusca 'Zhuosexiang') and white rot-susceptible cultivar (V. vinifera 'Victoria'). Single-nucleotide polymorphism (SNP) markers were developed by restriction site-associated DNA sequencing. The female, male, and integrated maps contained 2,501, 4,110, and 6,249 SNP markers with average genetic distances of adjacent markers of 1.25, 0.77, and 0.50 cM, respectively. QTL mapping was conducted based on white rot resistance identification of 177 individuals in July and August of 2017 and 2018. Notably, one stable QTL related to white rot resistance was detected and located on linkage group LG14. The phenotypic variance ranged from 12.93 to 13.43%. An SNP marker (chr14_3929380), which cosegregated with white rot resistance, was discovered and shows potential for use in marker-assisted selection to generate new grapevine cultivars with resistance to white rot.


Asunto(s)
Sitios de Carácter Cuantitativo , Vitis , Ascomicetos , Femenino , Ligamiento Genético , Masculino , Fenotipo , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ADN , Vitis/genética
19.
BMC Genomics ; 21(1): 419, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571215

RESUMEN

BACKGROUND: Cold hardiness is an important agronomic trait and can significantly affect grape production and quality. Until now, there are no reports focusing on cold hardiness quantitative trait loci (QTL) mapping. In this study, grapevine interspecific hybridisation was carried out with the maternal parent 'Cabernet sauvignon' and paternal parent 'Zuoyouhong'. A total of 181 hybrid offspring and their parents were used as samples for restriction-site associated DNA sequencing (RAD). Grapevine cane phloem and xylem cold hardiness of the experimental material was detected using the low-temperature exotherm method in 2016, 2017 and 2018. QTL mapping was then conducted based on the integrated map. RESULTS: We constructed a high-density genetic linkage map with 16,076, 11,643, and 25,917 single-nucleotide polymorphism (SNP) markers anchored in the maternal, paternal, and integrated maps, respectively. The average genetic distances of adjacent markers in the maps were 0.65 cM, 0.77 cM, and 0.41 cM, respectively. Colinearity analysis was conducted by comparison with the grape reference genome and showed good performance. Six QTLs were identified based on the phenotypic data of 3 years and they were mapped on linkage group (LG) 2, LG3, and LG15. Based on QTL results, candidate genes which may be involved in grapevine cold hardiness were selected. CONCLUSIONS: High-density linkage maps can facilitate grapevine fine QTL mapping, genome comparison, and sequence assembly. The cold hardiness QTL mapping and candidate gene discovery performed in this study provide an important reference for molecular-assisted selection in grapevine cold hardiness breeding.


Asunto(s)
Mapeo Cromosómico/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Vitis/genética , Ligamiento Genético , Dureza , Fenotipo , Floema/fisiología , Fitomejoramiento , Mapeo Restrictivo , Análisis de Secuencia de ADN , Xilema/fisiología
20.
Tob Control ; 29(2): 191-199, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31073096

RESUMEN

BACKGROUND: Lung cancer is substantially attributable to smoking, but detailed related estimates on smoking-attributable expenditure (SAE) in China are not available yet, which could inform tobacco control and cancer prevention initiatives. METHODS: A prevalence-based approach was adopted to estimate the total SAE, including direct expenditure (medical and non-medical) and indirect cost (disability and premature death). Detailed per-patient data on direct expenditure and work-loss days were acquired from a unique multicentre survey in China. Other parameters were from literatures and official reports. RESULTS: The total estimated SAE of lung cancer was US$5249 million in China in 2015 (0.05 % of gross domestic product for China). The estimated direct SAE was US$1937 million (36.9 % of the total SAE), accounting for 0.29 % of total healthcare expenditure for China. The medical and non-medical direct expenditures were US$1749 million and US$188 million, respectively. The estimated indirect cost was US$3312 million (63.1 % of the total SAE), including US$377 million due to disability and US$2935 million due to premature death. The SAE increased with age, peaking at 60-64 years (US$1004 million), and was higher among men, in urban areas and in eastern China. If smoking prevalence was reduced to 20%, as is the goal of Healthy China 2030, the total SAE would be decreased by 4.9 %. CONCLUSIONS: Smoking-attributable economic burden caused by lung cancer was substantial in China in 2015, and will continue increasing given current trends in lung cancer. However, future economic burden can be prevented with implementation of effective tobacco control and other interventions.


Asunto(s)
Costo de Enfermedad , Neoplasias Pulmonares/epidemiología , Fumar Tabaco/efectos adversos , Adulto , Distribución por Edad , Anciano , Anciano de 80 o más Años , China/epidemiología , Femenino , Costos de la Atención en Salud/estadística & datos numéricos , Gastos en Salud/estadística & datos numéricos , Humanos , Neoplasias Pulmonares/economía , Neoplasias Pulmonares/etiología , Masculino , Persona de Mediana Edad , Mortalidad Prematura , Prevalencia , Distribución por Sexo , Encuestas y Cuestionarios , Fumar Tabaco/economía , Fumar Tabaco/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA