Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biol Pharm Bull ; 35(10): 1740-4, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23037163

RESUMEN

In order to find new anti-Pseudomonas agents, we carried out whole-cell based P. aeruginosa growth assay, and identified 1,2,3,4-tetrahydro-1,3,5-triazine (Compound A). This compound showed anti-Pseudomonas activity against wild as well as pumpless strain equally at a same concentration. Also, this compound was structurally very similar to A22, which is known to inhibit the bacterial actin-like protein MreB. By the analysis of resistant strains, the primary target of this compound in P. aeruginosa was definitely confirmed to be MreB. In addition, these compounds showed a bacteriostatic effect, and induced the morphology changes in P. aeruginosa from rod shape to sphere shape, which leads to be clinically favorable in terms of susceptibility to phagocytosis and release of endotoxin. These results display that Compound A is a very attractive compound which shows anti-P. aeruginosa activity based on inhibition of MreB without being affected by efflux pumps, and could provide a new step toward development of new promising anti-Pseudomonas agents, MreB inhibitors.


Asunto(s)
Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Triazinas/farmacología , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana
2.
Antimicrob Agents Chemother ; 55(11): 5004-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21844314

RESUMEN

Tomopenem (formerly CS-023) is a novel carbapenem with improved activity against diverse hospital pathogens, including Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA), and has a half-life about twice longer than the half-lives of other carbapenems such as imipenem and meropenem. Our objective in this study was to estimate the efficacy of tomopenem in humans by human-simulated exposures in a neutropenic murine thigh infection model against 9 clinical isolates of P. aeruginosa with MICs of 4 to 32 µg/ml and 9 clinical isolates of MRSA with MICs of 4 to 16 µg/ml. Human-simulated dosing regimens in neutropenic mice were designed to approximate the cumulative percentage of a 24-h period that the free drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (f%T(MIC)) observed with tomopenem at 750 and 1,500 mg given as a 0.5-h infusion three times a day (TID) in humans. As reported previously, there was no difference between the target values of P. aeruginosa and MRSA required for efficacy (K. Sugihara et al., Antimicrob. Agents Chemother. 54:5298-5302, 2010). Tomopenem at 750 mg showed bactericidal or bacteriostatic effects against 10 of 11 strains of P. aeruginosa and MRSA with MICs of ≤ 8 µg/ml (f%T(MIC) ≥ 41), and tomopenem at 1,500 mg showed bactericidal effects against 16 of 17 strains of P. aeruginosa and MRSA with MICs of ≤ 16 µg/ml (f%T(MIC) ≥ 43). Meropenem at 1,000 mg TID was tested for comparison purposes and showed bactericidal or bacteriostatic effects against 3 of 4 strains of P. aeruginosa with MICs of ≤ 4 µg/ml (f%T(MIC) ≥ 33). From these results, tomopenem is expected to be effective with an f%T(MIC) of over 40 against P. aeruginosa and MRSA strains with MICs of ≤ 8 µg/ml at doses of 750 mg TID and strains with MICs of ≤ 16 µg/ml at doses of 1,500 mg TID.


Asunto(s)
Carbapenémicos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Carbapenémicos/farmacocinética , Humanos , Masculino , Ratones , Ratones Endogámicos ICR
3.
Antimicrob Agents Chemother ; 54(12): 5298-302, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20921311

RESUMEN

Tomopenem (formerly CS-023) is a novel carbapenem with broad-spectrum activities against diverse hospital pathogens, including Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA). We examined the in vivo pharmacodynamic characteristics of tomopenem against P. aeruginosa and MRSA by using a neutropenic murine thigh infection model with P. aeruginosa 12467 (MIC, 1 µg/ml) and MRSA 12372 (MIC, 2 µg/ml). The mice had 10(6) to 10(7) CFU/thigh of each strain 2 h after inoculation and were treated for 24 h with a fractionated administration of tomopenem given at intervals of 3, 6, 12, and 24 h. The serum protein binding of tomopenem was 17.4%. The efficacy of tomopenem in both infection models was enhanced by frequent dosing, which indicates that the efficacy is driven by the time above MIC (T(MIC)). In a sigmoid model, the cumulative percentages of the 24-h period that the concentrations of free, unbound fractions of the drug exceeded the MIC under steady-state pharmacokinetic conditions (f%T(MIC)s) were best correlated with efficacy when R(2) was 0.79 and 0.86 against P. aeruginosa and MRSA, respectively. Other pharmacokinetic and pharmacodynamic (PK-PD) indexes for the free, unbound fractions, the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC) and the maximum concentration of the drug in serum divided by the MIC (C(max)/MIC), showed poor correlation with efficacy when R(2) was ≤0.42. The f%T(MIC) values required for a static effect, 1-log kill, and 2-log kill against P. aeruginosa were 29, 39, and 51, respectively, which were similar to those for meropenem, for which the values were 24, 33, and 45, respectively. Against MRSA, the values for tomopenem were 27, 35, and 47. In conclusion, the pharmacodynamic characteristics of tomopenem were similar to those of meropenem against P. aeruginosa, and there was no difference between the target values for P. aeruginosa and MRSA required for efficacy in this study.


Asunto(s)
Antibacterianos , Carbapenémicos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacocinética , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Masculino , Ratones , Ratones Endogámicos ICR , Muslo/microbiología
4.
Antimicrob Agents Chemother ; 53(3): 1238-41, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19104025

RESUMEN

Tomopenem (formerly CS-023), a novel 1beta-methylcarbapenem, exhibited high affinity for penicillin-binding protein (PBP) 2 in Staphylococcus aureus, PBP 2 in Escherichia coli, and PBPs 2 and 3 in Pseudomonas aeruginosa, which are considered major lethal targets. Morphologically, tomopenem induced spherical forms in E. coli and short filamentation with bulges in P. aeruginosa, which correlated with the drug's PBP profiles. The potential of resistance of these bacteria to tomopenem was comparable to that to imipenem.


Asunto(s)
Carbapenémicos/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Escherichia coli/genética , Escherichia coli/ultraestructura , Pruebas de Sensibilidad Microbiana , Mutación , Proteínas de Unión a las Penicilinas/ultraestructura , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/ultraestructura , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestructura
5.
J Antibiot (Tokyo) ; 72(12): 956-969, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31558775

RESUMEN

Novel muraminomicin derivatives with antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) were synthesized by esterification of the hydroxy group on the diazepanone ring of muraminomicin Z1. Compound 1b (DS14450354) possessed a diheptoxybenzyl-ß-Alanyl-ß-Alanyl group and exhibited minimum inhibitory concentrations (MICs) against MRSA comparable to those against methicillin-susceptible S. aureus (MSSA). The MICs that inhibited 50 and 90% of the strains were 1 and 2 µg/mL, respectively. Compound 1a (DS60182922) possessed an aminoethylbenzoyldodecylglycyl moiety and showed bactericidal activity against MSSA Smith. The bactericidal activity of 1a against MRSA 10925 was comparatively lower, whilst 1b exhibited dose-dependent bactericidal activity against MRSA 10925. The mutation frequency of 1b was lower than that of 1a. An amino acid substitution (F226I) was observed in MraY mutants isolated from culture plates containing 1a or 1b. Subcutaneous 1a and 1b administration showed good therapeutic efficacy in murine systemic infection models with MSSA Smith and MRSA 10925, comparable to that of vancomycin, suggesting that the novel muraminomicin derivatives may be effective therapeutic agents against MRSA that warrant further investigation. A scheme for the formulation of the key ester intermediate, requiring no HPLC preparation, was also established.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/química , Proteínas Bacterianas/genética , Evaluación Preclínica de Medicamentos , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Tasa de Mutación , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Transferasas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)
6.
ACS Med Chem Lett ; 10(6): 893-898, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31223444

RESUMEN

Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) plays a key role in one-carbon (1C) metabolism in human mitochondria, and its high expression correlates with poor survival of patients with various types of cancer. An isozyme-selective MTHFD2 inhibitor is highly attractive for potential use in cancer treatment. Herein, we disclose a novel isozyme-selective MTHFD2 inhibitor DS44960156, with a tricyclic coumarin scaffold, which was initially discovered via high-throughput screening (HTS) and improved using structure-based drug design (SBDD). DS44960156 would offer a good starting point for further optimization based on the following features: (1) unprecedented selectivity (>18-fold) for MTHFD2 over MTHFD1, (2) a molecular weight of less than 400, and (3) good ligand efficiency (LE).

7.
Antimicrob Agents Chemother ; 52(8): 2849-54, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18519723

RESUMEN

Tomopenem (formerly CS-023) is a novel 1beta-methylcarbapenem with broad-spectrum coverage of gram-positive and gram-negative pathogens. Its antibacterial activity against European clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa was compared with those of imipenem and meropenem. The MICs of tomopenem against MRSA and P. aeruginosa at which 90% of the isolates tested were inhibited were 8 and 4 microg/ml, respectively, and were equal to or more than fourfold lower than those of imipenem and meropenem. The antibacterial activity of tomopenem against MRSA was correlated with a higher affinity for the penicillin-binding protein (PBP) 2a. Its activity against laboratory mutants of P. aeruginosa with (i) overproduction of chromosomally coded AmpC beta-lactamase; (ii) overproduction of the multidrug efflux pumps MexAB-OprM, MexCD-OprJ, and MexEF-OprN; (iii) deficiency in OprD; and (iv) various combinations of AmpC overproduction, MexAB-OprM overproduction, and OprD deficiency were tested. The increases in the MIC of tomopenem against each single mutant compared with that against its parent strain were within a fourfold range. Tomopenem exhibited antibacterial activity against all mutants, with an observed MIC range of 0.5 to 8 microg/ml. These results suggest that the antibacterial activity of tomopenem against the clinical isolates of MRSA and P. aeruginosa should be ascribed to its high affinity for PBP 2a and its activity against the mutants of P. aeruginosa, respectively.


Asunto(s)
Carbapenémicos/farmacología , Resistencia a la Meticilina , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Imipenem/farmacología , Meropenem , Pruebas de Sensibilidad Microbiana , Tienamicinas/farmacología
8.
J Med Microbiol ; 62(Pt 3): 429-436, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23222859

RESUMEN

It is well known that carbapenem-resistant mutations in penicillin-binding proteins (PBPs) are not observed in most Gram-negative bacteria under either clinical or experimental conditions. To understand the mechanisms involved in carbapenem resistance, this study constructed a mutS- and tolC-deficient Escherichia coli strain, which was expected to have elevated mutation frequencies and to lack drug efflux. Using this mutant, carbapenem-resistant strains with target mutations were successfully and efficiently isolated. The mutations T547I/A, M574I and G601D were identified in the PBP2 gene. Meropenem (MEPM)-resistant strains with the PBP2 T547I mutation showed fourfold increased resistance to 1-ß-methyl-substituted carbapenems, such as doripenem, MEPM and biapenem, but not to non-substituted carbapenems such as imipenem and panipenem and other ß-lactams. In addition, resistance resulting from the G601D mutation was limited to MEPM, whilst the M574I mutation conferred resistance to MEPM, imipenem and panipenem. This is the first report, to the best of our knowledge, that E. coli also has a carbapenem-resistance mechanism as a result of PBP2 mutations, and it provides insight into the resistance profiles of PBP2 mutations to carbapenems with and without the 1-ß-methyl group.


Asunto(s)
Carbapenémicos/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de Unión a las Penicilinas/metabolismo , Carbapenémicos/química , Reparación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Mutación , Proteínas de Unión a las Penicilinas/genética
9.
J Med Microbiol ; 59(Pt 4): 438-441, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20093378

RESUMEN

The postantibiotic effect (PAE) of tomopenem was determined after a 2 h exposure of two strains of meticillin-susceptible and meticillin-resistant Staphylococcus aureus (MSSA and MRSA), and imipenem-susceptible and imipenem-resistant Pseudomonas aeruginosa, to tenfold the respective MIC. The PAEs on MSSA and P. aeruginosa were approximately 1 h and they were comparable to those of meropenem. The PAE on MRSA was 1.5 to 3 h, equal to or longer than those of vancomycin. The PAEs of tomopenem not only were found for MRSA, but also were present in the imipenem-resistant P. aeruginosa tested.


Asunto(s)
Antibacterianos/farmacología , Carbapenémicos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Farmacorresistencia Bacteriana , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
10.
Antimicrob Agents Chemother ; 49(8): 3239-50, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16048932

RESUMEN

CS-023 (RO4908463, formerly R-115685) is a novel 1beta-methylcarbapenem with 5-substituted pyrrolidin-3-ylthio groups, including an amidine moiety at the C-2 position. Its antibacterial activity was tested against 1,214 clinical isolates of 32 species and was compared with those of imipenem, meropenem, ceftazidime, ceftriaxone, ampicillin, amikacin, and levofloxacin. CS-023 exhibited a broad spectrum of activity against gram-positive and -negative aerobes and anaerobes, including methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis, penicillin-resistant Streptococcus pneumoniae (PRSP), beta-lactamase-negative ampicillin-resistant Haemophilus influenzae, and Pseudomonas aeruginosa. CS-023 showed the most potent activity among the compounds tested against P. aeruginosa and MRSA, with MICs at which 90% of isolates tested were inhibited of 4 microg/ml and 8 microg/ml, respectively. CS-023 was stable against hydrolysis by the beta-lactamases from Enterobacter cloacae and Proteus vulgaris. CS-023 also showed potent activity against extended-spectrum beta-lactamase-producing Escherichia coli. The in vivo efficacy of CS-023 was evaluated with a murine systemic infection model induced by 13 strains of gram-positive and -negative pathogens and a lung infection model induced by 2 strains of PRSP (serotypes 6 and 19). Against the systemic infections with PRSP, MRSA, and P. aeruginosa and the lung infections, the efficacy of CS-023 was comparable to those of imipenem/cilastatin and vancomycin (tested against lung infections only) and superior to those of meropenem, ceftriaxone, and ceftazidime (tested against P. aeruginosa infections only). These results suggest that CS-023 has potential for the treatment of nosocomial bacterial infections by gram-positive and -negative pathogens, including MRSA and P. aeruginosa.


Asunto(s)
Antibacterianos , Carbapenémicos , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Bacterias Grampositivas/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Animales , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/química , Carbapenémicos/farmacocinética , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Ratones , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA