Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101971

RESUMEN

Metastatic osteosarcoma has a poor prognosis with a 2-y, event-free survival rate of ∼15 to 20%, highlighting the need for the advancement of efficacious therapeutics. Chimeric antigen receptor (CAR) T-cell therapy is a potent strategy for eliminating tumors by harnessing the immune system. However, clinical trials with CAR T cells in solid tumors have encountered significant challenges and have not yet demonstrated convincing evidence of efficacy for a large number of patients. A major bottleneck for the success of CAR T-cell therapy is our inability to monitor the accumulation of the CAR T cells in the tumor with clinical-imaging techniques. To address this, we developed a clinically translatable approach for labeling CAR T cells with iron oxide nanoparticles, which enabled the noninvasive detection of the iron-labeled T cells with magnetic resonance imaging (MRI), photoacoustic imaging (PAT), and magnetic particle imaging (MPI). Using a custom-made microfluidics device for T-cell labeling by mechanoporation, we achieved significant nanoparticle uptake in the CAR T cells, while preserving T-cell proliferation, viability, and function. Multimodal MRI, PAT, and MPI demonstrated homing of the T cells to osteosarcomas and off-target sites in animals administered with T cells labeled with the iron oxide nanoparticles, while T cells were not visualized in animals infused with unlabeled cells. This study details the successful labeling of CAR T cells with ferumoxytol, thereby paving the way for monitoring CAR T cells in solid tumors.


Asunto(s)
Neoplasias Óseas , Óxido Ferrosoférrico/farmacología , Inmunoterapia Adoptiva , Imagen por Resonancia Magnética , Nanopartículas/uso terapéutico , Neoplasias Experimentales , Osteosarcoma , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/inmunología , Neoplasias Óseas/terapia , Ratones , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/terapia , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/inmunología , Osteosarcoma/terapia
2.
Stem Cells ; 41(11): 1037-1046, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37632456

RESUMEN

Inherited retinal degeneration is a term used to describe heritable disorders that result from the death of light sensing photoreceptor cells. Although we and others believe that it will be possible to use gene therapy to halt disease progression early in its course, photoreceptor cell replacement will likely be required for patients who have already lost their sight. While advances in autologous photoreceptor cell manufacturing have been encouraging, development of technologies capable of efficiently delivering genome editing reagents to stem cells using current good manufacturing practices (cGMP) are needed. Gene editing reagents were delivered to induced pluripotent stem cells (iPSCs) using a Zephyr microfluidic transfection platform (CellFE). CRISPR-mediated cutting was quantified using an endonuclease assay. CRISPR correction was confirmed via digital PCR and Sanger sequencing. The resulting corrected cells were also karyotyped and differentiated into retinal organoids. We describe use of a novel microfluidic transfection platform to correct, via CRISPR-mediated homology-dependent repair (HDR), a disease-causing NR2E3 mutation in patient-derived iPSCs using cGMP compatible reagents and approaches. We show that the resulting cell lines have a corrected genotype, exhibit no off-target cutting, retain pluripotency and a normal karyotype and can be differentiated into retinal tissue suitable for transplantation. The ability to codeliver CRISPR/Cas9 and HDR templates to patient-derived iPSCs without using proprietary transfection reagents will streamline manufacturing protocols, increase the safety of resulting cell therapies, and greatly reduce the regulatory burden of clinical trials.


Asunto(s)
Edición Génica , Células Madre Pluripotentes Inducidas , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Microfluídica , Transfección
3.
Soft Matter ; 20(8): 1913-1921, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38323349

RESUMEN

Numerous applications in medical diagnostics, cell engineering therapy, and biotechnology require the identification and sorting of cells that express desired molecular surface markers. We developed a microfluidic method for high-throughput and label-free sorting of biological cells by their affinity of molecular surface markers to target ligands. Our approach consists of a microfluidic channel decorated with periodic skewed ridges and coated with adhesive molecules. The periodic ridges form gaps with the opposing channel wall that are smaller than the cell diameter, thereby ensuring cell contact with the adhesive surfaces. Using three-dimensional computer simulations, we examine trajectories of adhesive cells in the ridged microchannels. The simulations reveal that cell trajectories are sensitive to the cell adhesion strength. Thus, the differential cell trajectories can be leveraged for adhesion-based cell separation. We probe the effect of cell elasticity on the adhesion-based sorting and show that cell elasticity can be utilized to enhance the resolution of the sorting. Furthermore, we investigate how the microchannel ridge angle can be tuned to achieve an efficient adhesion-based sorting of cells with different compliance.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Adhesión Celular , Separación Celular/métodos , Elasticidad , Ligandos
4.
Langmuir ; 37(16): 4783-4792, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33848167

RESUMEN

Cytotoxic effector cells are an integral component of the immune response against pathogens and diseases such as cancer and thus of great interest to researchers who wish to enhance the native immune response. Although researchers routinely use particles to stimulate cytotoxic T cells, few studies have comprehensively investigated: (1) beyond initial activation responses (i.e., proliferation and CD25/CD69 expression) to downstream cancer-killing effects and (2) how to drive cytotoxic T-cell responses by adjusting biomolecular and physical properties of particles. In this study, we designed particles displaying an anti-CD3 antibody to activate cytotoxic T cells and study their downstream cytotoxic effects. We evaluated the effect of antibody immobilization, particle size, molecular surface density of an anti-CD3 antibody, and the inclusion of an anti-CD28 antibody on cytolytic granule release by T cells. We found that immobilizing the anti-CD3 antibody onto smaller nanoparticles elicited increased T-cell activation products for an equivalent delivery of the anti-CD3 antibody. We further established that the mechanism behind increased cancer cell death was associated with the proximity of T cells to cancer cells. Functionalizing particles additionally with the anti-CD28 antibody at an optimized antibody density caused increased T-cell proliferation and T-cell binding but we observed no effective increase in cytotoxicity. Meaningfully, our results are discussed within the context of commercially available and widely used anti-CD3/28 Dynabeads. These results showed that T-cell activation and cytotoxicity can be optimized with a molecular presentation on smaller particles and thus, offer exciting new possibilities to engineer T-cell activation responses for effective outcomes.


Asunto(s)
Anticuerpos Monoclonales , Activación de Linfocitos , Linfocitos T Citotóxicos , Antígenos CD28 , Complejo CD3 , Células Cultivadas , Humanos
5.
Small ; 16(2): e1903857, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782912

RESUMEN

Cells respond to mechanical forces by deforming in accordance with viscoelastic solid behavior. Studies of microscale cell deformation observed by high speed video microscopy have elucidated a new cell behavior in which sufficiently rapid mechanical compression of cells can lead to transient cell volume loss and then recovery. This work has discovered that the resulting volume exchange between the cell interior and the surrounding fluid can be utilized for efficient, convective delivery of large macromolecules (2000 kDa) to the cell interior. However, many fundamental questions remain about this cell behavior, including the range of deformation time scales that result in cell volume loss and the physiological effects experienced by the cell. In this study, a relationship is established between cell viscoelastic properties and the inertial forces imposed on the cell that serves as a predictor of cell volume loss across human cell types. It is determined that cells maintain nuclear envelope integrity and demonstrate low protein loss after the volume exchange process. These results define a highly controlled cell volume exchange mechanism for intracellular delivery of large macromolecules that maintains cell viability and function for invaluable downstream research and clinical applications.


Asunto(s)
Tamaño de la Célula , Estrés Mecánico , Elasticidad , Viscosidad
6.
Exp Eye Res ; 199: 108166, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32771499

RESUMEN

Inherited retinal degenerative disorders such as retinitis pigmentosa and Usher syndrome are characterized by progressive death of photoreceptor cells. To restore vision to patients blinded by these diseases, a stem cell-based photoreceptor cell replacement strategy will likely be required. Although retinal stem cell differentiation protocols suitable for generating photoreceptor cells exist, they often yield a rather heterogenous mixture of cell types. To enrich the donor cell population for one or a few cell types, scientists have traditionally relied upon the use of antibody-based selection approaches. However, these strategies are quite labor intensive and require animal derived reagents and equipment that are not well suited to current good manufacturing practices (cGMP). The purpose of this study was to develop and evaluate a microfluidic cell sorting device capable of exploiting the physical and mechanical differences between retinal cell types to enrich specific donor cell populations such as Retinal Pigment Epithelial (RPE) cells and photoreceptor cells. Using this device, we were able to separate a mixture of RPE and iPSC-derived photoreceptor precursor cell lines into two substantially enriched fractions. The enrichment factor of the RPE fraction was 2 and that of the photoreceptor precursor cell fraction was 2.7. Similarly, when human retina, obtained from 3 independent donors, was dissociated and passed through the sorting device, the heterogeneous mixture could be reliably sorted into RPE and photoreceptor cell rich fractions. In summary, microfluidic cell sorting is a promising approach for antibody free enrichment of retinal cell populations.


Asunto(s)
Microfluídica/métodos , Células Fotorreceptoras/patología , Degeneración Retiniana/diagnóstico , Epitelio Pigmentado de la Retina/patología , Animales , Diferenciación Celular , Línea Celular , Humanos , Microscopía de Fuerza Atómica , Células Fotorreceptoras/metabolismo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
7.
J Biol Chem ; 293(33): 12781-12792, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29941453

RESUMEN

Liver fibrosis arises from dysregulated wound healing due to persistent inflammatory hepatic injury. Periostin is a nonstructural extracellular matrix protein that promotes organ fibrosis in adults. Here, we sought to identify the molecular mechanisms in periostin-mediated hepatic fibrosis. Hepatic fibrosis in periostin-/- mice was attenuated as evidenced by significantly reduced collagen fibril density and liver stiffness compared with those in WT controls. A single dose of carbon tetrachloride caused similar acute liver injury in periostin-/- and WT littermates, and we did not detect significant differences in transaminases and major fibrosis-related hepatic gene expression between these two genotypes. Activated hepatic stellate cells (HSCs) are the major periostin-producing liver cell type. We found that in primary rat HSCs in vitro, periostin significantly increases the expression levels and activities of lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) isoforms 1-3. Periostin also induced expression of intra- and extracellular collagen type 1 and fibronectin in HSCs. Interestingly, periostin stimulated phosphorylation of SMAD2/3, which was sustained despite short hairpin RNA-mediated knockdown of transforming growth factor ß (TGFß) receptor I and II, indicating that periostin-mediated SMAD2/3 phosphorylation is independent of TGFß receptors. Moreover, periostin induced the phosphorylation of focal adhesion kinase (FAK) and AKT in HSCs. Notably, siRNA-mediated FAK knockdown failed to block periostin-induced SMAD2/3 phosphorylation. These results suggest that periostin promotes enhanced matrix stiffness in chronic liver disease by activating LOX and LOXL, independently of TGFß receptors. Hence, targeting periostin may be of therapeutic benefit in combating hepatic fibrosis.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/patología , Proteína-Lisina 6-Oxidasa/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Células Estrelladas Hepáticas/enzimología , Cirrosis Hepática/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de Señal
8.
Langmuir ; 35(36): 11717-11724, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31430169

RESUMEN

Bead reagents are used in a large number of assays in bioscience and biotechnology to collect and purify antibodies by immobilization. Bead-based immunoassays offer high-throughput analysis of multiple antibodies in a single sample. Although a variety of antibody-binding moieties on the collection beads have been studied, the physical and material properties of collection beads have not been optimized to isolate specific antibodies over a broad range of concentrations from complex environments containing cells. We present a study of how to optimally use microparticles coated with protein G to collect low concentrations of IgG antibodies from complex solutions. We study the impact of bead material, bead size, incubation time, and protein G density to more efficiently collect antibodies and detect specific antibodies via fluorescent antigen labeling. The minimum detectable limit and the minimum incubation time for antibody collection are used as metrics to evaluate the collection parameters. We found that larger silica beads can capture more antibodies from a low concentration of sample, with a minimum incubation time of 60 min to equilibrium binding, resulting in a minimum detectable concentration of antibodies of 26 nM. We show that simple biophysical optimization of antibody collection reagents can be used to improve the collection of low concentrations of antibodies in complex environments. We demonstrate that the technology may be useful for monitoring antibody secretions from hybridoma cultures.


Asunto(s)
Inmunoglobulina G/análisis , Dióxido de Silicio/química , Ensayos Analíticos de Alto Rendimiento , Inmunoensayo , Indicadores y Reactivos/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
9.
Proc Natl Acad Sci U S A ; 113(50): 14213-14218, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911778

RESUMEN

Free-energy landscapes govern the behavior of all interactions in the presence of thermal fluctuations in the fields of physical chemistry, materials sciences, and the biological sciences. From the energy landscape, critical information about an interaction, such as the reaction kinetic rates, bond lifetimes, and the presence of intermediate states, can be determined. Despite the importance of energy landscapes to understanding reaction mechanisms, most experiments do not directly measure energy landscapes, particularly for interactions with steep force gradients that lead to premature jump to contact of the probe and insufficient sampling of transition regions. Here we present an atomic force microscopy (AFM) approach for measuring energy landscapes that increases sampling of strongly adhesive interactions by using white-noise excitation to enhance the cantilever's thermal fluctuations. The enhanced fluctuations enable the recording of subtle deviations from a harmonic potential to accurately reconstruct interfacial energy landscapes with steep gradients. Comparing the measured energy landscape with adhesive force measurements reveals the existence of an optimal excitation voltage that enables the cantilever fluctuations to fully sample the shape and depth of the energy surface.

10.
Proc Natl Acad Sci U S A ; 113(8): 1987-92, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26858400

RESUMEN

Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear. Here we show that alterations in granulocyte mechanical properties are the driving force behind glucocorticoid- and catecholamine-induced demargination. First, we found that the proportions of granulocytes from healthy human subjects that traversed and demarginated from microfluidic models of capillary beds and veins, respectively, increased after the subjects ingested glucocorticoids. Also, we show that glucocorticoid and catecholamine exposure reorganizes cellular cortical actin, significantly reducing granulocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, we found that this reduction in stiffness alone is sufficient to cause granulocyte demargination. Taken together, our findings reveal a biomechanical answer to an old hematologic question regarding how glucocorticoids and catecholamines cause leukocyte demargination. In addition, in a broader sense, we have discovered a temporally and energetically efficient mechanism in which the innate immune system can simply alter leukocyte stiffness to fine tune margination/demargination and therefore leukocyte trafficking in general. These observations have broad clinically relevant implications for the inflammatory process overall as well as hematopoietic stem cell mobilization and homing.


Asunto(s)
Movimiento Celular , Granulocitos , Dispositivos Laboratorio en un Chip , Modelos Cardiovasculares , Catecolaminas/farmacología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Femenino , Glucocorticoides/farmacología , Granulocitos/citología , Granulocitos/metabolismo , Humanos , Recuento de Leucocitos/instrumentación , Recuento de Leucocitos/métodos , Masculino
11.
Nat Mater ; 16(2): 230-235, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27723740

RESUMEN

Haemostasis occurs at sites of vascular injury, where flowing blood forms a clot, a dynamic and heterogeneous fibrin-based biomaterial. Paramount in the clot's capability to stem haemorrhage are its changing mechanical properties, the major drivers of which are the contractile forces exerted by platelets against the fibrin scaffold. However, how platelets transduce microenvironmental cues to mediate contraction and alter clot mechanics is unknown. This is clinically relevant, as overly softened and stiffened clots are associated with bleeding and thrombotic disorders. Here, we report a high-throughput hydrogel-based platelet-contraction cytometer that quantifies single-platelet contraction forces in different clot microenvironments. We also show that platelets, via the Rho/ROCK pathway, synergistically couple mechanical and biochemical inputs to mediate contraction. Moreover, highly contractile platelet subpopulations present in healthy controls are conspicuously absent in a subset of patients with undiagnosed bleeding disorders, and therefore may function as a clinical diagnostic biophysical biomarker.


Asunto(s)
Coagulación Sanguínea/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Plaquetas/fisiología , Citometría de Flujo/métodos , Mecanotransducción Celular/fisiología , Activación Plaquetaria/fisiología , Adhesividad Plaquetaria/fisiología , Células Cultivadas , Módulo de Elasticidad/fisiología , Dureza/fisiología , Humanos , Nanopartículas/química
12.
Mater Today (Kidlington) ; 21(7): 703-712, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30288138

RESUMEN

Efficient intracellular delivery of target macromolecules remains a major obstacle in cell engineering and other biomedical applications. We discovered a unique cell biophysical phenomenon of transient cell volume exchange by using microfluidics to rapidly and repeatedly compress cells. This behavior consists of brief, mechanically induced cell volume loss followed by rapid volume recovery. We harness this behavior for high-throughput, convective intracellular delivery of large polysaccharides (2000 kDa), particles (100 nm), and plasmids while maintaining high cell viability. Successful proof of concept experiments in transfection and intracellular labeling demonstrated potential to overcome the most prohibitive challenges in intracellular delivery for cell engineering.

13.
Anal Chem ; 89(21): 11545-11551, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-28930450

RESUMEN

Cell surface molecular adhesions govern many important physiological processes and are used to identify cells for analysis and purifications. But most effective cell adhesion separation technologies use labels or long-term attachments in their application. While label-free separation microsystems typically separate cells by size, stiffness, and shape, they often do not provide sufficient specificity to cell type that can be obtained from molecular expression. We demonstrate a label-free microfluidic approach capable of high throughput separation of cells based upon surface molecule adhesion. Cells are flowed through a microchannel designed with angled ridges at the top of the channel and coated with adhesive ligands specific to target cell receptors. The ridges slightly compress passing cells such that adhesive contact can be made with sufficient surface area without unduly affecting cell trajectories because of cell stiffness. Thus, sorting is sensitive to cell adhesion but not to stiffness or cell size. The enforced interactions between the cells and the ridges ensure that a high flow rate can be used without lift forces quenching adhesion. As a proof of principle of the method, we separate both Jurkat and HL60 cell lines based on their differential expression of PSGL-1 ligand by using a ridged channel coated with P selectin. We demonstrate 26-fold and 3.8-fold enrichment of PSGL-1 positive and 4.4-fold and 3.2-fold enrichment of PSGL-1 negative Jurkat and HL60 cells, respectively. Increasing the number of outlets to five allows for greater resolution in PSGL-1 selection resulting in fractionation of a single cell type into subpopulations of cells with high, moderate, and low PSGL-1 expression. The cells can flow at a rate of up to 0.2 m/s, which corresponds to 0.045 million cells per minute at the designed geometry, which is over 2 orders of magnitude higher than previous adhesive-based sorting approaches. Because of the short interaction time of the cells with the adhesive surfaces, the sorting method does not further activate the cells due to molecular binding. Such an approach may find use in label-free selection of cells for a highly expressed molecular phenotype.


Asunto(s)
Separación Celular/métodos , Regulación de la Expresión Génica , Selectina-P/metabolismo , Adhesión Celular , Separación Celular/instrumentación , Células HL-60 , Humanos , Células Jurkat , Dispositivos Laboratorio en un Chip , Ligandos , Factores de Tiempo
14.
Microcirculation ; 24(5)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28106307

RESUMEN

OBJECTIVE: Vaso-occlusive crisis (VOC) is a complex process that occurs in patients with sickle cell disease (SCD) and is often associated with pain and urgent hospitalization. A major instigator of VOC is microvascular obstruction by pathologically stiffened sickle red blood cells (RBCs), and thus, therapy relies heavily on optimizing intravenous fluid (IVF) hydration to increase RBC deformability. However, no evidence-based guidelines regarding the choice of IVF currently exist. We therefore analyzed alterations in biomechanical properties of sickle RBCs isolated from patients with homozygous SCD (hemoglobin SS) after exposure to different osmolarities of clinical IVF formulations. METHODS: Atomic force microscopy (AFM) was used to assess stiffness of RBCs after exposure to different IVFs. A microfluidic model of the human capillary system was used to assess transit time (TT) and propensity to occlusion after exposure to the different IVF formulations. RESULTS: Sickle RBCs exposed to normal saline (NS) had increased stiffness, TTs, and propensity to microchannel occlusion compared to other osmolarities. CONCLUSION: NS, an IVF formulation often used to treat patients with SCD during VOC, may induce localized microvascular obstruction due to alterations of sickle RBC biomechanical properties.


Asunto(s)
Anemia de Células Falciformes/sangre , Capilares/fisiopatología , Eritrocitos/patología , Cloruro de Sodio/efectos adversos , Anemia de Células Falciformes/complicaciones , Eritrocitos/efectos de los fármacos , Humanos , Microfluídica/métodos , Microscopía de Fuerza Atómica , Modelos Cardiovasculares , Cloruro de Sodio/farmacología , Enfermedades Vasculares/inducido químicamente
15.
Exp Eye Res ; 158: 3-12, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27448987

RESUMEN

Alterations in stiffness of the trabecular meshwork (TM) may play an important role in primary open-angle glaucoma (POAG), the second leading cause of blindness. Specifically, certain data suggest an association between elevated intraocular pressure (IOP) and increased TM stiffness; however, the underlying link between TM stiffness and IOP remains unclear and requires further study. We here first review the literature on TM stiffness measurements, encompassing various species and based on a number of measurement techniques, including direct approaches such as atomic force microscopy (AFM) and uniaxial tension tests, and indirect methods based on a beam deflection model. We also briefly review the effects of several factors that affect TM stiffness, including lysophospholipids, rho-kinase inhibitors, cytoskeletal disrupting agents, dexamethasone (DEX), transforming growth factor-ß2 (TGF-ß2), nitric oxide (NO) and cellular senescence. We then describe a method we have developed for determining TM stiffness measurement in mice using a cryosection/AFM-based approach, and present preliminary data on TM stiffness in C57BL/6J and CBA/J mouse strains. Finally, we investigate the relationship between TM stiffness and outflow facility between these two strains. The method we have developed shows promise for further direct measurements of mouse TM stiffness, which may be of value in understanding mechanistic relations between outflow facility and TM biomechanical properties.


Asunto(s)
Elasticidad/fisiología , Glaucoma de Ángulo Abierto/fisiopatología , Fenómenos Fisiológicos Oculares , Malla Trabecular/fisiopatología , Animales , Humor Acuoso/metabolismo , Fenómenos Biomecánicos , Diagnóstico por Imagen de Elasticidad , Femenino , Humanos , Presión Intraocular/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Microscopía de Fuerza Atómica
16.
Biophys J ; 111(8): 1761-1772, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27760362

RESUMEN

Healthy eyes contain a population of limbal stem cells (LSCs) that continuously renew the corneal epithelium. However, each year, 1 million Americans are afflicted with severely reduced visual acuity caused by corneal damage or disease, including LSC deficiency (LSCD). Recent advances in corneal transplant technology promise to repair the cornea by implanting healthy LSCs to encourage regeneration; however, success is limited to transplanted tissues that contain a sufficiently high percentage of LSCs. Attempts to screen limbal tissues for suitable implants using molecular stemness markers are confounded by the poorly understood signature of the LSC phenotype. For cells derived from the corneal limbus, we show that the performance of cell stiffness as a stemness indicator is on par with the performance of ΔNP63α, a common molecular marker. In combination with recent methods for sorting cells on a biophysical basis, the biomechanical stemness markers presented here may enable the rapid purification of LSCs from a heterogeneous population of corneal cells, thus potentially enabling clinicians and researchers to generate corneal transplants with sufficiently high fractions of LSCs, regardless of the LSC percentage in the donor tissue.


Asunto(s)
Limbo de la Córnea/citología , Fenómenos Mecánicos , Células Madre/citología , Fenómenos Biomecánicos , Epitelio Corneal/citología , Humanos , Dispositivos Laboratorio en un Chip
17.
Precis Eng ; 46: 88-95, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27672230

RESUMEN

Many experimental biological techniques utilize hollow glass needles called micropipettes to perform fluid extraction, cell manipulation, and electrophysiological recordings For electrophysiological recordings, micropipettes are typically fabricated immediately before use using a "pipette puller", which uses open-loop control to heat a hollow glass capillary while applying a tensile load. Variability between manufactured micropipettes requires a highly trained operator to qualitatively inspect each micropipette; typically this is achieved by viewing the pipette under 40-100x magnification in order to ensure that the tip has the correct shape (e.g., outer diameter, cone angle, taper length). Since laboratories may use hundreds of micropipettes per week, significant time demands are associated with micropipette inspection. Here, we have automated the measurement of micropipette tip outer diameter and cone angle using optical microscopy. The process features repeatable constraint of the micropipette, quickly and automatically moving the micropipette to bring its tip into the field of view, focusing on the tip, and computing tip outer diameter and cone angle measurements from the acquired images by applying a series of image processing algorithms. As implemented on a custom automated microscope, these methods achieved, with 95% confidence, ±0.38 µm repeatability in outer diameter measurement and ±5.45° repeatability in cone angle measurement, comparable to a trained human operator. Accuracy was evaluated by comparing optical pipette measurements with measurements obtained using scanning electron microscopy (SEM); optical outer diameter measurements differed from SEM by 0.35 ± 0.36 µm and optical cone angle measurements differed from SEM by -0.23 ± 2.32°. The algorithms we developed are adaptable to most commercial automated microscopes and provide a skill-free route to rapid, quantitative measurement of pipette tip geometry with high resolution, accuracy, and repeatability. Further, these methods are an important step toward a closed-loop, fully-automated micropipette fabrication system.

18.
J Pathol ; 229(1): 25-35, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23018598

RESUMEN

Increased tissue stiffness and epithelial-to-mesenchymal transitions (EMTs) are two seemingly discrete hallmarks of fibrotic diseases. Despite recent findings highlighting the influence of tissue mechanical properties on cell phenotype, it remains unclear what role increased tissue stiffness has in the regulation of previously reported fibronectin-mediated EMTs associated with pulmonary fibrosis. Nano-indentation testing of lung interstitial spaces showed that in vivo cell-level Young's moduli increase with the onset of fibrosis from ∼2 to ∼17 kPa. In vitro, we found that stiff, but not soft, fibronectin substrates induce EMT, a response dependent on cell contraction-mediated integrin activation of TGFß. Activation or suppression of cell contractility with exogenous factors was sufficient to overcome the effect of substrate stiffness. Pulse-chase experiments indicate that the effect of cell contractility is dose- and time-dependent. In response to low levels of TGFß on soft surfaces, either added exogenously or produced through thrombin-induced contraction, cells will initiate the EMT programme, but upon removal revert to an epithelial phenotype. These results identify matrix stiffness and/or cell contractility as critical targets for novel therapeutics for fibrotic diseases.


Asunto(s)
Células Epiteliales Alveolares/patología , Microambiente Celular , Transición Epitelial-Mesenquimal , Pulmón/patología , Mecanotransducción Celular , Fibrosis Pulmonar/patología , Células Epiteliales Alveolares/metabolismo , Animales , Fenómenos Biomecánicos , Bleomicina , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Módulo de Elasticidad , Fibronectinas/metabolismo , Integrinas/metabolismo , Laminina/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Visón , Nanotecnología , Fenotipo , Fibrosis Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Trombina/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo
19.
J Biomech ; 168: 112113, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38648717

RESUMEN

Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.


Asunto(s)
Microscopía de Fuerza Atómica , Animales , Microscopía de Fuerza Atómica/métodos , Ratones , Ratas , Esclerótica/fisiología , Esclerótica/diagnóstico por imagen , Córnea/fisiología , Córnea/diagnóstico por imagen , Malla Trabecular/fisiología , Malla Trabecular/diagnóstico por imagen , Crioultramicrotomía/métodos , Disco Óptico/diagnóstico por imagen , Disco Óptico/fisiología , Fenómenos Biomecánicos
20.
Anticancer Drugs ; 24(5): 504-18, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23511429

RESUMEN

Preliminary studies have suggested that the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) may be effective in inhibiting the growth of pancreatic cancer cells. In-depth cellular and molecular analyses were carried out to determine NAC's mode of action in inhibiting the growth of a well-characterized pancreatic cancer cell line (AsPC-1). Standardized assays were used to monitor cellular growth, apoptosis, levels of ROS, cellular senescence, migration, and invasiveness. Cell stiffness was measured using atomic force microscopy. Gene expression was monitored by quantitative PCR. NAC significantly inhibits the growth and metastatic potential of AsPC-1 cells by inducing cell-cycle arrest in G1 and subsequent cellular senescence and decreased invasiveness. These anticancer properties are associated with an unexpected increase in the intracellular concentrations of ROS. NAC does not decrease the susceptibility of AsPC-1 cells to the anticancer drugs gemcitabine, mitomycin C, and doxorubicin. NAC-induced changes in gene expression are consistent with the onset of mesenchymal-to-epithelial transition. In conclusion, our findings indicate that NAC induces an integrated series of responses in AsPC-1 cells that make it a highly promising candidate for development as a pancreatic cancer therapeutic.


Asunto(s)
Acetilcisteína/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes myc , Humanos , Mitomicina/farmacología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA