Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(4): 632-642, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35301508

RESUMEN

Although inhibition of T cell coinhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. In the present study, we show that type 1 interferon (IFN-I) regulates coinhibitory receptor expression on human T cells, inducing PD-1/TIM-3/LAG-3 while inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses established the dynamic regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors (TFs) and TF footprint analysis revealed two regulator modules with different temporal kinetics that control expression of coinhibitory receptors and IFN-I response genes, with SP140 highlighted as one of the key regulators that differentiates LAG-3 and TIGIT expression. Finally, we found that the dynamic IFN-I response in vitro closely mirrored T cell features in acute SARS-CoV-2 infection. The identification of unique TFs controlling coinhibitory receptor expression under IFN-I response may provide targets for enhancement of immunotherapy in cancer, infectious diseases and autoimmunity.


Asunto(s)
COVID-19 , Interferón Tipo I , Redes Reguladoras de Genes , Humanos , Interferón Tipo I/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Inmunológicos/genética , SARS-CoV-2 , Linfocitos T
2.
Nat Immunol ; 20(7): 943, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31175348

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Immunol ; 19(12): 1391-1402, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30374130

RESUMEN

Foxp3+ regulatory T cells (Treg cells) are the central component of peripheral immune tolerance. Whereas a dysregulated Treg cytokine signature has been observed in autoimmune diseases, the regulatory mechanisms underlying pro- and anti-inflammatory cytokine production are elusive. Here, we identify an imbalance between the cytokines IFN-γ and IL-10 as a shared Treg signature present in patients with multiple sclerosis and under high-salt conditions. RNA-sequencing analysis on human Treg subpopulations revealed ß-catenin as a key regulator of IFN-γ and IL-10 expression. The activated ß-catenin signature was enriched in human IFN-γ+ Treg cells, as confirmed in vivo with Treg-specific ß-catenin-stabilized mice exhibiting lethal autoimmunity with a dysfunctional Treg phenotype. Moreover, we identified prostaglandin E receptor 2 (PTGER2) as a regulator of IFN-γ and IL-10 production under a high-salt environment, with skewed activation of the ß-catenin-SGK1-Foxo axis. Our findings reveal a novel PTGER2-ß-catenin loop in Treg cells linking environmental high-salt conditions to autoimmunity.


Asunto(s)
Autoinmunidad/inmunología , Inflamación/inmunología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Linfocitos T Reguladores/inmunología , beta Catenina/inmunología , Animales , Regulación de la Expresión Génica/inmunología , Humanos , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Interleucina-10/biosíntesis , Interleucina-10/inmunología , Ratones Endogámicos C57BL , Subtipo EP2 de Receptores de Prostaglandina E/inmunología , Linfocitos T Reguladores/metabolismo
4.
Immunity ; 54(5): 1083-1095.e7, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33891889

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV-2 infection. We profiled MIS-C, adult COVID-19, and healthy pediatric and adult individuals using single-cell RNA sequencing, flow cytometry, antigen receptor repertoire analysis, and unbiased serum proteomics, which collectively identified a signature in MIS-C patients that correlated with disease severity. Despite having no evidence of active infection, MIS-C patients had elevated S100A-family alarmins and decreased antigen presentation signatures, indicative of myeloid dysfunction. MIS-C patients showed elevated expression of cytotoxicity genes in NK and CD8+ T cells and expansion of specific IgG-expressing plasmablasts. Clinically severe MIS-C patients displayed skewed memory T cell TCR repertoires and autoimmunity characterized by endothelium-reactive IgG. The alarmin, cytotoxicity, TCR repertoire, and plasmablast signatures we defined have potential for application in the clinic to better diagnose and potentially predict disease severity early in the course of MIS-C.


Asunto(s)
COVID-19/inmunología , COVID-19/patología , SARS-CoV-2/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/patología , Adolescente , Alarminas/inmunología , Autoanticuerpos/inmunología , Linfocitos T CD8-positivos/inmunología , Niño , Preescolar , Citotoxicidad Inmunológica/genética , Endotelio/inmunología , Endotelio/patología , Humanos , Células Asesinas Naturales/inmunología , Células Mieloides/inmunología , Células Plasmáticas/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Índice de Severidad de la Enfermedad
5.
Cell ; 149(6): 1298-313, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22682250

RESUMEN

Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice. C1q activates canonical Wnt signaling by binding to Frizzled receptors and subsequently inducing C1s-dependent cleavage of the ectodomain of Wnt coreceptor low-density lipoprotein receptor-related protein 6. Skeletal muscle regeneration in young mice is inhibited by exogenous C1q treatment, whereas aging-associated impairment of muscle regeneration is restored by C1s inhibition or C1qa gene disruption. Our findings therefore suggest the unexpected role of complement C1q in Wnt signal transduction and modulation of mammalian aging.


Asunto(s)
Envejecimiento/metabolismo , Complemento C1q/metabolismo , Vía de Señalización Wnt , Animales , Complemento C1s/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Suero/metabolismo
6.
Am J Respir Crit Care Med ; 210(4): 484-496, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38717443

RESUMEN

Rationale: Changes in peripheral blood cell populations have been observed, but not detailed, at single-cell resolution in idiopathic pulmonary fibrosis (IPF). Objectives: We sought to provide an atlas of the changes in the peripheral immune system in stable and progressive IPF. Methods: Peripheral blood mononuclear cells (PBMCs) from patients with IPF and control subjects were profiled using 10× chromium 5' single-cell RNA sequencing. Flow cytometry was used for validation. Protein concentrations of regulatory T cells (Tregs) and monocyte chemoattractants were measured in plasma and lung homogenates from patients with IPF and control subjects. Measurements and Main Results: Thirty-eight PBMC samples from 25 patients with IPF and 13 matched control subjects yielded 149,564 cells that segregated into 23 subpopulations. Classical monocytes were increased in patients with progressive and stable IPF compared with control subjects (32.1%, 25.2%, and 17.9%, respectively; P < 0.05). Total lymphocytes were decreased in patients with IPF versus control subjects and in progressive versus stable IPF (52.6% vs. 62.6%, P = 0.035). Tregs were increased in progressive versus stable IPF (1.8% vs. 1.1% of all PBMCs, P = 0.007), although not different than controls, and may be associated with decreased survival (P = 0.009 in Kaplan-Meier analysis; and P = 0.069 after adjusting for age, sex, and baseline FVC). Flow cytometry analysis confirmed this finding in an independent cohort of patients with IPF. The fraction of Tregs out of all T cells was also increased in two cohorts of lung single-cell RNA sequencing. CCL22 and CCL18, ligands for CCR4 and CCR8 Treg chemotaxis receptors, were increased in IPF. Conclusions: The single-cell atlas of the peripheral immune system in IPF reveals an outcome-predictive increase in classical monocytes and Tregs, as well as evidence for a lung-blood immune recruitment axis involving CCL7 (for classical monocytes) and CCL18/CCL22 (for Tregs).


Asunto(s)
Fibrosis Pulmonar Idiopática , Leucocitos Mononucleares , Análisis de la Célula Individual , Linfocitos T Reguladores , Humanos , Fibrosis Pulmonar Idiopática/inmunología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Análisis de la Célula Individual/métodos , Linfocitos T Reguladores/inmunología , Leucocitos Mononucleares/inmunología , Progresión de la Enfermedad , Estudios de Casos y Controles , Citometría de Flujo
7.
Artículo en Inglés | MEDLINE | ID: mdl-38924775

RESUMEN

Rationale: Fibrotic hypersensitivity pneumonitis is a debilitating interstitial lung disease driven by incompletely understood immune mechanisms. Objectives: To elucidate immune aberrations in fibrotic hypersensitivity pneumonitis in single-cell resolution. Methods: Single-cell 5' RNA sequencing was conducted on peripheral blood mononuclear cells and bronchoalveolar lavage cells obtained from 45 patients with fibrotic hypersensitivity pneumonitis, 63 idiopathic pulmonary fibrosis, 4 non-fibrotic hypersensitivity pneumonitis, and 36 healthy controls in the United States and Mexico. Analyses included differential gene expression (Seurat), transcription factor activity imputation (DoRothEA-VIPER), and trajectory analyses (Monocle3/Velocyto-scVelo-CellRank). Measurements and Main Results: Overall, 501,534 peripheral blood mononuclear cells from 110 patients and controls and 88,336 bronchoalveolar lavage cells from 19 patients were profiled. Compared to controls, fibrotic hypersensitivity pneumonitis has elevated classical monocytes (adjusted-p=2.5e-3) and are enriched in CCL3hi/CCL4hi and S100Ahi classical monocytes (adjusted-p<2.2e-16). Trajectory analyses demonstrate that S100Ahi classical monocytes differentiate into SPP1hi lung macrophages associated with fibrosis. Compared to both controls and idiopathic pulmonary fibrosis, fibrotic hypersensitivity pneumonitis patient cells are significantly enriched in GZMhi cytotoxic T cells. These cells exhibit transcription factor activities indicative of TGFß and TNFα/NFκB pathways. These results are publicly available at https://ildimmunecellatlas.org. Conclusions: Single-cell transcriptomics of fibrotic hypersensitivity pneumonitis patients uncovered novel immune perturbations, including previously undescribed increases in GZMhi cytotoxic CD4+ and CD8+ T cells - reflecting this disease's unique inflammatory T-cell driven nature - as well as increased S100Ahi and CCL3hi/CCL4hi classical monocytes also observed in idiopathic pulmonary fibrosis. Both cell populations may guide the development of new biomarkers and therapeutic interventions.

8.
J Immunol ; 206(12): 2785-2790, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34049971

RESUMEN

Protective immunity against COVID-19 likely depends on the production of SARS-CoV-2-specific plasma cells and memory B cells postinfection or postvaccination. Previous work has found that germinal center reactions are disrupted in severe COVID-19. This may adversely affect long-term immunity against reinfection. Consistent with an extrafollicular B cell response, patients with severe COVID-19 have elevated frequencies of clonally expanded, class-switched, unmutated plasmablasts. However, it is unclear whether B cell populations in individuals with mild COVID-19 are similarly skewed. In this study, we use single-cell RNA sequencing of B cells to show that in contrast to patients with severe COVID-19, subjects with mildly symptomatic COVID-19 have B cell repertoires enriched for clonally diverse, somatically hypermutated memory B cells ∼30 d after the onset of symptoms. This provides evidence that B cell responses are less disrupted in mild COVID-19 and result in the production of memory B cells.


Asunto(s)
Linfocitos B/inmunología , COVID-19/inmunología , Estudios de Cohortes , Humanos , SARS-CoV-2/inmunología
9.
J Mol Cell Cardiol ; 128: 77-89, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30611794

RESUMEN

BACKGROUND: The heart responds to hemodynamic overload through cardiac hypertrophy and activation of the fetal gene program. However, these changes have not been thoroughly examined in individual cardiomyocytes, and the relation between cardiomyocyte size and fetal gene expression remains elusive. We established a method of high-throughput single-molecule RNA imaging analysis of in vivo cardiomyocytes and determined spatial and temporal changes during the development of heart failure. METHODS AND RESULTS: We applied three novel single-cell analysis methods, namely, single-cell quantitative PCR (sc-qPCR), single-cell RNA sequencing (scRNA-seq), and single-molecule fluorescence in situ hybridization (smFISH). Isolated cardiomyocytes and cross sections from pressure overloaded murine hearts after transverse aortic constriction (TAC) were analyzed at an early hypertrophy stage (2 weeks, TAC2W) and at a late heart failure stage (8 weeks, TAC8W). Expression of myosin heavy chain ß (Myh7), a representative fetal gene, was induced in some cardiomyocytes in TAC2W hearts and in more cardiomyocytes in TAC8W hearts. Expression levels of Myh7 varied considerably among cardiomyocytes. Myh7-expressing cardiomyocytes were significantly more abundant in the middle layer, compared with the inner or outer layers of TAC2W hearts, while such spatial differences were not observed in TAC8W hearts. Expression levels of Myh7 were inversely correlated with cardiomyocyte size and expression levels of mitochondria-related genes. CONCLUSIONS: We developed a new image-analysis pipeline to allow automated and unbiased quantification of gene expression at the single-cell level and determined the spatial and temporal regulation of heterogenous Myh7 expression in cardiomyocytes after pressure overload.


Asunto(s)
Aorta/diagnóstico por imagen , Cardiomegalia/genética , Insuficiencia Cardíaca/diagnóstico por imagen , Imagen Molecular/métodos , Cadenas Pesadas de Miosina/genética , Animales , Aorta/metabolismo , Aorta/patología , Cardiomegalia/diagnóstico , Cardiomegalia/diagnóstico por imagen , Regulación de la Expresión Génica/genética , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Insuficiencia Cardíaca/patología , Hemodinámica , Hibridación Fluorescente in Situ , Ratones , Mitocondrias/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/aislamiento & purificación , ARN/genética , ARN/aislamiento & purificación , Análisis de Secuencia de ARN , Imagen Individual de Molécula , Análisis de la Célula Individual
10.
Int Heart J ; 60(4): 944-957, 2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31257341

RESUMEN

Cardiac fibrosis plays an important role in cardiac remodeling after myocardial infarction (MI). The molecular mechanisms that promote cardiac fibrosis after MI are well studied; however, the mechanisms by which the progression of cardiac fibrosis becomes attenuated after MI remain poorly understood. Recent reports show the role of cellular senescence in limiting tissue fibrosis. In the present study, we tested whether cellular senescence of cardiac fibroblasts (CFs) plays a role in attenuating the progression of cardiac fibrosis after MI. We found that the number of γH2AX-positive CFs increased up to day 7, whereas the number of proliferating CFs peaked at day 4 after MI. Senescent CFs were also observed at day 7, suggesting that attenuation of CF proliferation occurred simultaneously with the activation of the DNA damage response (DDR) system and the appearance of senescent CFs. We next cultured senescent CFs with non-senescent CFs and showed that senescent CFs suppressed proliferation of the surrounding non-senescent CFs in a juxtacrine manner. We also found that the blockade of DDR by Atm gene deletion sustained the proliferation of CFs and exacerbated the cardiac fibrosis at the early stage after MI. Our results indicate the role of DDR activation and cellular senescence in limiting cardiac fibrosis after MI. Regulation of cellular senescence in CFs may become one of the therapeutic strategies for preventing cardiac remodeling after MI.


Asunto(s)
Senescencia Celular/genética , Daño del ADN/genética , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Remodelación Ventricular/genética , Animales , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Citometría de Flujo , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/patología
11.
Int Heart J ; 59(5): 1096-1105, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30101858

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a genetic disorder that is characterized by hypertrophy of the myocardium. Some of the patients are diagnosed for HCM during infancy, and the prognosis of infantile HCM is worse than general HCM. Nevertheless, pathophysiology of infantile HCM is less investigated and remains largely unknown. In the present study, we generated induced pluripotent stem cells (iPSCs) from two patients with infantile HCM: one with Noonan syndrome and the other with idiopathic HCM. We found that iPSC-derived cardiomyocytes (iPSC-CMs) from idiopathic HCM patient were significantly larger and showed higher diastolic intracellular calcium concentration compared with the iPSC-CMs from healthy subject. Unlike iPSC-CMs from the adult/adolescent HCM patient, arrhythmia was not observed as a disease-related phenotype in iPSC-CMs from idiopathic infantile HCM patient. Phenotypic screening revealed that Pyr3, a transient receptor potential channel 3 channel inhibitor, decreased both the cell size and diastolic intracellular calcium concentration in iPSC-CMs from both Noonan syndrome and idiopathic infantile HCM patients, suggesting that the target of Pyr3 may play a role in the pathogenesis of infantile HCM, regardless of the etiology. Further research may unveil the possibility of Pyr3 or its derivatives in the treatment of infantile HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Tamizaje Masivo/métodos , Síndrome de Noonan/metabolismo , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Adulto , Calcio/metabolismo , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/patología , Preescolar , Humanos , Masculino , Mutación , Miocardio/patología , Miocitos Cardíacos/patología , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/tratamiento farmacológico , Síndrome de Noonan/patología , Fenotipo , Prevalencia , Canales de Potencial de Receptor Transitorio/uso terapéutico
12.
Int Heart J ; 57(1): 112-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26673445

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene which encodes dystrophin protein. Dystrophin defect affects cardiac muscle as well as skeletal muscle. Cardiac dysfunction is observed in all patients with DMD over 18 years of age, but there is no curative treatment for DMD cardiomyopathy. To establish novel experimental platforms which reproduce the cardiac phenotype of DMD patients, here we established iPS cell lines from T lymphocytes donated from two DMD patients, with a protocol using Sendai virus vectors. We successfully conducted the differentiation of the DMD patient-specific iPS cells into beating cardiomyocytes. DMD patient-specific iPS cells and iPS cell-derived cardiomyocytes would be a useful in vitro experimental system with which to investigate DMD cardiomyopathy.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Distrofia Muscular de Duchenne/metabolismo , Miocitos Cardíacos/citología , Adolescente , Adulto , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/citología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Miocitos Cardíacos/metabolismo , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39107066

RESUMEN

Probabilistic topic modelling has become essential in many types of single-cell data analysis. Based on probabilistic topic assignments in each cell, we identify the latent representation of cellular states. A dictionary matrix, consisting of topic-specific gene frequency vectors, provides interpretable bases to be compared with known cell type-specific marker genes and other pathway annotations. However, fitting a topic model on a large number of cells would require heavy computational resources-specialized computing units, computing time and memory. Here, we present a scalable approximation method customized for single-cell RNA-seq data analysis, termed ASAP, short for Annotating a Single-cell data matrix by Approximate Pseudobulk estimation. Our approach is more accurate than existing methods but requires orders of magnitude less computing time, leaving much lower memory consumption. We also show that our approach is widely applicable for atlas-scale data analysis; our method seamlessly integrates single-cell and bulk data in joint analysis, not requiring additional preprocessing or feature selection steps.


Asunto(s)
Biología Computacional , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Biología Computacional/métodos , Algoritmos , Modelos Estadísticos , Análisis de Secuencia de ARN/métodos , RNA-Seq/métodos , Perfilación de la Expresión Génica/métodos
14.
Nat Rev Immunol ; 24(7): 503-517, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38374298

RESUMEN

The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.


Asunto(s)
Enfermedades Autoinmunes , Diferenciación Celular , Factores de Transcripción Forkhead , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Humanos , Animales , Enfermedades Autoinmunes/inmunología , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Diferenciación Celular/inmunología , Ratones
15.
Sci Transl Med ; 16(762): eadp1720, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196959

RESUMEN

Autoimmune diseases, among the most common disorders of young adults, are mediated by genetic and environmental factors. Although CD4+FOXP3+ regulatory T cells (Tregs) play a central role in preventing autoimmunity, the molecular mechanism underlying their dysfunction is unknown. Here, we performed comprehensive transcriptomic and epigenomic profiling of Tregs in the autoimmune disease multiple sclerosis (MS) to identify critical transcriptional programs regulating human autoimmunity. We found that up-regulation of a primate-specific short isoform of PR domain zinc finger protein 1 (PRDM1-S) induces expression of serum and glucocorticoid-regulated kinase 1 (SGK1) independent from the evolutionarily conserved long PRDM1, which led to destabilization of forkhead box P3 (FOXP3) and Treg dysfunction. This aberrant PRDM1-S/SGK1 axis is shared among other autoimmune diseases. Furthermore, the chromatin landscape profiling in Tregs from individuals with MS revealed enriched activating protein-1 (AP-1)/interferon regulatory factor (IRF) transcription factor binding as candidate upstream regulators of PRDM1-S expression and Treg dysfunction. Our study uncovers a mechanistic model where the evolutionary emergence of PRDM1-S and epigenetic priming of AP-1/IRF may be key drivers of dysfunctional Tregs in autoimmune diseases.


Asunto(s)
Autoinmunidad , Factores de Transcripción Forkhead , Esclerosis Múltiple , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Humanos , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Factor de Transcripción AP-1/metabolismo , Transcripción Genética , Animales , Cromatina/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología
16.
bioRxiv ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39314391

RESUMEN

Tissue fibrosis contributes to pathology in vital organs including the lung. Curative therapies are scant. Myofibroblasts, pivotal effector cells in tissue fibrosis, accumulate via incompletely understood interactions with their microenvironment. In an investigative platform grounded in experimental lung biology, we find that sympathetic innervation stimulates fibrotic remodeling via noradrenergic α1-adrenergic receptor engagement in myofibroblasts. We demonstrate the anti-fibrotic potential of targeted sympathetic denervation and pharmacological disruption of noradrenergic neurotransmitter functions mediated by α1-adrenoreceptors (α1-ARs). Using the α1-adrenoreceptor subtype D as a representative α1-AR, we discover direct noradrenergic input from sympathetic nerves to lung myofibroblasts utilizing established mouse models, genetic denervation, pharmacologic interventions, a newly invented transgenic mouse line, advanced tissue mimetics, and samples from patients with diverse forms of pulmonary fibrosis. The discovery of this previously unappreciated nerve-fibroblast axis in the lung demonstrates the crucial contribution of nerves to tissue repair and heralds a novel paradigm in fibrosis research.

17.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370778

RESUMEN

Multiple sclerosis (MS) is a complex genetically mediated autoimmune disease of the central nervous system where anti-CD20-mediated B cell depletion is remarkably effective in the treatment of early disease. While previous studies investigated the effect of B cell depletion on select immune cell subsets using flow cytometry-based methods, the therapeutic impact on patient immune landscape is unknown. In this study, we explored how a therapy-driven " in vivo perturbation " modulates the diverse immune landscape by measuring transcriptomic granularity with single-cell RNA sequencing (scRNAseq). We demonstrate that B cell depletion leads to cell type-specific changes in the abundance and function of CSF macrophages and peripheral blood monocytes. Specifically, a CSF-specific macrophage population with an anti-inflammatory transcriptomic signature and peripheral CD16 + monocytes increased in frequency post-B cell depletion. In addition, we observed increases in TNFα messenger RNA and protein in monocytes post-B cell depletion, consistent with the finding that anti-TNFα treatment exacerbates autoimmune activity in MS. In parallel, B cell depletion also induced changes in peripheral CD4 + T cell populations, including increases in the frequency of TIGIT + regulatory T cells and marked decreases in the frequency of myelin peptide loaded-tetramer binding CD4 + T cells. Collectively, this study provides an exhaustive transcriptomic map of immunological changes, revealing different mechanisms of action contributing to the high efficacy in B cell depletion treatment of MS.

18.
J Biochem ; 173(3): 159-166, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36722164

RESUMEN

Hyperosmotic stress triggers an evolutionally preserved, fundamental cellular response. A growing body of evidence has highlighted the role of extra-renal, interstitial hyperosmolality in maintaining local tissue immune homeostasis and potentially driving tissue inflammation in human diseases. The hyperosmotic stress response initiates cellular shrinkage, oxidative stress, metabolic remodeling and cell cycle arrest, all of which are adjusted by a counteractive adaptative response that includes osmolyte synthesis, upregulation of ion transporters and induction of heat shock proteins. Recent studies have revealed that high osmolality can impact immune cell differentiation and activation pathways in a cell type specific manner. The fine-tuning of the immune response depends on the tissue microenvironment. Accordingly, novel therapeutic approaches that target hyperosmolality-mediated inflammation may be identified by furthering our understanding of hyperosmotic response in the context of disease. In this review, we discuss the cellular and molecular mechanisms by which hyperosmotic stress response regulates interstitial homeostasis and pathogenic inflammation.


Asunto(s)
Proteínas de Choque Térmico , Riñón , Humanos , Homeostasis , Proteínas de Choque Térmico/metabolismo , Riñón/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Inflamación/metabolismo
19.
Front Immunol ; 14: 1154575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197653

RESUMEN

Maintenance of peripheral tolerance by CD4+Foxp3+ regulatory T cells (Tregs) is essential for regulating autoreactive T cells. The loss of function of Foxp3 leads to autoimmune disease in both animals and humans. An example is the rare, X-linked recessive disorder known as IPEX (Immune Dysregulation, Polyendocrinopathy, Enteropathy X-linked) syndrome. In more common human autoimmune diseases, defects in Treg function are accompanied with aberrant effector cytokines such as IFNγ. It has recently become appreciated that Tregs plays an important role in not only maintaining immune homeostasis but also in establishing the tissue microenvironment and homeostasis of non-lymphoid tissues. Tissue resident Tregs show profiles that are unique to their local environments which are composed of both immune and non-immune cells. Core tissue-residence gene signatures are shared across different tissue Tregs and are crucial to homeostatic regulation and maintaining the tissue Treg pool in a steady state. Through interaction with immunocytes and non-immunocytes, tissue Tregs exert a suppressive function via conventional ways involving contact dependent and independent processes. In addition, tissue resident Tregs communicate with other tissue resident cells which allows Tregs to adopt to their local microenvironment. These bidirectional interactions are dependent on the specific tissue environment. Here, we summarize the recent advancements of tissue Treg studies in both human and mice, and discuss the molecular mechanisms that maintain tissue homeostasis and prevent pathogenesis.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades Intestinales , Humanos , Ratones , Animales , Linfocitos T Reguladores , Tolerancia Periférica , Enfermedades Intestinales/patología , Factores de Transcripción Forkhead/genética
20.
medRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37502867

RESUMEN

Teplizumab has been approved for the delay of the onset of type 1 diabetes and may modulate new onset disease. We found that patients who were EBV positive at baseline had a more robust response to drug in two clinical trials and therefore postulated that latent virus has general effects in modifying immune responses. We compared the phenotypes, transcriptomes, and development of peripheral blood cells before and after teplizumab treatment. Higher number of Tregs and partially exhausted CD8 + T cells were found in EBV seropositive individuals at the baseline in the TN10 trial and AbATE trial. Single cell transcriptomics and functional assays identified downregulation of the T cell receptor and other signaling pathways before treatment. Impairments in function of adaptive immune cells were enhanced by teplizumab treatment in EBV seropositive individuals. Our data indicate that EBV can impair signaling pathways generally in immune cells, that broadly redirect cell differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA