RESUMEN
In this work, we developed two kinds of co-crystal assemblies systems, consisting of discrete mononuclear Yb3+ and Er3+ and mononuclear Yb3+ and Pr3+, which can achieve Er3+ and Pr3+ upconversion luminescence, respectively, by Yb3+ sensitization under 980â nm excitation. The structure and composition of two co-crystal assemblies were determined by single crystal X-ray diffraction. By investigation of the series of two assemblies, respectively, it is found that the strongest upconversion luminescence is both obtained when the molar ratio of Yb3+ and Ln3+ (Ln=Er or Pr) is 1 : 1. The energy transfer mechanism of Er3+ assemblies is determined as energy transfer upconversion, while that of Pr3+ assemblies is determined as energy transfer upconversion and cooperative sensitization upconversion. This is the first example of Pr3+ upconversion luminescence at the molecular dimension at room temperature, which enriches the research in the field of upconversion luminescence with lanthanide complexes.
RESUMEN
Understanding the porosity of biochar (BC) that promotes the heavy metal (HM) passivation during composting can contribute to the sustainable management of pig manure (PM). The current work aimed to explore the influence of BC with varying pore sizes on the physicochemical properties and morphological changes of HMs (including Zn, Cu, Cr, As, and Hg), and microbiota development during PM composting. The various pore sizes of BC were generated by pyrolyzing pine wood at 400 (T1), 500 (T2), 600 (T3) and 700 (T4) °C, respectively. The results revealed a positive correlation between specific surface area of BC and pyrolysis temperature. BC addition contributed to a significantly extended compost warming rate and duration of high-temperature period, as well as HM passivation, reflected in the decrease in Exc-Zn (63-34%) and Red-Cu (28-13%) content, and the conversion of Oxi-Cr (29-21%) and Red-Hg (16-5%) to more stable forms. Moreover, BC at T4 exhibited the best effect on Zn and Cu passivation due to the highest specific surface area (380.03 m2/g). In addition to its impact on HM passivation, BC addition improved the microbial environment during PM composting, leading to enhanced microbial diversity and richness. Notably, Chloroflexi and Bacteroidota played key roles in promoting the transformation of Exc-Cu and Red-Hg into stable forms. This phenomenon further stimulated the enhanced decomposition of organic matter (OM) when BC prepared at 600-700 °C was added. Therefore, it can be concluded that the regulation of BC porosity is an effective strategy to improve HM passivation and the overall effectiveness of PM composting.
Asunto(s)
Compostaje , Mercurio , Metales Pesados , Microbiota , Porcinos , Animales , Estiércol , Suelo , Metales Pesados/análisis , Carbón Orgánico/químicaRESUMEN
In many potential applications, there is a high demand for long wavelength infrared (LWIR) absorbers characterized by a compact configuration, broad operational bandwidth, high absorption efficiency, and polarization- and angle-insensitive characteristics. In this study, we design and demonstrate a high-performance broadband LWIR absorber based on coplanar four-sized resonators, consisting of arrays of titanium (Ti) disks with different diameters supported by a continuous zinc selenide (ZnSe) layer and by a Ti film acting as a back-reflector. Particle swarm optimization (PSO) is employed to optimize the complicated geometry parameters, and the final optimized device exhibits near-unity absorption (â¼96.7%) across the entire operational bandwidth (8 µmâ¼14â µm) under unpolarized normal incidence, benefiting from the impedance-matching condition and the multiple surface plasmon resonances of this configuration. Furthermore, the proposed absorber is insensitive to the angle of incidence due to the localized surface plasmon resonances supported by these four-sized resonators, and is insensitive to the state of polarization thanks to the highly symmetric feature of the circular pattern. The measured absorption of the fabricated sample exhibits a relatively high coincidence with the simulation, with an average absorption of 88.9% ranging from 8â µm to 14â µm. The proposed absorber, which can be easily integrated into a standardized micro/nano manufacture process for cost-effective large-scale production, provides a feasible solution for improving optical performance in thermal emitter, infrared detection, and imaging applications. Furthermore, the generalized design principle employing the optimized method opens up new avenues for realizing target absorption, reflection, and transmission based on more complicated structure configurations.
RESUMEN
The work explored the fluorescent properties of probe N'-(2, 4-dihydroxy-benzylidene)pyridine-3-carbohydrazide (HL) and its sensing mechanism for the Al3+ ion in detail. HL has two competing deactivation processes: ESIPT and TICT. Upon light-excitation, only one proton can transfer, and the SPT1 structure is generated. The SPT1 form is highly emissive, which is inconsistent with the colorless emission observed in the experiment. Then a nonemissive TICT state was obtained by rotating the C-N single bond. The energy barrier of the TICT process is lower than that of the ESIPT process, which indicates that probe HL will decay to the TICT state and quench the fluorescence. When Al3+ is recognized by probe HL, strong coordinate bonds are formed between HL and Al3+, and then the TICT state is prohibited, and the fluorescence of HL is turned on. Al3+ as a coordinated ion can effectively remove the TICT state but cannot influence the photoinduced electron transfer (PET) process of HL.
RESUMEN
Most currently available THz narrowband filters employ metal that introduces loss, or work in reflection mode, which limits their scope of application. Here, a transmissive all-dielectric guided-mode resonance filter in the THz region is presented. It contains a suspended grating layer and a waveguide layer, separated by an air layer. A fabrication process of the filter is proposed. Simulation results show that the designed filter exhibits excellent transmittance of â¼97.5% with a high Q value of â¼1500 at 1.64 THz. Furthermore, this transmission peak is surrounded by a wide and flat sideband with width of â¼0.75T H z and transmission below 10%. Moreover, tunability of the filter is realized by geometric scaling and by varying the thickness of the air layer. Using geometric scaling, the filtering frequency can be widely tuned from 0.54 to 1.64 THz, covering the 625-725 and 780-910 GHz wireless communication windows. Additionally, fine tuning achieved by varying the air layer thickness could be used to compensate for a tiny shift of the designed filtering frequency caused by errors introduced in the fabrication process. The Q value can be further boosted to â¼11,500 by adding another layer of waveguide. Due to its transmissive nature and high-Q resonant mode with a wide sideband and tunability, the presented filter exhibits great potential in THz applications such as spectroscopy, imaging, and communication.
RESUMEN
Metal-based upconversion luminescence transforming high-energy photons into low-energy photons is an attractive anti-Stokes shift process for fundamental research and promising applications. In this work, we developed the upconversion luminescence in co-crystal assemblies consisting of discrete mononuclear Yb and Sm complexes. The characteristic visible emissions of Sm3+ were observed under the excitation of absorption band of Yb3+ at 980â nm. A series of co-crystal assemblies were investigated based on mononuclear Yb and Sm complexes, and the strongest luminescence was obtained when the molar concentration between Yb3+ and Sm3+ is equivalent. The crystal structure was fully characterized by the single crystal X-ray diffraction and upconverting energy transfer mechanisms were verified as cooperative sensitization upconversion and energy transfer upconversion. This is the first example of Sm3+ -based upconverting luminescence in discrete lanthanide complexes which present as co-crystal assemblies at room temperature.
RESUMEN
Lanthanide-doped metal-organic frameworks (Ln-MOFs) have versatile luminescence properties, however it is challenging to achieve lanthanide-based upconversion luminescence in these materials. Here, 1,3,5-benzenetricarboxylic acid (BTC) and trivalent Yb3+ ions were used to generate crystalline Yb-BTC MOF 1D-microrods with upconversion luminescence under near infrared excitation via cooperative luminescence. Subsequently, the Yb-BTC MOFs were doped with a variety of different lanthanides to evaluate the potential for Yb3+ -based upconversion and energy transfer. Yb-BTC MOFs doped with Er3+ , Ho3+ , Tb3+ , and Eu3+ ions exhibit both the cooperative luminescence from Yb3+ and the characteristic emission bands of these ions under 980â nm irradiation. In contrast, only the 497â nm upconversion emission band from Yb3+ is observed in the MOFs doped with Tm3+ , Pr3+ , Sm3+ , and Dy3+ . The effects of different dopants on the efficiency of cooperative luminescence were established and will provide guidance for the exploitation of Ln-MOFs exhibiting upconversion.
RESUMEN
Lanthanide upconversion luminescence in nanoparticles has prompted continuous breakthroughs in information storage, temperature sensing, and biomedical applications, among others. Achieving upconversion luminescence at the molecular scale is still a critical challenge in modern chemistry. In this work, we explored the upconversion luminescence of solution dispersions of co-crystals composed of discrete mononuclear Yb(DBM)3 Bpy and Eu(DBM)3 Bpy complexes (DBM: dibenzoylmethane, Bpy: 2,2'-bipyridine). The 613â nm emission of Eu3+ was observed under excitation of Yb3+ at 980â nm. From the series of molecular assemblies studied, the most intense luminescence was obtained for a 1 : 1 molar ratio of Yb3+ : Eu3+ , resulting in a high quantum yield of 0.67 % at 2.1â W cm-2 . The structure and energy transfer mechanism of the assemblies were fully characterized. This is the first example of an Eu3+ -based upconverting system composed of two discrete mononuclear lanthanide complexes present as co-crystals in non-deuterated solution.
RESUMEN
The constant greenhouse gases (GHGs) and ammonia emissions during pig manure (PM) composting have made large contributions to air pollution and global temperature rise. This study aimed to evaluate the addition of biochar (B) and wood vinegar (WV) to reduce GHGs emissions and improve nitrogen retention and microbial activities during PM composting. Different treatments, carried out under a 1:2 ratio (dry weight) of PM and sawdust mixture with the addition of B (5%) and various proportions of WV, include a control treatment (CT) without the addition of B and WV and, B, B+0.5%WV, B+1.0%WV, B+1.5%WV, and B+2.0%WV treatments. The results indicated that the addition of B could accelerate the composting process in contrast to CT. In addition, various amounts of WV with B decreased NH3, CO2, CH4 and N2O emissions by 18.82-35.88%, 1.38-15.39%, 16.98-62.73%, and 4.47-19.91%, respectively. Furthermore, in contrast to the B treatment, WV addition was more effective in decreasing GHGs and NH3 emissions, and the B+1.0% WV treatment displayed the lowest nitrogen loss (2.12%) and GHGs emissions (11.62 g/kg). The bacterial community analysis demonstrated that synergistic application of WV and B can increase the relative abundance of Proteobacteria which can contribute to nitrogen fixation and reduction of nitrogen loss. The results proved that combining B with WV can be a feasible strategy to effectively reduce GHGs emissions and improve nitrogen conservation in the composting industry.
Asunto(s)
Compostaje , Gases de Efecto Invernadero , Porcinos , Animales , Estiércol , Nitrógeno/análisis , Biodiversidad , Suelo , Metano/análisis , TemperaturaRESUMEN
Modulating the emission wavelengths of materials has always been a primary focus of fluorescence technology. Nanocrystals (NCs) doped with lanthanide ions with rich energy levels can produce a variety of emissions at different excitation wavelengths. However, the control of multimodal emissions of these ions has remained a challenge. Herein, we present a new composition of Er3+ -based lanthanide NCs with color-switchable output under irradiation with 980, 808, or 1535â nm light for information security. The variation of excitation wavelengths changes the intensity ratio of visible (Vis)/near-infrared (NIR-II) emissions. Taking advantage of the Vis/NIR-II multimodal emissions of NCs and deep learning, we successfully demonstrated the storage and decoding of visible light information in pork tissue.
RESUMEN
We propose an angular-dependent polarization-insensitive filter in the terahertz (THz) region, based on the guided-mode resonance of one-dimensional zero-contrast grating architectural design. Particle swarm optimization combined with the rigorous coupled-wave analysis method is used to design the filter and investigate the influences of the planes of incidence on the characteristics of the proposed all-dielectric THz filter. With the planes of incidence set at 0°, 30°, 45°, and 60°, the polarization-independent resonances occur at 0.458 THz, 0.459 THz, 0.461 THz, and 0.465 THz under oblique incidences of 9.3°, 10.8°, 13.3°, and 19.2°, respectively, which means the oblique incident angle of the polarization-independent THz filter increases with the rotation of the planes of incidence from classic mounting to fully conical mounting. In addition, for the fully conical mounting case, the resonance has high angular stability and is no longer split, compared with classic incidence; meanwhile, there is only a tiny blue shift in resonance of less than 3 GHz when changing the incident angle from 0° to 10°. The physical mechanism of the spectral characteristics is also analyzed in detail. The spectral properties proposed herein enable significant potential application in the fields of spectroscopy, image sensors, communication, etc., in the THz region.
RESUMEN
The mesophilic reactor (MR) exhibited advantages in biogas production and performance stability over thermophilic reactor (TR) during the long-term anaerobic digestion (AD) of food waste (FW) with stepwise organic loading rate elevating. It was interesting to explore the mechanism causing the divergences in performances between these two reactors. The microbial activity was compared on day 110 when TR began to deteriorate. The results show that MR had significantly higher specific acetoclastic methanogenic activities (SAMA) and specific propionate and butyrate oxidative activities (SPOA and SBOA) than TR. The SAMA, SPOA and SBOA in TR were only 50.3%, 18.6% and 46.4% of those values in MR, respectively. Remarkably, the specific hydrogenotrophic methanogenic activity of 15.5±2.1, 15.7±4.6 mmol CH4·L-1 original slurry·d-1 in MR and TR was comparative with insignificant difference, which indicates that the microbial activity in TR had been inhibited widely apart from the hydrogenotrophic methanogenesis. Additionally, many particles with the diameters of 1-2 mm were observed to form in MR and identified as complexes of calcium and long chain fatty acids (LCFAs). The formation of calcium crystallization might alleviate the inhibition of LCFAs during AD of FW, which further supports the better performance in MR than TR.
Asunto(s)
Biocombustibles , Reactores Biológicos , Anaerobiosis , Ácidos Grasos , Metano , TemperaturaRESUMEN
Pancreatic cancer is a highly lethal disease due to its rapid dissemination and resistance to conventional chemotherapy. MicroRNAs (miRNAs) are emerging as novel regulators of chemoresistance, which modulate the expression of drug resistance-related genes. MiRNA-221 has been reported to be associated with chemoresistance in various types of cancer. But the detailed molecular mechanism about miR-221-3p regulating 5-fluorouracil (5-FU) resistance in human pancreatic cancer remains to be clarified. In this study, we investigated the association between miR-221-3p expression and 5-FU sensitivity. Studies on pancreatic cancer cell lines suggested an increased 5-FU resistance with miR-221-3p over-expression. In addition, the results indicated that miR-221-3p down-regulated RB1 expression by directly binding to its 3'-UTR and therefore caused increased several aspects of pancreatic cancer pathogenesis, including proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Collectively, our findings revealed the important role of miR-221-3p in promoting 5-FU resistance of pancreatic cancer cells and provided a potential therapeutic target for pancreatic cancer.
RESUMEN
This study assessed cell voltage development, electricity recovery, and microbial community composition in response to initial substrate including acetate, xylose, acetate/xylose 1:1 mixture (ace/xyl), and bioethanol effluent (BE) during microbial fuel cell (MFC) operation at 1000 Ω external resistance. The BE mainly contained 20.5 g/L xylose, 1.8 g/L arabinose, and 2.5 g/L propionic acid. The MFCs initially fed with acetate showed shorter initiation time (1 day), higher average cell voltage (634 ± 9 mV), and higher coulombic efficiency (31.5 ± 0.5 %) than those initially fed with ace/xyl or xylose. However, BE-initiated MFCs only generated 162 ± 1 mV. The acetate-initiated MFCs exhibited longer adaptation time (21 h) and lower cell voltage (645 ± 10 mV) when the substrate was switched to xylose, whereas substrate switching to BE produced the highest voltage (656 mV), maximum power density (362 ± 27 mW/m(2)), maximum current density (709 ± 27 mA/m(2)), and coulombic efficiency (25 ± 0.5 %) in the acetate-initiated MFCs. The microbial community in acetate-initiated MFCs was less diverse and contained more electrogenic bacteria (13.9 ± 0.4 %) including Geobacter sulfurreducens and Desulfuromonas acetexigen than the MFCs initially fed with ace/xyl, xylose, and BE. After switching the substrate to xylose and subsequently to BE, the microbial community in the acetate-initiated MFCs became more diverse, while no significant changes were observed in ace/xyl-, xylose-, and BE-initiated MFCs. The results showed that initial substrate affected the power generation and the capability to adapt to the substrate alteration in MFCs. Acetate-initiated MFCs showed best performance in utilizing BE.
Asunto(s)
Acetatos/metabolismo , Fuentes de Energía Bioeléctrica , Medios de Cultivo/química , Electricidad , Etanol/metabolismo , Consorcios MicrobianosRESUMEN
Microbial fuel cells (MFCs) can be used for electricity generation via bioconversion of wastewater and organic waste substrates. MFCs also hold potential for production of certain chemicals, such as H2 and H2O2. The studies of electricity generation in MFCs have mainly focused on the microbial community formation, substrate effect on the anode reaction, and the cathode's catalytic properties. To improve the performance of MFCs, the initiation process requires more investigation because of its significant effect on the anodic biofilm formation. This review explores the factors which affect the initiation process, including inoculum, substrate, and reactor configuration. The key messages are that optimal performance of MFCs for electricity production requires (1) understanding of the electrogenic bacterial biofilm formation, (2) proper substrates at the initiation stage, (3) focus on operational conditions affecting initial biofilm formation, and (4) attention to the reactor configuration.
Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Electricidad , Electrodos/microbiología , Compuestos Orgánicos/metabolismo , Aguas Residuales/microbiología , Hidrógeno/metabolismo , Peróxido de Hidrógeno/metabolismoRESUMEN
In contrast to noble metals, graphene exhibits significantly lower loss, especially useful for optical sensing applications that require ultrahigh Q factors, and offer wide range tunability via an adjustable Fermi level. However, precise graphene patterning is difficult, especially for large areas, severely limiting its applications. Here, a tunable terahertz metamaterial absorber (TMMA) with ultrahigh Q factors consisting of a continuous, pattern-free graphene is demonstrated. A graphene sheet is overlaid on an Al metal array, forming a structure that supports strong localized surface plasmon polaritons (LSPPs) with fields tightly confined in the graphene, minimizing loss. Theoretical results show that this TMMA exhibits an ultrahigh Q factor of 1730, a frequency sensitivity of 2.84 THz/RIU, and an excellent figure of merit (FoM) of 365.85 RIU-1, independent of polarization. A tunability from ~2.25 to ~3.25 THz is also achieved by tuning Ef of graphene from 0.3 to 0.7 eV. The proposed graphene-based TMMA holds many potential applications, particularly in the field of sensing.
RESUMEN
The development of high Q and tunable narrowband filters that can efficiently manipulate THz beams is critical for various THz applications, such as imaging and sensing. However, for filters made of metals and dielectrics, issues such as high losses, limited tunability, and lengthy process flows exist. Here, a scalable concave version reprinting technique to mass produce high-performance microstructured polymer filters is presented. The technique is extremely simple, eliminating the demand for the use of any large equipment including injection molding and thermal press printing machines, and is reliable; in the reprinted structures, there are no defects including gaps and air bubbles. The produced narrowband filters exhibit a high Q factor of 57 with wide tunability over the THz band from â¼80 to 160 µm in wavelength. The presented technique can be adopted to realize other devices as well using polymer materials with simplicity and high precision.
RESUMEN
Apolipoprotein AV (apoAV) modulates plasma triglyceride levels, which is an independent risk factor for cardiovascular disease. ApoAV is also involved in atherosclerosis lesion formation. In order to systematically evaluate the apolipoprotein-related gene profile in tree shrew, a model for its insusceptibility to atherosclerosis, we performed apoAV cloning and characterization. The full-length cDNA of apoAV was identified using SMART-RACE. ApoAV cDNA sequence revealed two transcripts, 1,948 and 1,397 base pairs, due to alternative polyadenylation. These two transcripts share the same open reading frame (ORF), which encodes a 369-amino acid protein with high identity to human apoAV (75 %), including a 23-amino acid N-terminal signal peptide. ApoAV is expressed exclusively in the liver. Mature apoAV was expressed in E. coli BL21(DE3) and purified by Ni-chelated resin. Lipoprotein lipase activity was significantly stimulated by this recombinant protein. The full-length ORF of apoAV was cloned into pDsRed-monomer-N1 vector with a red fluorescent protein tag and was primarily localized in cytoplasm of hepG2 cells. The successful cloning, expression and localization of apoAV in tree shrew has laid down the foundation for further investigation on its structure and functions.
Asunto(s)
Apolipoproteínas/genética , Hígado/metabolismo , Proteínas Recombinantes/genética , Tupaiidae/genética , Secuencia de Aminoácidos , Animales , Apolipoproteínas/metabolismo , Secuencia de Bases , Clonación Molecular , Biología Computacional , Cartilla de ADN/genética , ADN Complementario/genética , Escherichia coli , Perfilación de la Expresión Génica , Vectores Genéticos/genética , Immunoblotting , Proteínas Luminiscentes , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Tupaiidae/metabolismo , Proteína Fluorescente RojaRESUMEN
Based on density functional theory (DFT) and time-dependent DFT (TD-DFT) methods with integral equation formula polarized continuum model (IEFPCM), the fluorescent behavior and recognizing mechanism of probe N'-((1-hydroxynaphthalen-2-yl)methylene)isoquinoline-3-carbohydrazide (NHMI) for Al3+/Mg2+ ion were investigated in more detail. Excited state intramolecular proton transfer (ESIPT) process in probe NHMI occurs in the stepwise pattern. The proton H5 of enol structure (E1) firstly moves from O4 to N6 to form single proton-transfer (SPT2) structure, and then the proton H2 of SPT2 transfers from N1 to N3 to form the stable double proton-transfer (DPT) structure. Subsequently, the transformation from DPT to its isomer (DPT1) induces the twisted intramolecular charge transfer (TICT) process. Two non-emissive TICT states (TICT1 and TICT2) were obtained, and TICT2 state quenches the fluorescence observed in the experiment. With the addition of aluminum (Al3+) or magnesium (Mg2+) ion, TICT process is prohibited by the coordination interaction between NHMI and Al3+/Mg2+, and the strong fluorescent signal is turned on. For probe NHMI, the twisted C-N single bond of acylhydrazone part leads to the TICT state. This sensing mechanism may inspire researchers to develop new probes from a different direction.