Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(9): 940-945, 2024.
Artículo en Zh | MEDLINE | ID: mdl-39267509

RESUMEN

OBJECTIVES: To explore early diagnostic biological markers for Leigh syndrome caused by the m.8993T>G mutation. METHODS: A retrospective analysis was performed on the clinical data of four children diagnosed with m.8993T>G mutation-related mitochondrial disease at the Children's Hospital of Chongqing Medical University from January 2014 to January 2024. Additionally, a literature review was conducted. RESULTS: All four children had plasma amino acid and acylcarnitine analyses that revealed decreased citrulline levels, and one child was initially identified through neonatal genetic metabolic disease screening. According to the literature review, there were 26 children with mitochondrial disease and hypocitrullinemia caused by the m.8993T>G mutation (including the four children in this study). Among these, 12 children exhibited clinical phenotypes of Leigh syndrome or Leigh-like syndrome, while 18 children were identified with hypocitrullinemia and/or elevated levels of 3-hydroxyisovalerylcarnitine (C5-OH) during neonatal genetic metabolic disease screening. CONCLUSIONS: Hypocitrullinemia may serve as a potential biomarker for the early diagnosis of m.8993T>G mutation-associated Leigh syndrome, detectable as early as during neonatal genetic metabolic disease screening.


Asunto(s)
Citrulina , Enfermedad de Leigh , Mutación , Humanos , Enfermedad de Leigh/genética , Masculino , Femenino , Lactante , Citrulina/sangre , Preescolar , Recién Nacido , Carnitina/análogos & derivados , Carnitina/sangre , Estudios Retrospectivos
2.
J Interv Cardiol ; 2022: 9057832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311279

RESUMEN

Background: Intermediate coronary stenosis (ICS) is defined as a visually estimated percentage of diameter stenosis ranging between 40% and 70% by conventional coronary angiography (CAG). Whether to perform percutaneous coronary intervention (PCI) for these lesions is a challenge in clinical practice. The fractional flow reserve (FFR) can guide treatment by determining the functional significance of ICS. Studies have shown that some clinical indicators can be used to predict FFR. However, there is little research on this in the Chinese population. Methods: We retrospectively analyzed 690 patients who underwent FFR measurements to determine the functional significance of a single ICS. Patients were divided into 2 groups: FFR ≤0.8 (n = 280) and FFR >0.8 (n = 410). We compared the clinical factors between the two groups and performed multivariate logistic regression analyses to explore the risk factors. In addition, receiver-operating characteristic (ROC) curves were constructed for FFR ≤0.8 diagnoses. Results: The mean UHR (uric acid to high-density lipoprotein cholesterol ratio) level was significantly higher in the FFR ≤0.8 group (p < 0.001). UHR corrects negatively with FFR (r = -0.44, p < 0.001). High-level UHR was an independent risk factor for the FFR ≤0.8 (OR = 7.17, 95% CI 4.17-12.34). The area under the curve (AUC) of the UHR diagnostic capacity for the FFR ≤0.8 is 0.77, with 77.3% sensitivity and 68.2% specificity. Conclusion: UHR levels were significantly increased in patients with hemodynamically significant coronary lesions. UHR is a novel predictor of functionally significant lesions in patients with a single-vessel disease of ICS.


Asunto(s)
Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Intervención Coronaria Percutánea , Humanos , Ácido Úrico , Estudios Retrospectivos , HDL-Colesterol , Sensibilidad y Especificidad , Estenosis Coronaria/diagnóstico , Angiografía Coronaria , Curva ROC , Índice de Severidad de la Enfermedad , Valor Predictivo de las Pruebas
3.
Small ; 16(10): e1906681, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32049437

RESUMEN

As the fastest developing photovoltaic device, perovskite solar cells have achieved an extraordinary power conversion efficiency (PCE) of 25.3% under AM 1.5 illumination. However, few studies have been devoted to perovskite solar cells harvesting artificial light, owing to the great challenge in the simultaneous manipulation of bandgap-adjustable perovskite materials, corresponding matched energy band structure of carrier transport materials, and interfacial defects. Herein, through systematic morphology, composition, and energy band engineering, high-quality Cs0.05 MA0.95 PbBrx I3- x perovskite as the light absorber and Nby Ti1- y O2 (Nb:TiO2 ) as the electron transport material with an ideal energy band alignment are obtained simultaneously. The theoretical-limit-approaching record PCEs of 36.3% (average: 34.0 ± 1.2%) under light-emitting diode (LED, warm white) and 33.2% under fluorescent lamp (cold white) are achieved simultaneously, as well as a PCE of 19.5% (average: 18.9 ± 0.3%) under solar illumination. An integrated energy conversion and storage system based on an artificial light response solar cell and sodium-ion battery is established for diverse practical applications, including a portable calculator, quartz clock, and even environmental monitoring equipment. Over a week of stable operation shows its great practical potential and provides a new avenue to promote the commercialization of perovskite photovoltaic devices via integration with ingenious electronic devices.

4.
Small ; 13(28)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28558141

RESUMEN

Flexible perovskite photodetectors are usually constructed on indium-tin-oxide-coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high-performance flexible perovskite photodetector is fabricated based on low-cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro-OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as-fabricated photodetector shows a broad spectrum response from ultraviolet to near-infrared light, high responsivity, fast response speed, long-term stability, and self-powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high-performance photodetectors with low cost and self-powered capability.

5.
Adv Mater ; 36(2): e2306415, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37660273

RESUMEN

The operational stability is a huge obstacle to further commercialization of perovskite solar cells. To address this critical issue, in this work, uracil is introduced as a "binder" into the perovskite film to simultaneously improve the power conversion efficiency (PCE) and operational stability. Uracil can efficiently passivate defects and strengthen grain boundaries to enhance the stability of perovskite films. Moreover, the uracil also strengthens the interface between the perovskite and the Tin oxide (SnO2 ) electron transport layer to increase the binding force. The uracil-modified devices deliver a champion PCE of 24.23% (certificated 23.19%) with negligible hysteresis at active area of 0.0625 cm2 . In particular, the optimal device exhibits over 90% of its initial PCE after tracking for ≈6000 h at its maximum power point under continuous light, indicating its superior operational stability. Moreover, the devices also show great reproducibility in both PCE and operational stability.

6.
Adv Mater ; 36(27): e2402253, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38553842

RESUMEN

Emerging neural morphological vision sensors inspired by biological systems that integrate image perception, memory, and information computing are expected to transform the landscape of machine vision and artificial intelligence. However, stable and reconfigurable light-induced synaptic behavior always relies on independent gateport modulation. Despite its potential, the limitations of uncontrollable defects and ionic characteristics have led to simpler, smaller, and more integration-friendly two-terminal devices being used as sidelines. In this work, the synergy between ion migration barriers and readout voltage is proven to be the key to realizing stable, reconfigurable, and precisely controllable postsynaptic current in two-terminal devices. Following the same mechanism, optical and electrical signal synchronous triggering is proposed to serve as a preprocessing method to achieve a recognition accuracy of 96.5%. Impressively, the gradual ion accumulation during the training process induces photocurrent evolution, serving as a reference for the dynamic learning rate and boosting accuracy to 97.8% in just 10 epochs. The PSC modulation potential under short optical pulse of 20 ns is also revealed. This optoelectronic device with perception, memory, and computation capabilities can promote the development of new devices for future photonic neural morphological circuits and artificial vision.

7.
Sci Bull (Beijing) ; 69(3): 334-344, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38105158

RESUMEN

Perovskite solar cells offer great potential as a sustainable power source for distributed electronic devices that operate indoors. However, the impact of advanced lighting technology, especially the widely used pulse width modulation (PWM) technology, on perovskite photovoltaics has been ignored. Herein, for the first time in photovoltaics, we find that the light impact emitted by the PWM lighting system caused dynamic strain in perovskite thin films, induced phase separation, and accelerated the generation of metallic lead (Pb0) defects, leading to irreversible degradation of the cell performance after 27 h (T80). To address this issue, formamidinium triiodide (FAI3) is chosen to treat the surface of the perovskite and release residual stress, resulting in reduced lattice deformation during dynamic strain processes. Meanwhile, it suppresses harmful Pb0 defects and reduces Voc loss at low light intensity. The champion device achieves impressive power conversion efficiency (PCE) of 35.14% and retains 99.5% of the initial PCE after continuous strobe light soaking for 2160 h.

8.
Front Vet Sci ; 11: 1446233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144079

RESUMEN

Unconventional protein feeds, characterized by low nutritional value, high variability, and poor palatability, have limited their application in swine production. Fermentation technology holds the key to addressing these shortcomings. Given the ban on antibiotics in China, the inferior quality of imported pig breeds, and long-term dependence on imported soybean, the prospects for fermented unconventional protein feeds are promising. This paper delves into the common types of fermented unconventional protein feeds, factors influencing the fermentation process, the mechanisms by which they enhance swine health, and the challenges and prospects of fermented feeds, offering theoretical insights for the future development of the feed industry.

9.
Light Sci Appl ; 13(1): 280, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39343785

RESUMEN

Deciphering the composite information within a light field through a single photodetector, without optical and mechanical structures, is challenging. The difficulty lies in extracting multi-dimensional optical information from a single dimension of photocurrent. Emerging photodetectors based on information reconstruction have potential, yet they only extract information contained in the photoresponse current amplitude (responsivity matrix), neglecting the hidden information in response edges driven by carrier dynamics. Herein, by adjusting the thickness of the absorption layer and the interface electric field strength in the perovskite photodiode, we extend the transport and relaxation time of carriers excited by photons of different wavelengths, maximizing the spectrum richness of the edge waveform in the light-dark transition process. For the first time, without the need for extra optical and electrical components, the reconstruction of two-dimensional information of light intensity and wavelength has been achieved. With the integration of machine learning algorithms into waveform data analysis, a wide operation spectrum range of 350-750 nm is available with a 100% accuracy rate. The restoration error has been lowered to less than 0.1% for light intensity. This work offers valuable insights for advancing perovskite applications in areas such as wavelength identification and spectrum imaging.

10.
Adv Mater ; 36(26): e2400279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548708

RESUMEN

Light detection and ranging (LiDAR) is indispensable in applications such as unmanned aerial vehicles, autonomous driving, and biomimetic robots. However, the precision and available distance of LiDAR are constrained by the speed and sensitivity of the photodetector, necessitating the use of expensive and energy-consuming avalanche diodes. To address these challenges, in this study, a pyroelectricity-based acceleration strategy with 2D-(graded 3D) perovskite heterojunction is proposed to achieve a record high speed (27.7 ns with an active area of 9 mm2, and 176 ps with an active area of 0.2 mm2) and high responsivity (0.65 A W-1) at zero bias. This success is attributed to the unique mechanism where the electrons from the pyroelectric effect at the Cl-rich 2D/3D interface directly recombine with excess holes during light-dark transitions, breaking speed limitations related to carrier mobility and capacitive effect. Furthermore, the introduced pyroelectric effect significantly enhances the photoresponse, resulting in a self-powered external quantum efficiency exceeding 100%. The study also demonstrates precise position detection at the centimeter level. In conclusion, this research presents a pioneering approach for developing high-speed photodiodes with exceptional sensitivity, mitigating energy and cost concerns in LiDAR applications.

11.
Nat Commun ; 15(1): 2066, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453948

RESUMEN

Free-space coupling, essential for various communication applications, often faces significant signal loss and interference from ambient light. Traditional methods rely on integrating complex optical and electronic systems, leading to bulkier and costlier communication equipment. Here, we show an asymmetric 2D-3D-2D perovskite structure device to achieve a frequency-selective photoresponse in a single device. By combining two electromotive forces of equal magnitude in the opposite directions, the device output is attenuated to zero under constant light illumination. Because these reverse photodiodes have different response speeds, the device only responds near a certain frequency, which can be tuned by manipulating the 2D perovskite components. The target device achieves an ultrafast response of 19.7/18.3 ns in the frequency-selective photoresponse range 0.8-9.7 MHz. This anti-interference photodetector can accurately transmit character and video data under strong light interference with a source intensity of up to 454 mW cm-2.

12.
Adv Mater ; 36(24): e2400090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38433566

RESUMEN

Low-toxicity tin halide perovskites with excellent optoelectronic properties are promising candidates for photodetection. However, tin halide perovskite photodetectors have suffered from high dark current owing to uncontrollable Sn2+ oxidation. Here, 2-cyanoethan-1-aminium iodide (CNI) is introduced in CH(NH2)2SnI3 (FASnI3) perovskite films to inhibit Sn2+ oxidation by the strong coordination interaction between the cyano group (C≡N) and Sn2+. Consequently, FASnI3-CNI films exhibit reduced nonradiative recombination and lower trap density. The self-powered photodetector based on FASnI3-CNI exhibits low dark current (1.04 × 10-9 A cm-2), high detectivity (2.2 × 1013 Jones at 785 nm), fast response speed (2.62 µs), and good stability. Mechanism studies show the increase in the activation energy required for thermal emission and generated carriers, leading to a lower dark current in the FASnI3-CNI photodetector. In addition, flexible photodetectors based on FASnI3-CNI, exhibiting high detectivity and fast response speed, are employed in wearable electronics to monitor the human heart rate under weak light and zero bias conditions. Finally, the FASnI3-CNI perovskite photodetectors are integrated with a 32 × 32 thin-film transistor backplane, capable of ultraweak light (170 nW cm-2) real-time imaging with high contrast, and zero power consumption, demonstrating the great potential for image sensor applications.

13.
Light Sci Appl ; 12(1): 259, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37899419

RESUMEN

The conjugated mode of bound states in a continuum is integrated as a narrowband wavelength extraction unit. A low-cost and easy-to-prepare strategy, using solution-processable semiconductors, has been demonstrated to form a new platform for on-chip spectral analysis.

14.
Small Methods ; 7(11): e2300479, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37653642

RESUMEN

The extensive applications of spectrum analysis across various fields have rendered the traditional desktop spectrometers unable to meet the market demand for portability and instantaneity. Reducing the size of spectrometers has become a topic of interest. Based on this trend, a novel type of computational spectrometer is developed and has been widely studied owing to its unique features. Such spectrometers do not need to integrate complex mechanical or optical structures, and most of them can achieve spectrum analysis by the properties of the material itself combines with the reconstruction algorithm. Impressively, a single-detector computational spectrometer has recently been successfully realized based on in situ modulation of material properties. This not only enables the further miniaturization of the device, but also means that the footprint-resolution limitation which has always existed in the field of hyperspectral imaging has been broken, opening a new era of image analysis. This review summarizes the classifications and principles of various spectrometers, compares the spectrum resolution performances of different types of spectrometers, and highlights the progress of computational spectrometers, especially the revolutionary single-detector spectrometer. It is expected that this review will provide a positive impact on expanding the boundary of spectrum analysis and move hyperspectral imaging forward.

15.
Sci Bull (Beijing) ; 68(19): 2247-2267, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659909

RESUMEN

Perovskite solar cells (PSCs) have achieved remarkable progress in the past decade and become the most powerful challenger of traditional silicon photovoltaics. Among the many designs, bifacial PSCs have received widespread attention these days due to their ability to fully utilize environmental reflection and scattering light to enhance energy yield. They also can provide better aesthetic design for building-integrated photovoltaics (BIPVs). However, the potential of bifacial PSCs is not limited to these traditional applications. Importantly, such architecture also serves as a universal component for multi-junction cells and photon engineering, which are both critical for further efficiency improvement. In this review, the requirements of different functional layers under various applications are described in detail, starting from the structure of bifacial PSCs. The application developments are introduced, including albedo utilization, semitransparent PSCs (ST-PSCs), TSCs. The present issues (such as stability, large area, recombination of carriers at the back electrode and toxicity etc.) and the extra challenges of bifacial PSCs are highlighted. It is hoped that this review can provide new ideas for the future development and further improve the competitiveness of PSCs.

16.
Front Microbiol ; 14: 1111516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910197

RESUMEN

Plantaricin is a kind of bacteriocin with broad-spectrum antibacterial activity on several food pathogens and spoilage microorganisms, showing potential in biopreservation applications. However, the low yield of plantaricin limits its industrialization. In this study, it was found that the co-culture of Wickerhamomyces anomalus Y-5 and Lactiplantibacillus paraplantarum RX-8 could enhance plantaricin production. To investigate the response of L. paraplantarum RX-8 facing W. anomalus Y-5 and understand the mechanisms activated when increasing plantaricin yield, comparative transcriptomic and proteomic analyses of L. paraplantarum RX-8 were performed in mono-culture and co-culture. The results showed that different genes and proteins in the phosphotransferase system (PTS) were improved and enhanced the uptake of certain sugars; the key enzyme activity in glycolysis was increased with the promotion of energy production; arginine biosynthesis was downregulated to increase glutamate mechanism and then promoted plantaricin yield; and the expression of several genes/proteins related to purine metabolism was downregulated and those related to pyrimidine metabolism was upregulated. Meanwhile, the increase of plantaricin synthesis by upregulation of plnABCDEF cluster expression under co-culture indicated that the PlnA-mediated quorum sensing (QS) system took part in the response mechanism of L. paraplantarum RX-8. However, the absence of AI-2 did not influence the inducing effect on plantaricin production. Mannose, galactose, and glutamate were critical metabolites and significantly simulate plantaricin production (p < 0.05). In summary, the findings provided new insights into the interaction between bacteriocin-inducing and bacteriocin-producing microorganisms, which may serve as a basis for further research into the detailed mechanism.

17.
Am J Transl Res ; 15(11): 6605-6612, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074802

RESUMEN

OBJECTIVE: This study aimed to assess the clinical efficacy of combining vacuum sealing drainage with full irrigation in managing oral and maxillofacial space infections and its impact on serum inflammatory factor levels in patients. METHODS: We retrospectively analyzed data from 110 patients with oral and maxillofacial space infections treated at our hospital between February 2018 and March 2022. Among them, 50 patients underwent simple negative pressure closed drainage (control group), while 60 patients received combined full irrigation using 0.9% sodium chloride solution (observation group). We compared clinical treatment outcomes, treatment duration, antibiotic usage duration, quality of life scores, Visual Analogue Scale (VAS) scores, changes in serum IL-6 and TNF-α levels before and after treatment, and the incidence of complications between the two groups. Additionally, we conducted an analysis of risk factors influencing patient prognosis. RESULTS: The observation group exhibited significantly superior treatment efficacy compared to the control group (P < 0.05). Treatment and antibiotic usage durations were shorter in the observation group (P < 0.05). VAS scores after treatment were significantly lower in the observation group (P < 0.05). Serum inflammatory factors improved significantly in both groups after treatment, with a more substantial improvement observed in the observation group (P < 0.05). Post-treatment quality of life was significantly higher, and the incidence of complications was lower in the observation group (P < 0.05). The choice of treatment method independently influenced patient prognosis (P < 0.05). CONCLUSION: Combining vacuum sealing drainage with full irrigation is an effective approach for managing oral and maxillofacial space infections. This treatment leads to improved clinical symptoms, reduced inflammatory responses, decreased pain intensity, and enhanced quality of life while maintaining safety.

18.
Oral Radiol ; 39(2): 266-274, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35771318

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the prevalence and relevant factors of taurodontism in North China. METHODS: We retrospectively analysed the cone beam computed tomography (CBCT) of 1025 patients (496 male and 529 female) aged between 10 and 59 years. The crown-body/root (CB/R) ratios of the maxillary and mandibular molars were measured. The prevalence of hypotaurodontism, mesotaurodontism, and hypertaurodontism was then calculated and the incidence of taurodontism along with its relevant factors, was evaluated. RESULTS: The overall rate of taurodontism in North China was as high as 78.9%. If the third molars (opsigenes) were excluded, which have a big morphological variation from each other, the rate was 52.4%. The mean CB/R ratio of taurodontism differs from tooth position: maxillary mandibular third molars > maxillary third molars > maxillary second molars > maxillary first molars > mandibular second molars > mandibular first molars (P < 0.05). In addition, the 1025 patients were divided into different age groups, and it was found that the mean CB/R ratio decreased with age (P < 0.05). Moreover, the CB/R ratio of the mandibular first and second molars in female patients was higher than males (P < 0.05). CONCLUSION: This study revealed that taurodontism is widely prevalent in North China. The incidence of taurodontism increases the closer the tooth is to the back end of the dental arch, and quite a few of the maxillary and mandibular third molars teeth have tapered roots. And the taurodontism is decreased by age, as there were more affected female than male patients.


Asunto(s)
Raíz del Diente , Humanos , Masculino , Femenino , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Prevalencia , Raíz del Diente/diagnóstico por imagen , China/epidemiología
19.
Front Plant Sci ; 14: 1302417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162305

RESUMEN

Schisandrae Sphenantherae Fructus (SSF), the dry ripe fruit of Schisandra sphenanthera Rehd. et Wils., is a traditional Chinese medicine with wide application potential. The quality of SSF indicated by the composition and contents of secondary metabolites is closely related to environmental factors, such as regional climate and soil conditions. The aims of this study were to predict the distribution patterns of potentially suitable areas for S. sphenanthera in China and pinpoint the major environmental factors influencing its accumulation of medicinal components. An optimized maximum entropy model was developed and applied under current and future climate scenarios (SSP1-RCP2.6, SSP3-RCP7, and SSP5-RCP8.5). Results show that the total suitable areas for S. sphenanthera (179.58×104 km2) cover 18.71% of China's territory under the current climatic conditions (1981-2010). Poorly, moderately, and highly suitable areas are 119.00×104 km2, 49.61×104 km2, and 10.98×104 km2, respectively. The potentially suitable areas for S. sphenanthera are predicted to shrink and shift westward under the future climatic conditions (2041-2070 and 2071-2100). The areas of low climate impact are located in southern Shaanxi, northwestern Guizhou, southeastern Chongqing, and western Hubei Provinces (or Municipality), which exhibit stable and high suitability under different climate scenarios. The contents of volatile oils, lignans, and polysaccharides in SSF are correlated with various environmental factors. The accumulation of major secondary metabolites is primarily influenced by temperature variation, seasonal precipitation, and annual precipitation. This study depicts the potential distribution of S. sphenanthera in China and its spatial change in the future. Our findings decipher the influence of habitat environment on the geographical distribution and medicinal quality of S. sphenanthera, which could have great implications for natural resource conservation and artificial cultivation.

20.
Foods ; 12(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613294

RESUMEN

The spoilage of liquid-smoked salmon represented a serious restriction for shelf life, due to the loss of taste, smell, color and consistency in product quality. The objective of this study was to investigate the feasibility of applying a nanoemulsion delivery system co-encapsulated enterocin Gr17 and essential oils (EOs) to the refrigerated storage of liquid-smoked salmon. The synergistic inhibiting effects of enterocin Gr17 and EOs were evaluated, a nanoemulsion delivery system with the optimal combination was developed, and the evolution of the microbiological, physicochemical, and sensory properties of liquid-smoked salmon fillets were analyzed during a 49-day period of refrigerated storage. The results showed that the combination of enterocin Gr17 and cinnamaldehyde essential oil (CEO) displayed the strongest synergistic inhibiting effect on foodborne pathogens. A nanoemulsion system incorporating enterocin Gr17 and CEO was successfully developed and presented a broad spectrum of activity against most of the tested bacteria. A nanoemulsion system incorporating enterocin Gr17 and CEO (CO-NE) could significantly inhibit the growth of microflora, suppress the accumulation of total volatile basic nitrogen (TVB-N) and thiobarbituric acid reactive substance (TBARS), and maintain better color, texture, and sensory profiles during smoked salmon storage at 4 °C. Overall, from a microbiological, physicochemical, and sensory point of view, the CO-NE treatment could extend the shelf life to 42 days and maintain the relatively low TVB-N value (≤15.38 mg/100 g), TBARS value (≤2.51 mg MDA/kg), as well as a relatively high sensory score (≥5.83) during the whole storage period. Hence, a nanoemulsion system incorporating enterocin Gr17 and CEO could be a promising bio-preservative technology and alternative to the conventional processes used for improving the safety and quality of chilled liquid-smoked salmon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA