Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884345

RESUMEN

Proanthocyanidins (PAs) are important metabolites that enhance freezing tolerance of plants. Actinidia arguta, especially freezing-tolerant germplasms, accumulate abundant PAs in dormant shoots and thereby enhance freezing tolerance, but the underlying mechanism is unknown. In this study, we used two A. arguta with contrasting cold-resistant phenotypes, KL and RB, to explore the mechanisms in response to cold tolerance. We determined that a leucoanthocyanidin reductase gene (AaLAR1) was more highly expressed in freezing-tolerant KL than in freezing-sensitive RB. Moreover, overexpressing AaLAR1 in kiwifruit promoted PAs biosynthesis and enhanced cold tolerance. The AaLAR1 promoters of various A. arguta germplasms differ due to the presence of a 60-bp deletion in cold-tolerant genotypes that forms a functional binding site for MYC-type transcription factor. Yeast one-hybrid and two-hybrid, dual-luciferase reporter, bimolecular fluorescence complementation and coimmunoprecipitation assays indicated that the AaMYC2a binds to the MYC-core cis-element in the AaLAR1 promoter with the assistance of AaMYB5a, thereby promoting PAs accumulation in the shoots of cold-tolerant kiwifruit. We conclude that the variation in the AaLAR1 promoter and the AaMYC2a-AaMYB5a-AaLAR1 module shape freezing tolerance in A. arguta. The identification of a key structural variation in the AaLAR1 promoter offers a new target for resistance breeding of kiwifruit.

2.
Mol Biol Rep ; 51(1): 112, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227080

RESUMEN

BACKGROUND: Light is essential for kiwifruit development, in which photoresponse factors contributes greatly to the quality formation. 'Light sensitive hypocotyls, also known as light-dependent short hypocotyls' (LSH) gene family can participate in fruit development as photoresponse factor. However, the key LSH gene that determine kiwifruit development remains unclear. This study aim to screen and identify the key gene AaLSH9 in A. arguta. MATERIALS AND METHODS: Genome-wide identification of the LSH gene family was used to analyse LSH genes in kiwifruit. Homologous cloning was used to confirm the sequence of candidate LSH genes. qRT-PCR and cluster analysis of expression pattern were used to screen the key AaLSH9 gene. Subcellular localization of AaLSH9 in tobacco leaves and overexpression of AaLSH9 in Arabidopsis thaliana hy5 mutant plants were used to define the acting place in cell and identify molecular function, respectively. RESULTS: We identified 15 LSH genes, which were divided into two sub-families namely A and B. Domain analysis of A and B showed that they contained different domain organizations, which possibly played key roles in the evolution process. Three LSH genes, AaLSH2, AaLSH9, and AaLSH11, were successfully isolated from Actinidia arguta. The expression pattern and cluster analysis of these three AaLSH genes suggested AaLSH9 might be a key photoresponse gene participating in fruit development in A. arguta. Subcellular localization showed AaLSH9 protein was located in the nucleus. The overexpression of AaLSH9 gene in Arabidopsis thaliana hy5 mutant plants partially complemented the long hypocotyls of hy5 mutant, implying AaLSH9 played a key role as photoresponse factor in cells. In addition, the seed coat color of A. thaliana over-expressing AaLSH9 became lighter than the wide type A.thaliana. Finally, AaCOP1 was confirmed as photoresponse factor to participate in developmental process by stable transgenic A. thaliana. CONCLUSIONS: AaLSH9 can be involved in kiwifruit (A. arguta) development as key photoresponse factor. Our results not only identified the photoresponse factors AaLSH9 and AaCOP1 but also provided insights into their key role in fruit quality improvement in the process of light response.


Asunto(s)
Actinidia , Arabidopsis , Actinidia/genética , Arabidopsis/genética , Análisis por Conglomerados , Frutas/genética , Hipocótilo
3.
Plant Biotechnol J ; 21(2): 369-380, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36333116

RESUMEN

Kiwifruit (Actinidia spp) is a woody, perennial and deciduous vine. In this genus, there are multiple ploidy levels but the main cultivated cultivars are polyploid. Despite the availability of many genomic resources in kiwifruit, SNP genotyping is still a challenge given these different levels of polyploidy. Recent advances in SNP array technologies have offered a high-throughput genotyping platform for genome-wide DNA polymorphisms. In this study, we developed a high-density SNP genotyping array to facilitate genetic studies and breeding applications in kiwifruit. SNP discovery was performed by genome-wide DNA sequencing of 40 kiwifruit genotypes. The identified SNPs were stringently filtered for sequence quality, predicted conversion performance and distribution over the available Actinidia chinensis genome. A total of 134 729 unique SNPs were put on the array. The array was evaluated by genotyping 400 kiwifruit individuals. We performed a multidimensional scaling analysis to assess the diversity of kiwifruit germplasm, showing that the array was effective to distinguish kiwifruit accessions. Using a tetraploid F1 population, we constructed an integrated linkage map covering 3060.9 cM across 29 linkage groups and performed QTL analysis for the sex locus that has been identified on Linkage Group 3 (LG3) in Actinidia arguta. Finally, our dataset presented evidence of tetrasomic inheritance with partial preferential pairing in A. arguta. In conclusion, we developed and evaluated a 135K SNP genotyping array for kiwifruit. It has the advantage of a comprehensive design that can be an effective tool in genetic studies and breeding applications in this high-value crop.


Asunto(s)
Actinidia , Genotipo , Actinidia/genética , Polimorfismo de Nucleótido Simple/genética , Fitomejoramiento , Mapeo Cromosómico/métodos , Poliploidía
4.
Sensors (Basel) ; 23(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36679765

RESUMEN

In underwater wireless optical communication (UWOC), a vortex beam carrying orbital angular momentum has a spatial spiral phase distribution, which provides spatial freedom for UWOC and, as a new information modulation dimension resource, it can greatly improve channel capacity and spectral efficiency. In a case of the disturbance of a vortex beam by ocean turbulence, where a Laguerre-Gaussian (LG) beam carrying orbital angular momentum (OAM) is damaged by turbulence and distortion, which affects OAM pattern recognition, and the phase feature of the phase map not only has spiral wavefront but also phase singularity feature, the convolutional neural network (CNN) model can effectively extract the information of the distorted OAM phase map to realize the recognition of dual-mode OAM and single-mode OAM. The phase map of the Laguerre-Gaussian beam passing through ocean turbulence was used as a dataset to simulate and analyze the OAM recognition effect during turbulence caused by different temperature ratios and salinity. The results showed that, during strong turbulence Cn2=1.0×10-13K2m-2/3, when different ω = -1.75, the recognition rate of dual-mode OAM (ℓ = ±1~±5, ±1~±6, ±1~±7, ±1~±8, ±1~±9, ±1~±10) had higher recognition rates of 100%, 100%, 100%, 100%, 98.89%, and 98.67% and single-mode OAM (ℓ = 1~5, 1~6, 1~7, 1~8, 1~9, 1~10) had higher recognition rates of 93.33%, 92.77%, 92.33%, 90%, 87.78%, and 84%, respectively. With the increase in ω, the recognition accuracy of the CNN model will gradually decrease, and in a fixed case, the dual-mode OAM has stronger anti-interference ability than single-mode OAM. These results may provide a reference for optical communication technologies that implement high-capacity OAM.


Asunto(s)
Redes Neurales de la Computación , Reconocimiento en Psicología , Humanos , Movimiento (Física) , Distribución Normal , Tecnología
5.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614245

RESUMEN

Fruit plants are severely constrained by salt stress in the soil due to their sessile nature. Ca2+ sensors, which are known as CBL-interacting protein kinases (CIPKs), transmit abiotic stress signals to plants. Therefore, it is imperative to investigate the molecular regulatory role of CIPKs underlying salt stress tolerance in kiwifruit. In the current study, we have identified 42 CIPK genes from Actinidia. valvata (A.valvata). All the AvCIPKs were divided into four different phylogenetic groups. Moreover, these genes showed different conserved motifs. The expression pattern analysis showed that AvCIPK11 was specifically highly expressed under salt stress. The overexpression of AvCIPK11 in 'Hongyang' (a salt sensitive commercial cultivar from Actinidia chinensis) enhanced salt tolerance by maintaining K+/Na+ homeostasis in the leaf and positively improving the activity of POD. In addition, the salt-related genes AcCBL1 and AcNHX1 had higher expression in overexpression lines. Collectively, our study suggested that AvCIPK11 is involved in the positive regulation of salt tolerance in kiwifruit.


Asunto(s)
Actinidia , Transcriptoma , Actinidia/genética , Actinidia/metabolismo , Filogenia , Estrés Salino/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958739

RESUMEN

Ion transport is crucial for salt tolerance in plants. Under salt stress, the high-affinity K+ transporter (HKT) family is mainly responsible for the long-distance transport of salt ions which help to reduce the deleterious effects of high concentrations of ions accumulated within plants. Kiwifruit is well known for its susceptibility to salt stress. Therefore, a current study was designed to decipher the molecular regulatory role of kiwifruit HKT members in the face of salt stress. The transcriptome data from Actinidia valvata revealed that salt stress significantly induced the expression of AvHKT1. A multiple sequence alignment analysis indicated that the AvHKT1 protein contains three conserved amino acid sites for the HKT family. According to subcellular localization analysis, the protein was primarily present in the cell membrane and nucleus. Additionally, we tested the AvHKT1 overexpression in 'Hongyang' kiwifruit, and the results showed that the transgenic lines exhibited less leaf damage and improved plant growth compared to the control plants. The transgenic lines displayed significantly higher SPAD and Fv/Fm values than the control plants. The MDA contents of transgenic lines were also lower than that of the control plants. Furthermore, the transgenic lines accumulated lower Na+ and K+ contents, proving this protein involvement in the transport of Na+ and K+ and classification as a type II HKT transporter. Further research showed that the peroxidase (POD) activity in the transgenic lines was significantly higher, indicating that the salt-induced overexpression of AvHKT1 also scavenged POD. The promoter of AvHKT1 contained phytohormone and abiotic stress-responsive cis-elements. In a nutshell, AvHKT1 improved kiwifruit tolerance to salinity by facilitating ion transport under salt stress conditions.


Asunto(s)
Actinidia , Tolerancia a la Sal , Tolerancia a la Sal/genética , Actinidia/genética , Actinidia/metabolismo , Proteínas de Plantas/metabolismo , Estrés Salino , Proteínas de Transporte de Membrana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Antioxidantes/farmacología , Iones/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Entropy (Basel) ; 25(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37895506

RESUMEN

Secrecy capacity is usually employed as the performance metric of the physical layer security in fiber-optic wiretap channels. However, secrecy capacity can only qualitatively evaluate the physical layer security, and it cannot quantitatively evaluate the physical layer security of an imperfect security system. Furthermore, secrecy capacity cannot quantitatively evaluate the amount of information leakage to the eavesdropper. Based on the channel model of an optical CDMA network using wiretap code, the information leakage rate is analyzed to evaluate the physical layer security. The numerical results show that the information leakage rate can quantitatively evaluate the physical layer security of an optical CDMA wiretap channel, and it is related to transmission distance, eavesdropping position, confidential information rate and optical code.

8.
Cell Biol Int ; 46(10): 1672-1681, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35830716

RESUMEN

Bladder cancer (BC) is a common urological malignancy that still lacks an effective treatment. Doxorubicin (Dox) has been widely used in the treatment of various cancers, including BC. However, chemoresistance often hampers the clinical application of Dox, therefore, it is necessary to develop effective strategies to improve its efficacy. By using high-throughput screening, we identified OSU-T315, an integrin-linked kinase (ILK) inhibitor, that can augment the cytotoxicity of Dox against BC cells. We found that OSU-T315 and Dox synergistically induce apoptosis of BC cells via mitochondrial pathway in a caspase-dependent. Mechanically, it was found that OSU-T315 and Dox synergistically induced activation of Bax which is critical for the induction of apoptosis. Moreover, it was also found that the downregulation of BCL-2 and MCL-1 is essential for the activation of BAX induced by OSU-T315 and Dox. OSU-T315 was found to downregulate MCL-1 via the GSK-3ß/FBXW7 axis in BC cells. Our findings suggest that combined treatment with OSU-T315 and Dox may be a promising strategy to treat BC.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Apoptosis , Doxorrubicina/farmacología , Glucógeno Sintasa Quinasa 3 beta , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Piperazinas , Pirazoles , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Proteína X Asociada a bcl-2/metabolismo
9.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35886990

RESUMEN

Pseudomonas syringae pv. actinidiae (Psa), a bacterial pathogen, is a severe threat to kiwifruit production. To elucidate the species-specific interaction between Psa and kiwifruit, transcriptomic-profiles analyses were conducted, under Psa-infected treatment and mock-inoculated control, on shoots of resistant Maohua (MH) and susceptible Hongyang (HY) kiwifruit varieties. The plant hormone-signal transduction and plant-pathogen interaction were significantly enriched in HY compared with MH. However, the starch and sucrose metabolism, antigen processing and presentation, phagosome, and galactose metabolism were significantly enriched in MH compared with HY. Interestingly, the MAP2 in the pathogen/microbe-associated molecular patterns (PAMPs)-triggered immunity (PTI) was significantly up-regulated in MH. The genes RAR1, SUGT1, and HSP90A in the effector-triggered immunity (ETI), and the NPR1 and TGA genes involved in the salicylic acid signaling pathway as regulatory roles of ETI, were significantly up-regulated in HY. Other important genes, such as the CCRs involved in phenylpropanoid biosynthesis, were highly expressed in MH, but some genes in the Ca2+ internal flow or involved in the reactive oxygen metabolism were obviously expressed in HY. These results suggested that the PTI and cell walls involved in defense mechanisms were significant in MH against Psa infection, while the ETI was notable in HY against Psa infection. This study will help to understand kiwifruit bacterial canker disease and provide important theoretical support in kiwifruit breeding.


Asunto(s)
Actinidia , Pseudomonas syringae , Actinidia/metabolismo , Genotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología
10.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35328659

RESUMEN

Actinidia valvata possesses waterlogging tolerance; however, the mechanisms underlying this trait are poorly characterized. Here, we performed a transcriptome analysis by combining single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing and investigated the physiological responses of the roots of KR5 (A. valvata, a tolerant genotype) after 0, 12, 24 and 72 h of waterlogging stress. KR5 roots responded to waterlogging stress mainly via carbohydrate and free amino acids metabolism and reactive oxygen species (ROS) scavenging pathways. Trehalose-6-phosphate synthase (TPS) activity, alcohol dehydrogenase (ADH) activity and the total free amino acid content increased significantly under waterlogging stress. The nicotinamide adenine dinucleotide-dependent glutamate synthase/alanine aminotransferase (NADH-GOGAT/AlaAT) cycle was correlated with alanine accumulation. Levels of genes encoding peroxidase (POD) and catalase (CAT) decreased and enzyme activity increased under waterlogging stress. Members of the LATERAL ORGAN BOUNDARIES (LOB), AP2/ERF-ERF, Trihelix and C3H transcription factor families were identified as potential regulators of the transcriptional response. Several hub genes were identified as key factors in the response to waterlogging stress by a weighted gene co-expression network analysis (WGCNA). Our results provide insights into the factors contributing to waterlogging tolerance in kiwifruit, providing a basis for further studies of interspecific differences in an important plant trait and for molecular breeding.


Asunto(s)
Actinidia , Actinidia/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , RNA-Seq , Estrés Fisiológico/genética , Transcriptoma
11.
BMC Genomics ; 22(1): 72, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482717

RESUMEN

BACKGROUND: Freezing injury, which is an important abiotic stress in horticultural crops, influences the growth and development and the production area of kiwifruit (Actinidia Lind1). Among Actinidia species, Actinidia arguta has excellent cold resistance, but knowledge relevant to molecular mechanisms is still limited. Understanding the mechanism underlying cold resistance in kiwifruit is important for breeding cold resistance. RESULTS: In our study, a population resulting from the cross of A. arguta 'Ruby-3' × 'Kuilv' male was generated for kiwifruit hardiness study, and 20 cold-tolerant and 20 cold-sensitive populations were selected from 492 populations according to their LT50. Then, we performed bulked segregant RNA-seq combined with single-molecule real-time sequencing to identify differentially expressed genes that provide cold hardiness. We found that the content of soluble sucrose and the activity of ß-amylase were higher in the cold-tolerant population than in the cold-sensitive population. Upon - 30 °C low-temperature treatment, 126 differentially expressed genes were identify; the expression of 59 genes was up-regulated and that of 67 genes was down-regulated between the tolerant and sensitive pools, respectively. KEGG pathway analysis showed that the DEGs were primarily related to starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism. Ten major key enzyme-encoding genes and two regulatory genes were up-regulated in the tolerant pool, and regulatory genes of the CBF pathway were found to be differentially expressed. In particular, a 14-3-3 gene was down-regulated and an EBF gene was up-regulated. To validate the BSR-Seq results, 24 DEGs were assessed via qRT-PCR, and the results were consistent with those obtained by BSR-Seq. CONCLUSION: Our research provides valuable insights into the mechanism related to cold resistance in Actinidia and identified potential genes that are important for cold resistance in kiwifruit.


Asunto(s)
Actinidia , Actinidia/genética , Respuesta al Choque por Frío/genética , Frutas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Masculino , Fitomejoramiento
12.
BMC Plant Biol ; 21(1): 365, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380415

RESUMEN

BACKGROUND: Kiwifruit (Actinidia Lindl.) is considered an important fruit species worldwide. Due to its temperate origin, this species is highly vulnerable to freezing injury while under low-temperature stress. To obtain further knowledge of the mechanism underlying freezing tolerance, we carried out a hybrid transcriptome analysis of two A. arguta (Actinidi arguta) genotypes, KL and RB, whose freezing tolerance is high and low, respectively. Both genotypes were subjected to - 25 °C for 0 h, 1 h, and 4 h. RESULTS: SMRT (single-molecule real-time) RNA-seq data were assembled using the de novo method, producing 24,306 unigenes with an N50 value of 1834 bp. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that they were involved in the 'starch and sucrose metabolism', the 'mitogen-activated protein kinase (MAPK) signaling pathway', the 'phosphatidylinositol signaling system', the 'inositol phosphate metabolism', and the 'plant hormone signal transduction'. In particular, for 'starch and sucrose metabolism', we identified 3 key genes involved in cellulose degradation, trehalose synthesis, and starch degradation processes. Moreover, the activities of beta-GC (beta-glucosidase), TPS (trehalose-6-phosphate synthase), and BAM (beta-amylase), encoded by the abovementioned 3 key genes, were enhanced by cold stress. Three transcription factors (TFs) belonging to the AP2/ERF, bHLH (basic helix-loop-helix), and MYB families were involved in the low-temperature response. Furthermore, weighted gene coexpression network analysis (WGCNA) indicated that beta-GC, TPS5, and BAM3.1 were the key genes involved in the cold response and were highly coexpressed together with the CBF3, MYC2, and MYB44 genes. CONCLUSIONS: Cold stress led various changes in kiwifruit, the 'phosphatidylinositol signaling system', 'inositol phosphate metabolism', 'MAPK signaling pathway', 'plant hormone signal transduction', and 'starch and sucrose metabolism' processes were significantly affected by low temperature. Moreover, starch and sucrose metabolism may be the key pathway for tolerant kiwifruit to resist low temperature damages. These results increase our understanding of the complex mechanisms involved in the freezing tolerance of kiwifruit under cold stress and reveal a series of candidate genes for use in breeding new cultivars with enhanced freezing tolerance.


Asunto(s)
Aclimatación/genética , Actinidia/genética , Actinidia/fisiología , Congelación , Regulación de la Expresión Génica de las Plantas , Frutas/genética , Frutas/fisiología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Sistema de Señalización de MAP Quinasas , Anotación de Secuencia Molecular , Fosfatidilinositoles/metabolismo , Fitomejoramiento , Reguladores del Crecimiento de las Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Almidón/metabolismo , Sacarosa/metabolismo
13.
Int J Mol Sci ; 19(5)2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29762529

RESUMEN

To assess the interrelation between the change of metabolites and the change of fruit color, we performed a combined metabolome and transcriptome analysis of the flesh in two different Actinidia arguta cultivars: "HB" ("Hongbaoshixing") and "YF" ("Yongfengyihao") at two different fruit developmental stages: 70d (days after full bloom) and 100d (days after full bloom). Metabolite and transcript profiling was obtained by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometer and high-throughput RNA sequencing, respectively. The identification and quantification results of metabolites showed that a total of 28,837 metabolites had been obtained, of which 13,715 were annotated. In comparison of HB100 vs. HB70, 41 metabolites were identified as being flavonoids, 7 of which, with significant difference, were identified as bracteatin, luteolin, dihydromyricetin, cyanidin, pelargonidin, delphinidin and (-)-epigallocatechin. Association analysis between metabolome and transcriptome revealed that there were two metabolic pathways presenting significant differences during fruit development, one of which was flavonoid biosynthesis, in which 14 structural genes were selected to conduct expression analysis, as well as 5 transcription factor genes obtained by transcriptome analysis. RT-qPCR results and cluster analysis revealed that AaF3H, AaLDOX, AaUFGT, AaMYB, AabHLH, and AaHB2 showed the best possibility of being candidate genes. A regulatory network of flavonoid biosynthesis was established to illustrate differentially expressed candidate genes involved in accumulation of metabolites with significant differences, inducing red coloring during fruit development. Such a regulatory network linking genes and flavonoids revealed a system involved in the pigmentation of all-red-fleshed and all-green-fleshed A. arguta, suggesting this conjunct analysis approach is not only useful in understanding the relationship between genotype and phenotype, but is also a powerful tool for providing more valuable information for breeding.


Asunto(s)
Actinidia/genética , Flavonoides/biosíntesis , Frutas/metabolismo , Genes de Plantas , Metaboloma , Transcriptoma , Actinidia/metabolismo , Flavonoides/genética , Frutas/genética
14.
J Hum Genet ; 61(10): 851-860, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27278787

RESUMEN

With the advance of next-generation sequencing technology, the rare variants join the common ones in explaining more proportions of heritability. The coexistence of variants of common with rare, causal with neutral and deleterious with protective is a norm and should be appropriately addressed. Some existing methods suffer from low power when one or more forms of coexistence present, impeding their applications in practice. In this paper, for case-parent trios, pseudocontrols are constructed using the nontransmitted alleles of the parents. The Kullback-Leibler divergence is utilized to measure the difference between the distributions of variants in a genetic region for the affected children and pseudocontrols, and two nonparametric test statistics KLTT and cKLTT are proposed. Extensive simulations show that they are robust to the opposite directions of the causal variants and the amount of neutral variants, and have superiority over the existing methods when both rare and common variants are involved. Furthermore, their efficiency is demonstrated in the application to the data from Framingham Heart Study.


Asunto(s)
Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Algoritmos , Simulación por Computador , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Desequilibrio de Ligamiento , Modelos Genéticos , Oportunidad Relativa
15.
Heliyon ; 10(11): e31747, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38828304

RESUMEN

The study investigated the protective effects and mechanisms of probiotics in conjunction with an anti-PD-L1 antibody on the immune functions of septic mice. Sixty-four mice were assigned to sepsis groups receiving vehicle, probiotics, and anti-PD-L1 antibody individually or in combination, with healthy mice as controls. Sepsis was induced by cecal ligation and puncture (CLP), followed by intraperitoneal Lipopolysaccharide (LPS) injection. Blood and tissues were collected one day post-injection for detecting inflammation-related cytokines, Treg, PI3K/Akt pathway-related protein expression, and lung tissue pathology. The survival time of the remaining ten mice was recorded over seven days. Compared to healthy mice, septic mice given PBS exhibited significantly different serum levels of IL-6, IL-8, IL-17, IL-10, and IFN-γ (all p < 0.001). Treatment with anti-PD-L1 antibody combined with probiotics significantly increased the 7-day survival rate in septic mice, accompanied by decreased pro-inflammatory cytokines, increased anti-inflammatory cytokines, improved oxidative stress, reduced lung injury, and enhanced Th17/Treg balance. This combined therapy demonstrated superior efficacy compared to antibodies or probiotics alone. Additionally, it facilitated peripheral blood polymorphonuclear neutrophil apoptosis, enhancing protection by blocking PD-L1 function and inhibiting PI3K-dependent AKT phosphorylation. In conclusion, combining probiotics with an anti-PD-L1 antibody enhances protective effects in septic mice by reducing serum inflammatory factors, promoting neutrophil apoptosis, regulating Th17/Treg balance, and inhibiting the PI3K/Akt pathway.

16.
J Int Med Res ; 50(6): 3000605221106705, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35711149

RESUMEN

OBJECTIVE: Multidrug-resistant Klebsiella pneumoniae (MDR KP) bloodstream infections are a serious problem. The objective of this study was to investigate the effects of appropriate combination therapies on MDR KP bloodstream infections. METHODS: MDR KP strains isolated from clinical samples were assessed for antibiotic susceptibility using the broth microdilution method. Twenty consecutive MDR KP clinical isolates from patients with bloodstream infections were examined in this study. The experiments were conducted at the Bacterial Laboratory of Tongde Hospital from March to August 2021. Antibiotic combination tests were performed using the minimum inhibitory concentration (MIC) test, and the sum of the fractional inhibitory concentration was used to assess synergy. RESULTS: Following treatment with a combination of two antibiotic agents, the MIC50 and MIC90 values decreased compared with that before treatment. MIC50 decreased by at least 50%, with one value reduced to 6.25% of the pretreatment value. None of the antibiotic combinations were antagonistic. Combination of polymyxin B with rifampicin or tigecycline had a synergistic effect on 70% and 65% of the strains, respectively. CONCLUSIONS: In vitro combination therapies with two active drug agents (polymyxin B plus rifampicin or tigecycline) had a better effect on MDR KP infections compared with that in other regimens.


Asunto(s)
Infecciones por Klebsiella , Sepsis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Polimixina B/farmacología , Polimixina B/uso terapéutico , Rifampin/farmacología , Rifampin/uso terapéutico , Tigeciclina/farmacología
17.
Plants (Basel) ; 11(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015401

RESUMEN

Kiwifruit is commonly sensitive to waterlogging stress, and grafting onto a waterlogging-tolerant rootstock is an efficient strategy for enhancing the waterlogging tolerance of kiwifruit plants. KR5 (Actinidia valvata) is more tolerant to waterlogging than 'Hayward' (A. deliciosa) and is a potential resistant rootstock for kiwifruit production. Here, we focused on evaluating the performance of the waterlogging-sensitive kiwifruit scion cultivar 'Zhongmi 2' when grafted onto KR5 (referred to as ZM2/KR5) and Hayward (referred to as ZM2/HWD) rootstocks, respectively, under waterlogging stress. The results showed 'Zhongmi 2' performed much better when grafted onto KR5 than when grafted onto 'Hayward', exhibiting higher photosynthetic efficiency and reduced reactive oxygen species (ROS) damage. Furthermore, the roots of ZM2/KR5 plants showed greater root activity and energy supply, lower ROS damage, and more stable osmotic adjustment ability than the roots of ZM2/HWD plants under waterlogging stress. In addition, we detected the expression of six key genes involved in the kiwifruit waterlogging response mechanism, and these genes were remarkably induced in the ZM2/KR5 roots but not in the ZM2/HWD roots under waterlogging stress. Moreover, principal component analysis (PCA) further demonstrated the differences in the physiological responses of the ZM2/KR5 and ZM2/HWD plants under waterlogging stress. These results demonstrated that the KR5 rootstock can improve the waterlogging tolerance of grafted kiwi plants by regulating physiological and biochemical metabolism and molecular responses.

18.
Hortic Res ; 9: uhac189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338850

RESUMEN

The Actinidia (kiwifruit) is an emerging fruit plant that is severely affected by salt stress in northern China. Plants have evolved several signaling network mechanisms to cope with the detrimental effects of salt stress. To date, no reported work is available on metabolic and molecular mechanisms involved in kiwifruit salt tolerance. Therefore, the present study aims to decipher intricate adaptive responses of two contrasting salt tolerance kiwifruit species Actinidia valvata [ZMH (an important genotype), hereafter referred to as R] and Actinidia deliciosa ['Hayward' (an important green-fleshed cultivar), hereafter referred to as H] under 0.4% (w/w) salt stress for time courses of 0, 12, 24, and 72 hours (hereafter refered to as h) by combined transcriptome and metabolome analysis. Data revealed that kiwifruit displayed specific enrichment of differentially expressed genes (DEGs) under salt stress. Interestingly, roots of R plants showed a differential expression pattern for up-regulated genes. The KEGG pathway analysis revealed the enrichment of DEGs related to plant hormone signal transduction, glycine metabolism, serine and threonine metabolism, glutathione metabolism, and pyruvate metabolism in the roots of R under salt stress. The WGCNA resulted in the identification of five candidate genes related to glycine betaine (GB), pyruvate, total soluble sugars (TSS), and glutathione biosynthesis in kiwifruit. An integrated study of transcriptome and metabolome identified several genes encoding metabolites involved in pyruvate metabolism. Furthermore, several genes encoding transcription factors were mainly induced in R under salt stress. Functional validation results for overexpression of a candidate gene betaine aldehyde dehydrogenase (AvBADH, R_transcript_80484) from R showed significantly improved salt tolerance in Arabidopsis thaliana (hereafter referred to as At) and Actinidia chinensis ['Hongyang' (an important red-fleshed cultivar), hereafter referred to as Ac] transgenic plants than in WT plants. All in all, salt stress tolerance in kiwifruit roots is an intricate regulatory mechanism that consists of several genes encoding specific metabolites.

19.
BMC Genomics ; 12: 63, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21269450

RESUMEN

BACKGROUND: After several years in the juvenile phase, trees undergo flowering transition to become mature (florally competent) trees. This transition depends on the balanced expression of a complex network of genes that is regulated by both endogenous and environmental factors. However, relatively little is known about the molecular processes regulating flowering transition in woody plants compared with herbaceous plants. RESULTS: Comparative transcript profiling of spring shoots after self-pruning was performed on a spontaneously early flowering trifoliate orange mutant (precocious trifoliate orange, Poncirus trifoliata) with a short juvenile phase and the wild-type (WT) tree by using massively parallel signature sequencing (MPSS). A total of 16,564,500 and 16,235,952 high quality reads were obtained for the WT and the mutant (MT), respectively. Interpretation of the MPSS signatures revealed that the total number of transcribed genes in the MT (31,468) was larger than in the WT (29,864), suggesting that newly initiated transcription occurs in the MT. Further comparison of the transcripts revealed that 2735 genes had more than twofold expression difference in the MT compared with the WT. In addition, we identified 110 citrus flowering-time genes homologous with known elements of flowering-time pathways through sequencing and bioinformatics analysis. These genes are highly conserved in citrus and other species, suggesting that the functions of the related proteins in controlling reproductive development may be conserved as well. CONCLUSION: Our results provide a foundation for comparative gene expression studies between WT and precocious trifoliate orange. Additionally, a number of candidate genes required for the early flowering process of precocious trifoliate orange were identified. These results provide new insight into the molecular processes regulating flowering time in citrus.


Asunto(s)
Flores/genética , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Plantas Modificadas Genéticamente/genética , Poncirus/genética , Flores/fisiología , Plantas Modificadas Genéticamente/fisiología , Poncirus/fisiología
20.
Plant Mol Biol ; 76(1-2): 187-204, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21533840

RESUMEN

To isolate differentially expressed genes during the juvenile-to-adult phase transition of an early-flowering trifoliate orange mutant (precocious trifoliate orange, Poncirus trifoliata), suppression subtractive hybridization was performed. In total, 463 cDNA clones chosen by differential screening of 1,920 clones were sequenced and 178 differentially expressed genes were identified, among which 41 sequences did not match any known nucleotide sequence. Analysis of expression profiles of the differentially expressed genes through hybridization on customized chips revealed their expression change was associated with the phase transition from juvenile to adult in the mutant. Open reading frames of nine selected genes were successfully determined by rapid amplification of cDNA ends. Expression analysis of these genes by real-time RT-PCR showed that transcript levels of several genes were associated with floral induction and inflorescence development. Among these genes, HM596718, a sequence sharing a high degree of similarity with Arabidopsis EARLY FLOWERING 5 (AtELF5) was discovered. Real-time PCR and in situ hybridization indicated its expression pattern was closely correlated with floral induction and flowering of the mutant. Ectopic expression of the gene in Arabidopsis caused early flowering; however, its functional characterization is different than the role of AtELF5 observed in Arabidopsis. A yeast two-hybrid assay indicated that PtELF5 significantly interacted with DUF1336 domain of a hypothetical protein, which has not yet been functionally characterized in woody plants. These findings suggest that PtELF5 may be a novel gene that plays an important role during the early flowering of precocious trifoliate orange.


Asunto(s)
Flores/genética , Perfilación de la Expresión Génica , Genes de Plantas/genética , Proteínas de Plantas/genética , Poncirus/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Clonación Molecular , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Hibridación in Situ , Datos de Secuencia Molecular , Mutación , Hibridación de Ácido Nucleico , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Poncirus/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Tiempo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA