Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 511
Filtrar
Más filtros

Intervalo de año de publicación
2.
BMC Genomics ; 25(1): 92, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254015

RESUMEN

BACKGROUND: Gorals Naemorhedus resemble both goats and antelopes, which prompts much debate about the intragenus species delimitation and phylogenetic status of the genus Naemorhedus within the subfamily Caprinae. Their evolution is believed to be linked to the uplift of the Qinghai-Tibet Plateau (QTP). To better understand its phylogenetics, the genetic information is worth being resolved. RESULTS: Based on a sample from the eastern margin of QTP, we constructed the first reference genome for Himalayan goral Naemorhedus goral, using PacBio long-read sequencing and Hi-C technology. The 2.59 Gb assembled genome had a contig N50 of 3.70 Mb and scaffold N50 of 106.66 Mb, which anchored onto 28 pseudo chromosomes. A total of 20,145 protein-coding genes were predicted in the assembled genome, of which 99.93% were functionally annotated. Phylogenetically, the goral was closely related to muskox on the mitochondrial genome level and nested into the takin-muskox clade on the genome tree, rather than other so-called goat-antelopes. The cladogenetic event among muskox, takin and goral occurred sequentially during the late Miocene (~ 11 - 5 Mya), when the QTP experienced a third dramatic uplift with consequent profound changes in climate and environment. Several chromosome fusions and translocations were observed between goral and takin/muskox. The expanded gene families in the goral genome were mainly related to the metabolism of drugs and diseases, so as the positive selected genes. The Ne of goral continued to decrease since ~ 1 Mya during the Pleistocene with active glaciations. CONCLUSION: The high-quality goral genome provides insights into the evolution and valuable information for the conservation of this threatened group.


Asunto(s)
Antílopes , Animales , Antílopes/genética , Filogenia , Cabras/genética , Reordenamiento Génico , Cromosomas
3.
Mol Cancer ; 23(1): 31, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347558

RESUMEN

Minimally invasive testing is essential for early cancer detection, impacting patient survival rates significantly. Our study aimed to establish a pioneering cell-free immune-related miRNAs (cf-IRmiRNAs) signature for early cancer detection. We analyzed circulating miRNA profiles from 15,832 participants, including individuals with 13 types of cancer and control. The data was randomly divided into training, validation, and test sets (7:2:1), with an additional external test set of 684 participants. In the discovery phase, we identified 100 differentially expressed cf-IRmiRNAs between the malignant and non-malignant, retaining 39 using the least absolute shrinkage and selection operator (LASSO) method. Five machine learning algorithms were adopted to construct cf-IRmiRNAs signature, and the diagnostic classifies based on XGBoost algorithm showed the excellent performance for cancer detection in the validation set (AUC: 0.984, CI: 0.980-0.989), determined through 5-fold cross-validation and grid search. Further evaluation in the test and external test sets confirmed the reliability and efficacy of the classifier (AUC: 0.980 to 1.000). The classifier successfully detected early-stage cancers, particularly lung, prostate, and gastric cancers. It also distinguished between benign and malignant tumors. This study represents the largest and most comprehensive pan-cancer analysis on cf-IRmiRNAs, offering a promising non-invasive diagnostic biomarker for early cancer detection and potential impact on clinical practice.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Masculino , Humanos , MicroARNs/genética , Reproducibilidad de los Resultados , Biomarcadores de Tumor/genética , Detección Precoz del Cáncer/métodos , Neoplasias Gástricas/diagnóstico
4.
Pharmacogenet Genomics ; 34(6): 175-183, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640061

RESUMEN

OBJECTIVES: Reference materials for in-vitro diagnostic reagents play a critical role in determining the quality of reagents and ensuring the accuracy of clinical test results. This study aimed to establish a national reference material (NRM) for detecting cytochrome P450 (CYP) genes related to drug metabolism by screening databases on the Chinese population to identify CYP gene polymorphism characteristics. METHODS: To prepare the NRM, we used DNA extracted from healthy human immortalized B lymphoblastoid cell lines as the raw material. Samples of these cell lines were obtained from the Chinese Population PGx Gene Polymorphism Biobank. Further, we used Sanger sequencing, next-generation sequencing, and commercial assay kits to validate the polymorphic genotypes. RESULTS: Among the CYP superfamily genes, we confirmed 24 riboswitch loci related to drug metabolism, with evidence levels of 1A, 2A, 3, and 4. We confirmed the polymorphic loci and validated their genotypes using various sequencing techniques. Our results were consistent with the polymorphism information of samples obtained from the biobank, thus demonstrating high precision and stability of the established NRM. CONCLUSION: An NRM (360 056-202 201) for CYP genetic testing covering 24 loci related to drug metabolism was established and approved to assess in-vitro diagnostic reagents containing CYP family gene polymorphisms and perform clinical inter-room quality evaluations.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Pruebas Genéticas , Humanos , Sistema Enzimático del Citocromo P-450/genética , Pruebas Genéticas/normas , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Polimorfismo Genético , Genotipo , Estándares de Referencia , Pueblo Asiatico/genética , Línea Celular , China
5.
Cancer Immunol Immunother ; 73(2): 37, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281198

RESUMEN

BACKGROUND: Numerous studies have highlighted the crucial value of the heavy chain of ferritin (FTH1) as a key regulator of iron metabolism and a suppressor of ferroptosis, intimately tied to the tumor immune microenvironment (TIME). Nevertheless, the precise impact of FTH1 on cancer immunotherapy remains vague. Our study aims to systematically explore the prognostic significance and immune role of FTH1 in pan-cancers immunotherapy. METHODS: Our study delves into the potential of FTH1 as an immunotherapeutic target within the TIME of various solid cancers. The immune landscape and underlying mechanisms of FTH1 in the TIME were investigated by multiple algorithms and bioinformatics methods. Single-cell sequencing analysis and multiplex immunofluorescence staining techniques are applied to observe FTH1 co-expression on both tumor and immune cells. RESULTS: FTH1 exhibited aberrant expression patterns across multiple cancers, which is strongly correlated with immunotherapy resistance. Patients with high FTH1 expression levels tended to derive less benefit from immunotherapies. Moreover, FTH1 demonstrated a significant correlation with TIME infiltration, immune checkpoint molecules, and immune-related pathways. Notably, FTH1 showed a positive association with macrophage infiltrations, its expression was particularly noteworthy in malignant cells and macrophages. Inhibiting FTH1-related signaling pathways appeared to be a potential strategy to counteract tumor immunotherapy resistance. CONCLUSION: Our comprehensive analyses may offer valuable insights into the role of FTH1 in tumor immunotherapy. The observed correlations pave the way for further functional experiments, fostering an enhanced understanding that could shape future research endeavors.


Asunto(s)
Neoplasias , Humanos , Pronóstico , Neoplasias/terapia , Algoritmos , Biología Computacional , Inmunoterapia , Microambiente Tumoral , Ferritinas , Oxidorreductasas
6.
Small ; : e2402273, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682587

RESUMEN

The fundamental logic states of 1 and 0 in Complementary Metal-Oxide-Semiconductor (CMOS) are essential for modern high-speed non-volatile solid-state memories. However, the accumulated storage signal in conventional physical components often leads to data distortion after multiple write operations. This necessitates a write-verify operation to ensure proper values within the 0/1 threshold ranges. In this work, a non-gradual switching memory with two distinct stable resistance levels is introduced, enabled by the asymmetric vertical structure of monolayer vacancy-induced oxidized Ti3C2Tx MXene for efficient carrier trapping and releasing. This non-cumulative resistance effect allows non-volatile memories to attain valid 0/1 logic levels through direct reprogramming, eliminating the need for a write-verify operation. The device exhibits superior performance characteristics, including short write/erase times (100 ns), a large switching ratio (≈3 × 104), long cyclic endurance (>104 cycles), extended retention (>4 × 106 s), and highly resistive stability (>104 continuous write operations). These findings present promising avenues for next-generation resistive memories, offering faster programming speed, exceptional write performance, and streamlined algorithms.

7.
Small ; : e2401308, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773889

RESUMEN

Incorporating ultralow loading of nanoparticles into polymers has realized increases in dielectric constant and breakdown strength for excellent energy storage. However, there are still a series of tough issues to be dealt with, such as organic solvent uses, which face enormous challenges in scalable preparation. Here, a new strategy of dual in situ synthesis is proposed, namely polymerization of polyethylene terephthalate (PET) synchronizes with growth of calcium borate nanoparticles, making polyester nanocomposites from monomers directly. Importantly, this route is free of organic solvents and surface modification of nanoparticles, which is readily accessible to scalable synthesis of polyester nanocomposites. Meanwhile, uniform dispersion of as ultralow as 0.1 wt% nanoparticles and intense bonding at interfaces have been observed. Furthermore, the PET-based nanocomposite displays obvious increases in both dielectric constant and breakdown strength as compared to the neat PET. Its maximum discharged energy density reaches 15 J cm-3 at 690 MV m-1 and power density attains 218 MW cm-3 under 150 Ω resistance at 300 MV m-1, which is far superior to the current dielectric polymers that can be produced at large scales. This work presents a scalable, safe, low-cost, and environment-friendly route toward polymer nanocomposites with superior capacitive performance.

8.
J Virol ; 97(8): e0070023, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37578239

RESUMEN

Human adenovirus (HAdV) is ubiquitous in the human population, constituting a significant burden of global respiratory diseases. Children and individuals with low immunity are at risk of developing severe infections without approved antiviral treatment for HAdV. Our study demonstrated that TRIM35 inhibited HAdV-C5 early gene transcription, early protein expression, genome replication, and infectious virus progeny production. Furthermore, TRIM35 was found to inhibit HAdV replication by attenuating E1A expression. Mechanistically, TRIM35 interacts with and degrades E1A by promoting its K48-linked ubiquitination. Additionally, K253 and K285 are the key sites necessary for TRIM35 degradation. Moreover, an oncolytic adenovirus carrying shTRIM35 was constructed and observed to exhibit improved oncolysis in vivo, providing new ideas for clinical tumor treatment. Our results expand the broad antiviral activity of TRIM35 and mechanically support its application as a HAdV replication inhibitor. IMPORTANCE E1A is an essential human adenovirus (HAdV) protein responsible for the early replication of adenovirus while interacting with multiple host proteins. Understanding the interaction between HAdV E1A and TRIM35 helps identify effective antiviral therapeutic targets. The viral E1A protein is a crucial activator and regulator of viral transcription during the early infection stages. We first reported that TRIM35 interacts with E1A to resist adenovirus infection. Our study demonstrated that TRIM35 targets E1A to resist adenovirus, indicating the applicability of targeting virus-dependent host factors as a suitable antiviral strategy.


Asunto(s)
Proteínas E1A de Adenovirus , Adenovirus Humanos , Proteínas Reguladoras de la Apoptosis , Replicación Viral , Humanos , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Adenovirus Humanos/fisiología , Antivirales/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo
9.
Transgenic Res ; 33(1-2): 35-46, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461212

RESUMEN

Chronic hepatitis B virus (HBV) poses a significant global health challenge as it can lead to acute or chronic liver disease and hepatocellular carcinoma (HCC). To establish a safety experimental model, a homolog of HBV-duck HBV (DHBV) is often used for HBV research. Hydrodynamic-based gene delivery (HGD) is an efficient method to introduce exogenous genes into the liver, making it suitable for basic research. In this study, a duck HGD system was first constructed by injecting the reporter plasmid pLIVE-SEAP via the ankle vein. The highest expression of SEAP occurred when ducks were injected with 5 µg/mL plasmid pLIVE-SEAP in 10% bodyweight volume of physiological saline for 6 s. To verify the distribution and expression of exogenous genes in multiple tissues, the relative level of foreign gene DNA and ß-galactosidase staining of LacZ were evaluated, which showed the plasmids and their products were located mainly in the liver. Additionally, ß-galactosidase staining and fluorescence imaging indicated the delivered exogenous genes could be expressed in a short time. Further, the application of the duck HGD model on DHBV treatment was investigated by transferring representative anti-HBV genes IFNα and IFNγ into DHBV-infected ducks. Delivery of plasmids expressing IFNα and IFNγ inhibited DHBV infection and we established a novel efficient HGD method in ducks, which could be useful for drug screening of new genes, mRNAs and proteins for anti-HBV treatment.


Asunto(s)
Carcinoma Hepatocelular , Virus de la Hepatitis B del Pato , Hepatitis B Crónica , Neoplasias Hepáticas , Animales , Humanos , Carcinoma Hepatocelular/patología , Patos/genética , Hepatitis B Crónica/patología , Neoplasias Hepáticas/patología , Hidrodinámica , Hígado , Virus de la Hepatitis B del Pato/genética , beta-Galactosidasa , ADN Viral/genética
10.
Langmuir ; 40(18): 9717-9724, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712354

RESUMEN

Connectivity isomerization of the same aromatic molecular core with different substitution positions profoundly affects electron transport pathways and single-molecule conductance. Herein, we designed and synthesized all connectivity isomers of a thiophene (TP) aromatic ring substituted by two dihydrobenzo[b]thiophene (BT) groups with ethynyl spacers (m,n-TP-BT, (m,n = 2,3; 2,4; 2,5; 3,4)), to systematically probe how connectivity contributes to single-molecule conductance. Single-molecule conductance measurements using a scanning tunneling microscopy break junction (STM-BJ) technique show ∼12-fold change in conductance values, which follow an order of 10-4.83 G0 (2,4-TP-BT) < 10-4.78 G0 (3,4-TP-BT) < 10-4.06 G0 (2,3-TP-BT) < 10-3.75 G0 (2,5-TP-BT). Electronic structure analysis and theoretical simulations show that the connectivity isomerization significantly changes electron delocalization and HOMO-LUMO energy gaps. Moreover, the connectivity-dependent molecular structures lead to different quantum interference (QI) effects in electron transport, e.g., a strong destructive QI near E = EF leads the smallest conductance value for 2,4-TP-BT. This work proves a clear relationship between the connectivity isomerization and single-molecule conductance of thiophene heterocyclic molecular junctions for the future design of molecular devices.

11.
Physiol Plant ; 176(2): e14238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38488414

RESUMEN

Malus sieversii is a precious apple germplasm resource. Browning of explants is one of the most important factors limiting the survival rate of plant tissue culture. In order to explore the molecular mechanism of the browning degree of different strains of Malus sieversii, we compared the dynamic changes of Malus sieversii and Malus robusta Rehd. during the whole browning process using a multi-group method. A total of 44 048 differentially expressed genes (DEGs) were identified by transcriptome analysis on the DNBSEQ-T7 sequencing platform. KEGG enrichment analysis showed that the DEGs were significantly enriched in the flavonoid biosynthesis pathway. In addition, metabonomic analysis showed that (-)-epicatechin, astragalin, chrysin, irigenin, isoquercitrin, naringenin, neobavaisoflavone and prunin exhibited different degrees of free radical scavenging ability in the tissue culture browning process, and their accumulation in different varieties led to differences in the browning degree among varieties. Comprehensive transcriptome and metabonomics analysis of the data related to flavonoid biosynthesis showed that PAL, 4CL, F3H, CYP73A, CHS, CHI, ANS, DFR and PGT1 were the key genes for flavonoid accumulation during browning. In addition, WGCNA analysis revealed a strong correlation between the known flavonoid structure genes and the selected transcriptional genes. Protein interaction predictions demonstrated that 19 transcription factors (7 MYBs and 12 bHLHs) and 8 flavonoid structural genes had targeted relationships. The results show that the interspecific differential expression of flavonoid genes is the key influencing factor of the difference in browning degree between Malus sieversii and Malus robusta Rehd., providing a theoretical basis for further study on the regulation of flavonoid biosynthesis.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Multiómica , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica de las Plantas
12.
Plant Cell Rep ; 43(6): 155, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814469

RESUMEN

KEY MESSAGE: Remorin proteins could be positively related to salt and osmotic stress resistance in rapeseed. Remorins (REMs) play a crucial role in adaptations to adverse environments. However, their roles in abiotic stress and phytohormone responses in oil crops are still largely unknown. In this study, we identified 47 BnaREM genes in the B.napus genome. Phylogenetic relationship and synteny analysis revealed that they were categorized into 5 distinct groups and have gone through 55 segmental duplication events under purifying selection. Gene structure and conserved domains analysis demonstrated that they were highly conserved and all BnaREMs contained a conserved Remorin_C domain, with a variable N-terminal region. Promoter sequence analysis showed that BnaREM gene promoters contained various hormones and stress-related cis-acting elements. Transcriptome data from BrassicaEDB database exhibited that all BnaREMs were ubiquitously expressed in buds, stamens, inflorescences, young leaves, mature leaves, roots, stems, seeds, silique pericarps, embryos and seed coats. The qRT-PCR analysis indicated that most of them were responsive to ABA, salt and osmotic treatments. Further mutant complementary experiments revealed that the expression of BnaREM1.3-4C-1 in the Arabidopsis rem1.3 mutant restored the retarded growth phenotype and the ability to resistance to salt and osmotic stresses. Our findings provide fundamental information on the structure and evolutionary relationship of the BnaREM family genes in rapeseed, and reveal the potential function of BnaREM1.3-4C-1 in stress and hormone response.


Asunto(s)
Brassica napus , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Brassica napus/genética , Brassica napus/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Regiones Promotoras Genéticas/genética , Genoma de Planta/genética , Presión Osmótica , Plantas Modificadas Genéticamente/genética
13.
J Am Soc Nephrol ; 34(1): 73-87, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719147

RESUMEN

BACKGROUND: Hypoxia and hypoxia-inducible factors (HIFs) play essential and multiple roles in renal ischemia-reperfusion injury (IRI). Dendritic cells (DCs) comprise a major subpopulation of the immunocytes in the kidney and are key initiators and effectors of the innate immune responses after IRI. The role of HIF-2α in DCs remains unclear in the context of renal IRI. METHODS: To investigate the importance of HIF-2α in DCs upon renal IRI, we examined the effects of DC-specific HIF-2α ablation in a murine model. Bone marrow-derived DCs (BMDCs) from DC-specific HIF-2α-ablated mice and wild-type mice were used for functional studies and transcriptional profiling. RESULTS: DC-specific ablation of HIF-2α led to hyperactivation of natural killer T (NKT) cells, ultimately exacerbating murine renal IRI. HIF-2α deficiency in DCs triggered IFN-γ and IL-4 production in NKT cells, along with upregulation of type I IFN and chemokine responses that were critical for NKT cell activation. Mechanistically, loss of HIF-2α in DCs promoted their expression of CD36, a scavenger receptor for lipid uptake, increasing cellular lipid accumulation. Furthermore, HIF-2α bound directly to a reverse hypoxia-responsive element (rHRE) in the CD36 promoter. Importantly, CD36 blockade by sulfo-N-succinimidyl oleate (SSO) reduced NKT cell activation and abolished the exacerbation of renal IRI elicited by HIF-2α knockout. CONCLUSIONS: Our study reveals a previously unrecognized role of the HIF-2α/CD36 regulatory axis in rewiring DC lipid metabolism under IRI-associated hypoxia. These findings suggest a potential therapeutic target to resolve long-standing obstacles in treatment of this severe complication.


Asunto(s)
Riñón , Daño por Reperfusión , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/metabolismo , Lípidos/farmacología , Daño por Reperfusión/metabolismo
14.
Angew Chem Int Ed Engl ; 63(17): e202319529, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38443734

RESUMEN

Limited triple-phase boundaries arising from the accumulation of solid discharge product(s) in solid-state cathodes (SSCs) pose a challenge to high-property solid-state lithium-oxygen batteries (SSLOBs). Light-assisted SSLOBs have been gradually explored as an ingenious system; however, the fundamental mechanisms of the SSCs interface behavior remain unclear. Here, we discovered that light assistance can enhance the fast inner-sphere charge transfer in SSCs and regulate the discharge products with spherical particles generated via the surface growth model. Moreover, the high photoelectron excitation and transportation capabilities of SSCs can retard cathodic catalytic decay by avoiding structural degradation of the cathode with a reduced charge voltage. The light-induced SSLOBs exhibited excellent stability (170 cycles) with a low discharge-charge polarization overpotential (0.27 V). Furthermore, transparent SSLOBs with exceptional flexibility, mechanical stability, and multiform shapes were fabricated for theory-to-practical applications in sunlight-induced batteries. Our study opens new opportunities for the introduction of solar energy into energy storage systems.

15.
BMC Genomics ; 24(1): 217, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098483

RESUMEN

BACKGROUND: Small cell lung cancer (SCLC) is a highly lethal malignant tumor. It accounts for approximately 15% of newly diagnosed lung cancers. Long non-coding RNAs (lncRNAs) can regulate gene expression and contribute to tumorigenesis through interactions with microRNAs (miRNAs). However, there are only a few studies reporting the expression profiles of lncRNAs, miRNAs, and mRNAs in SCLC. Also, the role of differentially expressed lncRNAs, miRNAs, and mRNAs in relation to competitive endogenous RNAs (ceRNA) network in SCLC remain unclear. RESULTS: In the present study, we first performed next generation sequencing (NGS) with six pairs of SCLC tumors and adjacent non-cancerous tissues obtained from SCLC patients. Overall, 29 lncRNAs, 48 miRNAs, and 510 mRNAs were found to be differentially expressed in SCLC samples (|log2[fold change] |> 1; P < 0.05). Bioinformatics analysis was performed to predict and construct a lncRNA-miRNA-mRNA ceRNA network, which included 9 lncRNAs, 11 miRNAs, and 392 mRNAs. Four up-regulated lncRNAs and related mRNAs in the ceRNA regulatory pathways were selected and validated by quantitative PCR. In addition, we examined the role of the most upregulated lncRNA, TCONS_00020615, in SCLC cells. We found that TCONS_00020615 may regulate SCLC tumorigenesis through the TCONS_00020615-hsa-miR-26b-5p-TPD52 pathway. CONCLUSIONS: Our study provided the comprehensive analysis of the expression profiles of lncRNAs, miRNAs, and mRNAs of SCLC tumors and adjacent non-cancerous tissues. We constructed the ceRNA networks which may provide new evidence for the underlying regulatory mechanism of SCLC. We also found that the lncRNA TCONS_00020615 may regulate the carcinogenesis of SCLC.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Carcinoma Pulmonar de Células Pequeñas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética , Redes Reguladoras de Genes , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias Pulmonares/genética , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética
16.
Mol Pain ; 19: 17448069231218352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37982151

RESUMEN

Neuropathic pain (NP) is often accompanied by psychiatric comorbidities and currently lacks effective treatment. Prior research has shown that HDAC6 plays a crucial role in pain sensitization, but the specific mechanisms remain unclear. HDAC6 inhibitors have been found to alleviate mechanical allodynia caused by inflammation and peripheral nerve damage. In this study, we investigated the cellular mechanisms of HDAC6 in the development and maintenance of neuropathic pain. Our findings indicate that HDAC6 expression in the spinal cord (SC) is upregulated in a time-dependent manner following chronic constriction injury (CCI). HDAC6 is primarily expressed in neurons and microglia in the spinal cord. CCI-induced HDAC6 production was abolished by intrathecal injection of a microglia inhibitor. ACY-1215, a specific HDAC6 inhibitor, significantly reduced CCI-induced mechanical allodynia, but not thermal hyperalgesia. ACY-1215 also inhibited neuron activation and suppressed CCI-induced pyroptosis and neuroinflammatory responses. In summary, our results suggest that HDAC6 contributes to the development and maintenance of NP through neuronal activation and neuroinflammation. HDAC6 may be a promising target for treating NP.


Asunto(s)
Hiperalgesia , Neuralgia , Ratas , Animales , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Constricción , Nocicepción , Neuralgia/metabolismo , Médula Espinal/metabolismo , Inflamación/metabolismo , Neuronas/metabolismo , Histona Desacetilasa 6/metabolismo
17.
Cancer Immunol Immunother ; 72(7): 2151-2168, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36828964

RESUMEN

The metabolic stress present in the tumor microenvironment of many cancers can attenuate T cell antitumor activity, which is intrinsically controlled by the mitochondrial plasticity, dynamics, metabolism, and biogenesis within these T cells. Previous studies have reported that the complement C1q binding protein (C1QBP), a mitochondrial protein, is responsible for maintenance of mitochondrial fitness in tumor cells; however, its role in T cell mitochondrial function, particularly in the context of an antitumor response, remains unclear. Here, we show that C1QBP is indispensable for T cell antitumor immunity by maintaining mitochondrial integrity and homeostasis. This effect holds even when only one allele of C1qbp is functional. Further analysis of C1QBP in the context of chimeric antigen receptor (CAR) T cell therapy against the murine B16 melanoma model confirmed the cell-intrinsic role of C1QBP in regulating the antitumor functions of CAR T cells. Mechanistically, we found that C1qbp knocking down impacted mitochondrial biogenesis via the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha signaling pathway, as well as mitochondrial morphology via the phosphorylation of mitochondrial dynamics protein dynamin-related protein 1. In summary, our study provides a novel mitochondrial target to potentiate the plasticity and metabolic fitness of mitochondria within T cells, thus improving the immunotherapeutic potential of these T cells against tumors.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Linfocitos T , Microambiente Tumoral , Animales , Ratones , Humanos , Xenoinjertos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos T/metabolismo , Técnicas de Silenciamiento del Gen , Mitocondrias/metabolismo , Transducción de Señal , Inmunoterapia Adoptiva
18.
Cancer Immunol Immunother ; 72(3): 617-631, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36002754

RESUMEN

Owing to the paucity of specimens, progress in identifying prognostic and therapeutic biomarkers for small cell lung cancer (SCLC) has been stagnant for decades. Considering that the costimulatory molecules are essential elements in modulating immune responses and determining therapeutic response, we systematically revealed the expression landscape and identified a costimulatory molecule-based signature (CMS) to predict prognosis and chemotherapy response for SCLCs for the first time. We found T cell activation was restrained in SCLCs, and costimulatory molecules exhibited widespread abnormal genetic alterations and expression. Using a LASSO Cox regression model, the CMS was built with a training cohort of 77 cases, which successfully divided patients into high- or low-risk groups with significantly different prognosis and chemotherapy benefit (both P < 0.001). The CMS was well validated in an independent cohort containing 131 samples with qPCR data. ROC and C-index analysis confirmed the superior predictive performance of the CMS in comparison with other clinicopathological parameters from different cohorts. Importantly, the CMS was confirmed as a significantly independent prognosticator for clinical outcomes and chemotherapy response in SCLCs through multivariate Cox analysis. Further analysis revealed that low-risk patients were characteristic by an activated immune phenotype with distinct expression of immune checkpoints. In summary, we firstly uncovered the expression heterogeneity of costimulatory molecules in SCLC and successfully constructed a novel predictive CMS. The identified signature contributed to more accurate patient stratification and provided robust prognostic value in estimating survival and the clinical response to chemotherapy, allowing optimization of treatment and prognosis management for patients with SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Pronóstico , Biomarcadores , Fenotipo , Factores de Transcripción
19.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34020537

RESUMEN

Deciphering microRNA (miRNA) targets is important for understanding the function of miRNAs as well as miRNA-based diagnostics and therapeutics. Given the highly cell-specific nature of miRNA regulation, recent computational approaches typically exploit expression data to identify the most physiologically relevant target messenger RNAs (mRNAs). Although effective, those methods usually require a large sample size to infer miRNA-mRNA interactions, thus limiting their applications in personalized medicine. In this study, we developed a novel miRNA target prediction algorithm called miRACLe (miRNA Analysis by a Contact modeL). It integrates sequence characteristics and RNA expression profiles into a random contact model, and determines the target preferences by relative probability of effective contacts in an individual-specific manner. Evaluation by a variety of measures shows that fitting TargetScan, a frequently used prediction tool, into the framework of miRACLe can improve its predictive power with a significant margin and consistently outperform other state-of-the-art methods in prediction accuracy, regulatory potential and biological relevance. Notably, the superiority of miRACLe is robust to various biological contexts, types of expression data and validation datasets, and the computation process is fast and efficient. Additionally, we show that the model can be readily applied to other sequence-based algorithms to improve their predictive power, such as DIANA-microT-CDS, miRanda-mirSVR and MirTarget4. MiRACLe is publicly available at https://github.com/PANWANG2014/miRACLe.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica , MicroARNs , Modelos Genéticos , Transcriptoma , Células HeLa , Humanos , MicroARNs/biosíntesis , MicroARNs/genética
20.
Cancer Cell Int ; 23(1): 156, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542290

RESUMEN

BACKGROUND: N6-methyladenosine (m6A), 5-methylcytosine (m5C) and N1-methyladenosine (m1A) are the main RNA methylation modifications involved in the progression of cancer. However, it is still unclear whether RNA methylation-related long noncoding RNAs (lncRNAs) affect the prognosis of glioma. METHODS: We summarized 32 m6A/m5C/m1A-related genes and downloaded RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify differentially expressed (DE-) RNA methylation-related lncRNAs in order to construct a prognostic signature of glioma and in order to determine their correlation with immune function, immune therapy and drug sensitivity. In vitro and in vivo assays were performed to elucidate the effects of RNA methylation-related lncRNAs on glioma. RESULTS: A total of ten RNA methylation-related lncRNAs were used to construct a survival and prognosis signature, which had good independent prediction ability for patients. It was found that the high-risk group had worse overall survival (OS) than the low-risk group in all cohorts. In addition, the risk group informed the immune function, immunotherapy response and drug sensitivity of patients with glioma in different subgroups. Knockdown of RP11-98I9.4 and RP11-752G15.8 induced a more invasive phenotype, accelerated cell growth and apparent resistance to temozolomide (TMZ) both in vitro and in vivo. We observed significantly elevated global RNA m5C and m6A levels in glioma cells. CONCLUSION: Our study determined the prognostic implication of RNA methylation-related lncRNAs in gliomas, established an RNA methylation-related lncRNA prognostic model, and elucidated that RP11-98I9.4 and RP11-752G15.8 could suppress glioma proliferation, migration and TMZ resistance. In the future, these RNA methylation-related lncRNAs may become a new choice for immunotherapy of glioma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA