Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 393, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118129

RESUMEN

BACKGROUND: Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS: An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS: Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS: This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.


Asunto(s)
Daño por Reperfusión , Intercambiador 1 de Sodio-Hidrógeno , Animales , Humanos , Masculino , Ratones , Ácidos/metabolismo , Línea Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Concentración de Iones de Hidrógeno , Precondicionamiento Isquémico , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/genética
2.
Public Health Nurs ; 41(3): 476-486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468509

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer mortality. HCC has high morbidity, high mortality, and low survival rates. Screening is one of the most significant methods of lowering incidence and death while also increasing survival. OBJECTIVES: The aim of this study was to identify the facilitators and barriers to participation in HCC screening among high-risk populations. METHODS: A comprehensive and systematic search was undertaken in PubMed, Web of Science, MEDLINE, EMBACE, EBSCOhost and the Cochrane Library. A combination of synonyms of the keywords including HCC, screening, factors and adherence were used for searching. Studies addressing the facilitators and barriers to HCC screening compliance in at-risk individuals were included. Data were synthesized using Review Manager version 5.4. A random/fixed effects model meta-analysis was performed to estimate the pooled data and expressed with odds ratio (OR) and 95% confidence interval (CI). RESULTS: A total of seven articles met the inclusion criteria. Qualitative (n = 1) and quantitative (n = 6) studies using various types of surgery were conducted. The most commonly mentioned barriers were insufficient knowledge and awareness of HCC screening, unawareness of the necessity for early detection of HCC and lack of physician recommendation. A meta-analysis of seven studies showed that individuals with a family history of HCC increased screening uptake by nearly three times (OR: 2.69, 95% CI: 1.93, 3.75). Other most frequently reported facilitators include age, education level, and perceived risk et al. CONCLUSIONS: Many barriers to HCC screening were found. Meanwhile, this review points out that improving the awareness of high-risk populations toward HCC screening is expected to enhance compliance, thereby promoting early diagnosis of liver cancer, reducing mortality, and alleviating the burden of HCC.


Asunto(s)
Carcinoma Hepatocelular , Detección Precoz del Cáncer , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Cooperación del Paciente/estadística & datos numéricos , Tamizaje Masivo/métodos , Factores de Riesgo
3.
Angew Chem Int Ed Engl ; : e202412146, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001682

RESUMEN

Conventional approaches to creating high-resolution electric circuits face challenges such as the requirement for skilled personnel and expensive equipment. In response, we propose an innovative strategy that leverages a photochemically modified porous polymer skeleton for in-situ circuit fabrication. By developing maskless surface energy manipulation that guides PEDOT:PSS-based conductive ink deposition, electric circuits with high precision, density, stability and adaptability are effortlessly engineered within or atop the porous skeleton, enabling transitions between 2D and 3D circuit configurations. This process simplifies prototyping while significantly reducing costs and maintaining efficiency, promising advancements across various technological sectors.

4.
Public Health Nurs ; 40(5): 782-789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37177843

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) is associated with a high incidence and mortality rate. Fecal occult blood test (FOBT) is effective in the prevention of CRC. OBJECTIVE: This study aimed to assess knowledge and beliefs regarding FOBT-based screening. METHODS: This study used PubMed, Cochrane Library, MEDLINE Complete, and Web of Science to search for articles. Original full-text studies in English language focusing on knowledge and beliefs of FOBT screening were included. RESULTS: A total of 32 articles were included. This study indicated that the population in most studies had inadequate knowledge and lacked beliefs toward FOBT-based screening. Most of the extracted studies showed that less than half of the participants had heard of FOBT-based screening. Six studies showed that less than 50% of participants had knowledge of FOBT age. Three studies found that less than 40% of participants were aware of the screening interval. Some participants perceived the benefits of FOBT-based screening, while others perceived many barriers to the test. CONCLUSION: Participants' knowledge and belief in FOBT-based screening were insufficient. This review highlights the importance of educational programs to increase knowledge and beliefs regarding FOBT-based screening. It is important to include FOBT-based screening in the health care system to promote the secondary prevention of CRC.


Asunto(s)
Neoplasias Colorrectales , Sangre Oculta , Humanos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/epidemiología , Detección Precoz del Cáncer , Tamizaje Masivo
5.
J Med Virol ; 92(11): 2453-2457, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32525587

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the novel virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed many lives worldwide. To combat the pandemic, multiple types of vaccines are under development with unprecedented rapidity. Theoretically, future vaccination against COVID-19 may fall into long-term costly guerrilla warfare between SARS-CoV-2 and humans. Elimination of SARS-CoV-2 through vaccination to avoid the potential long-term costly guerrilla warfare, if possible, is highly desired and worth intensive consideration. Human influenza pandemics emerging in 1957, 1968, and 2009 established strong global herd immunity and led to the elimination of three human influenza viruses, which circulated worldwide for years before the pandemics. Moreover, both clade 7.2 of subtype H5 highly pathogenic avian influenza virus and subtype H7N9 avian influenza virus circulated in poultry in China for years, and they have been virtually eliminated through mass vaccination in recent years. These facts suggest that the rapid establishment of global herd immunity through mass vaccination using an appropriate vaccine could eliminate SARS-CoV-2. The coming 2 years are a golden time for elimination through vaccination, which requires tremendous national and international collaboration. This review also prioritizes the efficacy of vaccines for COVID-19 and elucidates the importance of the development of more live vaccines for COVID-19.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Vacunación Masiva/estadística & datos numéricos , Pandemias/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Inmunidad Colectiva
6.
Allergy ; 75(5): 1205-1216, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31846514

RESUMEN

BACKGROUND: Skewed T helper (Th)2 response plays a crucial role in the pathogenesis of allergic diseases. The therapeutic efficacy for allergic diseases is unsatisfactory currently. This study aims to regulate the skewed Th2 response with CARsomes. METHODS: The CARsome consisted of an epitope of Dermatophagoides farina-1 (Derf1), a segment of the anti-DEC205 antibody, the scFv, and an open reading frame of perforin. This fusion protein binds to DEC205 molecule on the surface of exosomes derived from dendritic cells (DC). The effects of CARsome on inducing antigen (Ag)-specific Th2 cell apoptosis were assessed both in vivo and in vitro. RESULTS: Exposure to CARsomes in the culture induced Ag-specific Th2 cell apoptosis. Injection of CARsomes through the vein puncture also induced Ag-specific Th2 cell apoptosis in the lungs of sensitized mice. CARsomes could induce Ag-specific regulatory T cells. Administration of CARsomes efficiently inhibited experimental allergic airway inflammation. CONCLUSIONS: The CARsomes can inhibit allergic airway inflammation by inducing Ag-specific Th2 cell apoptosis and induce Ag-specific regulatory T cells. The data suggest that CARsomes have the translational potential to be used to treat allergic airway inflammation.


Asunto(s)
Asma , Células Th2 , Animales , Antígenos , Apoptosis , Células Dendríticas , Inflamación , Ratones , Ratones Endogámicos BALB C , Ovalbúmina
7.
J Nanobiotechnology ; 18(1): 60, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299505

RESUMEN

BACKGROUND: Tumor recurrence in patients after surgery severely reduces the survival rate of surgical patients. Targeting and killing recurrent tumor cells and tissues is extremely important for the cancer treatment. RESULTS: Herein, we designed a nano-biomimetic photothermal-controlled drug-loading platform HepM-TSL with good targeting ability and immunocompatibility for the treatment of recurrent hepatocellular carcinoma. HepM-TSL can accurately target the recurrent tumor area with the aid of the cloaked homotypic cell membrane and release the chemotherapy drugs in a controlled manner. In vivo results have confirmed that HepM-TSL loaded with drugs and photosensitizer achieves the synergistic treatment of recurrent hepatocellular carcinoma with good therapeutic effect and slight side effects. CONCLUSION: Accordingly, HepM-TSL provides a sound photothermal-chemotherapy synergistic strategy for the treatment of other recurrent cancers besides of recurrent hepatocellular carcinoma.


Asunto(s)
Materiales Biomiméticos/química , Membrana Celular/química , Liposomas/química , Nanopartículas/química , Fototerapia , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Doxorrubicina/farmacología , Hemólisis/efectos de los fármacos , Células Hep G2 , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Ratones , Ratones Desnudos , Nanopartículas/toxicidad , Imagen Óptica , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Trasplante Heterólogo
9.
J Biol Chem ; 290(20): 12858-67, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25839231

RESUMEN

Restoration of the antigen (Ag)-specific immune tolerance in an allergic environment is refractory. B cells are involved in immune regulation. Whether B cells facilitate the generation of Ag-specific immune tolerance in an allergic environment requires further investigation. This paper aims to elucidate the mechanism by which B cells restore the Ag-specific immune tolerance in an allergic environment. In this study, a B cell-deficient mouse model was created by injecting an anti-CD20 antibody. The frequency of tolerogenic dendritic cell (TolDC) was assessed by flow cytometry. The levels of cytokines were determined by enzyme-linked immunosorbent assay. The expression of thrombospondin-1 (TSP1) was assessed by quantitative real-time RT-PCR, Western blotting, and methylation-specific PCR. The results showed that B cells were required in the generation of the TGF-ß-producing TolDCs in mice. B cell-derived TSP1 converted the latent TGF-ß to the active TGF-ß in DCs, which generated TGF-ß-producing TolDCs. Exposure to IL-13 inhibited the expression of TSP1 in B cells by enhancing the TSP1 gene DNA methylation. Treating food allergy mice with Ag-specific immunotherapy and IL-13 antagonists restored the generation of TolDCs and enhanced the effect of specific immunotherapy. In conclusion, B cells play a critical role in the restoration of specific immune tolerance in an allergic environment. Blocking IL-13 in an allergic environment facilitated the generation of TolDCs and enhanced the therapeutic effect of immunotherapy.


Asunto(s)
Linfocitos B/inmunología , Metilación de ADN/efectos de los fármacos , Desensibilización Inmunológica , Hipersensibilidad a los Alimentos/tratamiento farmacológico , Hipersensibilidad a los Alimentos/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Trombospondina 1/inmunología , Animales , Linfocitos B/patología , Metilación de ADN/inmunología , Células Dendríticas/inmunología , Células Dendríticas/patología , Hipersensibilidad a los Alimentos/genética , Hipersensibilidad a los Alimentos/patología , Tolerancia Inmunológica/genética , Interleucina-13/genética , Interleucina-13/inmunología , Masculino , Ratones , Trombospondina 1/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/inmunología
10.
Environ Sci Technol ; 50(23): 12938-12948, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27934277

RESUMEN

Graphitic carbon nitride (g-C3N4) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped, supramolecule-based g-C3N4 with improved surface area and charge separation. Density functional theory (DFT) simulations indicated that carbon-doped g-C3N4 showed a thermodynamically stable structure, promoted charge separation, and had suitable energy levels of conduction and valence bands for photocatalytic oxidation compared to phosphorus-doped g-C3N4. The optimized carbon-doped, supramolecule-based g-C3N4 showed a reaction rate enhancement of 2.3-10.5-fold for the degradation of phenol and persistent organic micropollutants compared to that of conventional, melamine-based g-C3N4 in a model buffer system under the irradiation of simulated visible sunlight. Carbon-doping but not phosphorus-doping improved reactivity for contaminant degradation in agreement with DFT simulation results. Selective contaminant degradation was observed on g-C3N4, likely due to differences in reactive oxygen species production and/or contaminant-photocatalyst interfacial interactions on different g-C3N4 samples. Moreover, g-C3N4 is a robust photocatalyst for contaminant degradation in raw natural water and (partially) treated water and wastewater. In summary, DFT simulations are a viable tool to predict photocatalyst properties and oxidation performance for contaminant removal, and they guide the rational design, fabrication, and implementation of visible-light-responsive g-C3N4 for efficient, robust, and sustainable water treatment.


Asunto(s)
Grafito/química , Purificación del Agua , Catálisis , Luz , Fenoles
11.
Zhongguo Zhen Jiu ; 44(9): 1086-91, 2024 Sep 12.
Artículo en Zh | MEDLINE | ID: mdl-39318302

RESUMEN

Throughout history, physicians have emphasized "using pain as acupoints" as an important reference and principle for acupuncture point selection. However, the formation mechanism and significance of clinical application of the feeling of emptiness during acupoint palpation have been less explored. This paper summarizes this phenomenon as "using emptiness as acupoints," and analyzes and discusses its meaning, formation mechanism, and clinical application. It proposes a systematic and comprehensive theoretical system for Jingjin diagnosis and treatment, combining "using emptiness as acupoints " with "using pain as acupoints", "using comfort as acupoints" and "using knots as acupoints", as well as "knotted Jingjin lesion points" and "scattered Jingjin lesion points," and integrating the patient's subjective sensations with the physician's palpation feelings. This approach aimes to provide new insights for the clinical treatment of Jingjin diseases.


Asunto(s)
Puntos de Acupuntura , Terapia por Acupuntura , Humanos , Medicina en la Literatura , Meridianos
12.
Nat Commun ; 15(1): 6759, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117641

RESUMEN

Efficiently exploring organic molecules through multi-step processes demands a transition from conventional laboratory synthesis to automated systems. Existing platforms for machine-assistant synthetic workflows compatible with multiple liquid-phases require substantial engineering investments for setup, thereby hindering quick customization and throughput increasement. Here we present a droplet-based chip that facilitates the self-organization of various liquid phases into stacked layers for conducting chemical transformations. The chip's precision polymer printing capability, enabled by digital micromirror device (DMD)-maskless photolithography and dual post-chemical modifications, allows it to create customized, sub-10 µm featured patterns to confine diverse liquids, regardless of density, within each droplet. The robustness and open design of surface-templated liquid layers actualize machine-assistant droplet manipulation, synchronous reaction triggering, local oscillation, and real-time monitoring of individual layers into a reality. We propose that, with further integration of machine operation line and self-learning, this droplet-based platform holds the potential to become a valuable addition to the toolkit of chemistry process, operating autonomously and with high-throughput.

13.
Adv Mater ; 36(11): e2306814, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37793694

RESUMEN

Simultaneously adding multiple drugs and other chemical reagents to individual droplets at specific time points presents a significant challenge, particularly when dealing with tiny droplets in high-throughput screening applications. In this study, a micropatterned polymer chip is developed as a miniaturized platform for light-induced programmable drug addition in cell-based screening. This chip incorporates a porous superhydrophobic polymer film with atom transfer radical polymerization reactivity, facilitating the efficient grafting of azobenzene methacrylate, a photoconformationally changeable group, onto the hydrophilic regions of polymer matrix at targeted locations and with precise densities. By employing light irradiation, the cyclodextrin-azobenzene host-guest complexes formed on the polymer chip can switch from an "associated" to a "dissociated" state, granting precise photochemical control over the supramolecular coding system and its surface patterning ability. Significantly, the exceptional spatial and temporal control offered by these chemical transitions empowers to utilize digital light processing systems for simultaneous regulation and release of cyclodextrin-bearing drugs across numerous droplets containing suspended or adhered cells. This approach minimizes mechanical disruption while achieving precise control over the timing of addition, dosage, and integration varieties of released drugs in high-throughput screening, all programmable to meet specific requirements.


Asunto(s)
Ciclodextrinas , Ensayos Analíticos de Alto Rendimiento , Polímeros/química , Compuestos Azo/química
14.
Environ Sci Pollut Res Int ; 31(3): 4400-4411, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38102430

RESUMEN

Biological soil crusts (BSCs) are common in arid and semi-arid ecosystems and enhance soil stability and fertility. Highway slopes severely deplete the soil ecological structure and soil nutrients, hindering plant survival. The construction of highway slope BSCs under human intervention is critical to ensure the long-term stable operation of the slope ecosystem. This study investigated the variation rules and interaction mechanisms between soil nutrients and microbial communities in the subsoil BSCs on highway slopes. Bacterial 16S rRNA high-throughput sequencing was employed to investigate the dynamic compositional changes in the microbial community and perform critical metabolic predictive analyses of functional bacteria. This study revealed that the total soil nitrogen increased significantly from 0.557 to 0.864 g/kg after artificial inoculation with desert Phormidium tenue and Scytonema javanicum. Actinobacteria (44-48%) and Proteobacteria (28-31%) were the dominant phyla in all samples. The abundance of Cyanobacteria, Cytophagaceae, and Chitinophagaceae increased significantly after inoculation. PICRUST analysis showed that the main metabolic pathways of soil microorganisms on highway slopes included cofactor and vitamin, nucleotide, and amino acid metabolisms. These findings suggest that the artificial inoculation with Phormidium tenue and Scytonema javanicum could alter soil microbial distribution to promote soil development on highway slopes toward nutrient accumulation.


Asunto(s)
Cianobacterias , Ecosistema , Humanos , Suelo/química , Arena , ARN Ribosómico 16S/metabolismo , Nitrógeno/metabolismo , Microbiología del Suelo , Phormidium
15.
J Colloid Interface Sci ; 675: 117-129, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38968632

RESUMEN

Functional modification of inorganic particles is an effective approach to tackle the issue of Li+ transport and the lithium dendrites formation in lithium-ion batteries (LIBs). In this study, PMIA/BiOCl composite separators are prepared by nonsolvent induce phase separation (NIPS) method using P-type semiconductor bismuth oxychloride (BiOCl) functionalized poly (m-phenylene isophthalamide) (PMIA) separators. Compared with the polypropylene (PP) separator, PMIA has superior thermal stability and the addition of BiOCl further enhances its flame retardancy. And the prepared PMIA/BiOCl separator presents improved porosity (66.47 %), enhanced electrolyte uptake rate (863 %) and higher ionic conductivity (0.49 mS∙cm-1). Besides, the incorporation of BiOCl can anchor PF6- to the three-dimensional network skeleton of the PMIA/BiOCl separators, enabling the desolvation of Li+ and selectively facilitating Li+ transport (the Li+ transfer number is 0.79). Moreover, the uniform porous structure of the PMIA/BiOCl separators and the efficient transport of Li+ uniformly deposite Li+, and minimize the growth of lithium dendrites. Batteries assembled with PMIA/BiOCl separators have a discharge specific capacity of 124.4 mAh∙g-1 and capacity retention of 96.7 % after 200 cycles at 0.2C. Therefore, this work provides an effective route in the design strategy of separators for LIBs.

16.
Chemosphere ; 363: 142968, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39074665

RESUMEN

The impact of the long-term trace hydrazine (N2H4) exogenous supplementation on activity of the anaerobic ammonium oxidation (anammox) biofilm was investigated in a moving bed biofilm reactor (MBBR) for mainstream wastewater treatment. The results of this study demonstrated that the addition of 2-5 mg/L N2H4 enhanced anammox biofilm activity, as evidenced by the augmented nitrogen removal rate (NRR), which increased from 113.4 g/(m3·d) to 126.7 g/(m3·d) with the introduction of 2 mg/L N2H4. However, a higher concentration of N2H4 (10 mg/L) suppressed anammox activity, leading to a reduced NRR of 91.5 g/(m3·d). Bioindicators revealed that the long-term addition of 2 mg/L N2H4 fostered the accumulation of anammox bacteria (AnAOB) biomass, elevating the volatile suspended solids (VSS) content by 12%. Moreover, the structural composition of extracellular polymeric substances (EPS) within the biofilm was altered, resulting in enhanced biofilm strength within the reactor. The protective mechanism of the biofilm was activated, and EPS secretion was stimulated by the continuous N2H4 supplementation. The introduction of an excess dosage of N2H4 led to alterations in the microbial communities, ultimately resulting in a decline in the performance of the reactor. These findings collectively illustrate that N2H4, as an intermediate product, can effectively enhance anammox activity within the MBBR for mainstream wastewater treatment. This study contributes to the understanding of the optimization strategies for anammox processes in wastewater treatment systems.


Asunto(s)
Biopelículas , Reactores Biológicos , Hidrazinas , Oxidación-Reducción , Eliminación de Residuos Líquidos , Aguas Residuales , Biopelículas/efectos de los fármacos , Reactores Biológicos/microbiología , Hidrazinas/farmacología , Hidrazinas/química , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Anaerobiosis , Compuestos de Amonio/química , Nitrógeno , Microbiota/efectos de los fármacos , Biomasa
17.
Patient Prefer Adherence ; 18: 709-720, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524198

RESUMEN

Background: Colorectal, and gastric cancers have the second, and fourth mortality rates worldwide, respectively. Endoscopic screening is a crucial diagnostic tool for colorectal, and gastric cancers. Effective interventions can improve adherence to endoscopic screening in high-risk populations, which is important for cancer prevention and mortality reduction. This study aimed to identify interventions that could improve adherence to endoscopic screening for cancer in high-risk populations. Methods: Combination keywords including colorectal cancer, gastric cancer, screening adherence, and interventions were used to search for articles in PubMed, Web of Science, Cochrane Library, and MEDLINE Complete. The review methodology was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-SCR). Results: A total of 12 articles were included in this review: 9 randomized controlled trials(RCT) and 3 quasi-experimental studies(QEDs). Among the extracted studies, 11 were about colorectal cancer, and 1 was about gastric cancer. Most studies used lecture-based or Information Technology-based health education interventions. Narrative interventions have proven to be novel and effective approaches for promoting adherence to endoscopic screening. Health education interventions included cancer epidemiology, cancer risk factors, warning symptoms, and screening methods. Conclusion: All interventions involved were effective in increasing individual knowledge of cancer-related endoscopic screening, willingness to undergo screening, and screening behaviors. These findings provide a reference for designing endoscopy-related cancer screening interventions.

18.
Chemosphere ; 339: 139774, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567271

RESUMEN

The rapid development of aquaculture industry has provided a large amount of high-quality animal protein, while the food safety caused by microplastics and nanoplastics (MP/NPs) has become a major concern. In addition, recent evidence has shown the potential toxic effect of PE-MP/NPs, highlighting the need for further research into their environmental and health impacts. Chronic exposure of polyethylene microplastics (PE-MPs) and nanoplastics (PE-NPs) on adult zebrafish were conducted in the present study for 21 d. Organ-dependent oxidative damage induced by MP/NPs was observed. Insignificant differences in neurotoxicity and dysbiosis of gut microbiota were found between MPs and NPs. Changes in glutathione S-transferase (GST), glutathione (GSH), catalase (CAT), lipid peroxidation (LPO), and superoxide dismutase (SOD) showed that MP/NPs induced oxidative damage in gill and intestinal cells of zebrafish. The inhibited AChE activity suggested the potential neurotoxicity of microplastics and nanoplastics (MP/NPs). In addition, chronic exposure increased the alpha-diversity of intestinal microbiota. At the phylum level, the average relative abundance of Proteobacteria increased from 29.73% (control group) to 66.10% (microplastics), 54.84% (nanoplastics) and 60.03% (combined exposure), respectively. Tenericutes decreased from 55.43% (control group) to 20.02% (microplastics), 22.44% (nanoplastics) and 31.77% (combined exposure), respectively. Overall, this study provides new insights and objective evidence for the toxicity assessment of PE-MPs.


Asunto(s)
Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Microplásticos/metabolismo , Polietileno/metabolismo , Pez Cebra/metabolismo , Plásticos/toxicidad , Contaminantes Químicos del Agua/metabolismo , Estrés Oxidativo , Glutatión/metabolismo
19.
Heliyon ; 9(7): e17217, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449186

RESUMEN

Accurate diabetic retinopathy (DR) grading is crucial for making the proper treatment plan to reduce the damage caused by vision loss. This task is challenging due to the fact that the DR related lesions are often small and subtle in visual differences and intra-class variations. Moreover, relationships between the lesions and the DR levels are complicated. Although many deep learning (DL) DR grading systems have been developed with some success, there are still rooms for grading accuracy improvement. A common issue is that not much medical knowledge was used in these DL DR grading systems. As a result, the grading results are not properly interpreted by ophthalmologists, thus hinder the potential for practical applications. This paper proposes a novel fine-grained attention & knowledge-based collaborative network (FA+KC-Net) to address this concern. The fine-grained attention network dynamically divides the extracted feature maps into smaller patches and effectively captures small image features that are meaningful in the sense of its training from large amount of retinopathy fundus images. The knowledge-based collaborative network extracts a-priori medical knowledge features, i.e., lesions such as the microaneurysms (MAs), soft exudates (SEs), hard exudates (EXs), and hemorrhages (HEs). Finally, decision rules are developed to fuse the DR grading results from the fine-grained network and the knowledge-based collaborative network to make the final grading. Extensive experiments are carried out on four widely-used datasets, the DDR, Messidor, APTOS, and EyePACS to evaluate the efficacy of our method and compare with other state-of-the-art (SOTA) DL models. Simulation results show that proposed FA+KC-Net is accurate and stable, achieves the best performances on the DDR, Messidor, and APTOS datasets.

20.
Environ Sci Pollut Res Int ; 30(52): 112267-112276, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37831270

RESUMEN

Micro-flocculation and ozone were applied as pretreatments of ultrafiltration to treat sodium alginate (SA) and humic acid (HA) simulated water, respectively, to investigate the effects of different pretreatments of ultrafiltration (UF) on filtration flux and removal of organic matters. Regarding the SA simulated water, micro-flocculation helped to improve the dissolved organic carbon (DOC) removal efficiency highly, maximum DOC removal efficiency reached to 79.77%, due to the rejection of gel layer introduced by the alginate-aluminum complexes, but the gel layer had a negative impact on membrane flux. Compared with micro-flocculation, ozone as pretreatments had better ability to enhance the membrane specific flux, the maximum final specific flux remained as 0.786, larger than that of MF-UF process (0.574). Ozonation oxidizing SA into small organic molecules significantly reduced membrane fouling and filtration resistance, but also produced some dissolved organic matters hindering DOC removal of effluent. As for HA simulated water, both the micro-flocculation and ozone could effectively improve the specific flux, the final specific flux of MF-UF and ozone-UF were about 0.930, but MF-UF exhibited better DOC removal than ozone-UF, which avoided the introduction of additional dissolved organic matters.


Asunto(s)
Ozono , Purificación del Agua , Ultrafiltración , Floculación , Membranas Artificiales , Materia Orgánica Disuelta , Alginatos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA