Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
World J Surg Oncol ; 21(1): 239, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542314

RESUMEN

BACKGROUND: As digital medicine has exerted profound influences upon diagnosis and treatment of hepatobiliary diseases, our study aims to investigate the accuracy of three-dimensional visualization and evaluation (3DVE) system in assessing the resectability of hilar cholangiocarcinoma (hCCA), and explores its potential clinical value. MATERIALS AND METHODS: The discovery cohort, containing 111 patients from April 2013 to December 2019, was retrospectively included to determine resectability according to revised criteria for unresectability of hCCA. 3D visualization models were reconstructed to evaluate resectability parameters including biliary infiltration, vascular involvement, hepatic atrophy and metastasis. Evaluation accuracy were compared between contrast-enhanced CT and 3DVE. Logistic analysis was performed to identify independent risk factors of R0 resection. A new comprehensive 3DVE classification of hCCA based on factors influencing resectability was proposed to investigate its role in predicting R0 resection and prognosis. The main outcomes were also analyzed in cohort validation, including 34 patients from January 2020 to August 2022. RESULTS: 3DVE showed an accuracy rate of 91% (95%CI 83.6-95.4%) in preoperatively evaluating hCCA resectability, significantly higher than 81% (95%CI 72.8-87.7%) of that of CT (p = 0.03). By multivariable analysis, hepatic artery involvement in 3DVE was identified an independent risk factor for R1 or R2 resection (OR = 3.5, 95%CI 1.4,8.8, P < 0.01). New 3DVE hCCA classification was valuable in predicting patients' R0 resection rate (p < 0.001) and prognosis (p < 0.0001). The main outcomes were internally validated. CONCLUSIONS: 3DVE exhibited a better efficacy in evaluating hCCA resectability, compared with contrast-enhanced CT. Preoperative 3DVE demonstrated hepatic artery involvement was an independent risk factor for the absence of R0 margin. 3DVE classification of hCCA was valuable in clinical practice.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Tumor de Klatskin , Humanos , Tumor de Klatskin/diagnóstico por imagen , Tumor de Klatskin/cirugía , Tumor de Klatskin/patología , Colangiocarcinoma/diagnóstico por imagen , Colangiocarcinoma/cirugía , Colangiocarcinoma/patología , Imagenología Tridimensional , Estudios Retrospectivos , Neoplasias de los Conductos Biliares/diagnóstico por imagen , Neoplasias de los Conductos Biliares/cirugía , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/diagnóstico por imagen , Conductos Biliares Intrahepáticos/cirugía , Conductos Biliares Intrahepáticos/patología
2.
Hepatobiliary Pancreat Dis Int ; 22(2): 169-178, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35508435

RESUMEN

BACKGROUND: ADAMTS (a disintegrin and metalloproteinase with thrombospondin-like motifs) family, a group of extracellular multifunctional enzymes, has been proven to play a pivotal role in the tumor. In pancreatic cancer, the role and mechanism of this family remain unclear. The present study aimed to figure out the hub gene of ADAMTSs and explore the exact roles in the prognosis and biological functions in pancreatic ductal adenocarcinoma (PDAC). METHODS: We used several databases to analyze the ADAMTS family and then screen out the hub genes. The expression of ADAMTS12 in 106 pairs of PDAC tumors and adjacent normal tissues was examined by immunohistochemistry, and its correlations with clinical parameters were further analyzed. The impacts of ADAMTS12 on the migration of PDAC cells were predicted by gene set enrichment analysis and confirmed by transwell assays. The potential impacts of ADAMTS12 on the epithelial-mesenchymal transition (EMT) were identified by database analysis and experimental proof of real-time quantitative polymerase chain reaction (qPCR) and Western blotting. RESULTS: Our study found that ADAMTS12 was a crucial gene in PDAC, and it was highly expressed in tumor tissues when compared to that in the adjacent tissues. ADATMS12 had predictive value of a poor prognosis for PDAC. The elevation of ADAMTS12 was parallel to the progression of PDAC. Inhibition of ADAMTS12 suppressed the migration of PDAC cells and interfered with the process of EMT. CONCLUSIONS: ADAMTS12 is a crucial member of ADAMTSs in PDAC and a predictor of poor prognosis. Additionally, based on its impacts on migration and metastasis in PDAC and the relationship with EMT, ADAMTS12 plays a role of an oncogene in PDAC and may be a promising target for treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Pronóstico , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Neoplasias Pancreáticas
3.
FASEB J ; 34(3): 3943-3955, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31944405

RESUMEN

Mangrove-derived actinobacteria strains are well-known for producing novel secondary metabolites. The polycyclic tetramate macrolactam (PTM), ikarugamycin (IKA) isolated from Streptomyces xiamenensis 318, exhibits antiproliferative activities against pancreatic ductal adenocarcinoma (PDAC) in vitro. However, the protein target for bioactive IKA is unclear. In this study, whole transcriptome-based profiling revealed that the glycolysis pathway is significantly affected by IKA. Metabolomic studies demonstrated that IKA treatment induces a significant drop in glucose-6-phosphate and a slight increase in intracellular glucose level. Analysis of glucose consumption, lactate production, and the extracellular acidification rate confirmed the inhibitory role of IKA on the glycolytic flux in PDAC cells. Surface plasmon resonance (SPR) experiments and docking studies identified the key enzyme of glycolysis, hexokinase 2 (HK2), as a molecular target of IKA. Moreover, IKA reduced tumor size without overt cytotoxicity in mice with PDAC xenografts and increased chemotherapy response to gemcitabine in PDAC cells in vitro. Taken together, IKA can block glycolysis in pancreatic cancer by targeting HK2, which may be a potential drug candidate for PDAC treatment.


Asunto(s)
Hexoquinasa/metabolismo , Lactamas/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Inmunohistoquímica , Ácido Láctico/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Reacción en Cadena en Tiempo Real de la Polimerasa , Resonancia por Plasmón de Superficie
4.
Gut ; 68(11): 1994-2006, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30826748

RESUMEN

BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death worldwide. Neurotransmitter-initiated signalling pathway is profoundly implicated in tumour initiation and progression. Here, we investigated whether dysregulated neurotransmitter receptors play a role during pancreatic tumourigenesis. METHODS: The Cancer Genome Atlas and Gene Expression Omnibus datasets were used to identify differentially expressed neurotransmitter receptors. The expression pattern of gamma-aminobutyric acid type A receptor pi subunit (GABRP) in human and mouse PDAC tissues and cells was studied by immunohistochemistry and western blot analysis. The in vivo implications of GABRP in PDAC were tested by subcutaneous xenograft model and lung metastasis model. Bioinformatics analysis, transwell experiment and orthotopic xenograft model were used to identify the in vitro and in vivo effects of GABRP on macrophages in PDAC. ELISA, co-immunoprecipitation, proximity ligation assay, electrophysiology, promoter luciferase activity and quantitative real-time PCR analyses were used to identify molecular mechanism. RESULTS: GABRP expression was remarkably increased in PDAC tissues and associated with poor prognosis, contributed to tumour growth and metastasis. GABRP was correlated with macrophage infiltration in PDAC and pharmacological deletion of macrophages largely abrogated the oncogenic functions of GABRP in PDAC. Mechanistically, GABRP interacted with KCNN4 to induce Ca2+ entry, which leads to activation of nuclear factor κB signalling and ultimately facilitates macrophage infiltration by inducing CXCL5 and CCL20 expression. CONCLUSIONS: Overexpressed GABRP exhibits an immunomodulatory role in PDAC in a neurotransmitter-independent manner. Targeting GABRP or its interaction partner KCNN4 may be an effective therapeutic strategy for PDAC.


Asunto(s)
Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Macrófagos/fisiología , Ratones , Transducción de Señal/fisiología
6.
Gastroenterology ; 153(1): 277-291.e19, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28315323

RESUMEN

BACKGROUND & AIMS: Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. METHODS: We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from KrasG12D/+/Trp53R172H/+/Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. RESULTS: In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels of 5-HT to be increased in human PDAC tissues compared with non-tumor pancreatic tissues, and PDAC cell lines compared with non-transformed pancreatic cells. Incubation of PDAC cell lines with 5-HT increased proliferation and prevented apoptosis. Agonists of HTR2B, but not other 5-HT receptors, promoted proliferation and prevented apoptosis of PDAC cells. Knockdown of HTR2B in PDAC cells, or incubation of cells with HTR2B inhibitors, reduced their growth as xenograft tumors in mice. We observed a correlation between 5-HT and glycolytic flux in PDAC cells; levels of metabolic enzymes involved in glycolysis, the phosphate pentose pathway, and hexosamine biosynthesis pathway increased significantly in PDAC cells following 5-HT stimulation. 5-HT stimulation led to formation of the HTR2B-LYN-p85 complex, which increased PI3K-Akt-mTOR signaling and the Warburg effect by increasing protein levels of MYC and HIF1A. Administration of SB204741 to KPC mice slowed growth and metabolism of established pancreatic tumors and prolonged survival of the mice. CONCLUSIONS: Human PDACs have increased levels of 5-HT, and PDAC cells increase expression of its receptor, HTR2B. These increases allow for tumor glycolysis under metabolic stress and promote growth of pancreatic tumors and PDAC xenograft tumors in mice.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor de Serotonina 5-HT2B/metabolismo , Serotonina/metabolismo , Anciano , Animales , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Silenciador del Gen , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Indoles/uso terapéutico , Ácido Láctico/biosíntesis , Masculino , Ratones , Persona de Mediana Edad , Monoaminooxidasa/análisis , Trasplante de Neoplasias , Páncreas/química , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor de Serotonina 5-HT2B/genética , Serotonina/análisis , Serotonina/farmacología , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/uso terapéutico , Transducción de Señal , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo , Análisis de Matrices Tisulares , Transcriptoma , Triptófano Hidroxilasa/análisis , Urea/análogos & derivados , Urea/uso terapéutico , Familia-src Quinasas/metabolismo
7.
Biochem Biophys Res Commun ; 499(3): 584-593, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29621546

RESUMEN

Pancreatic Ductal Adenocarcinoma (PADC) metastasis is the leading cause of morality of this severe malignant tumor. Proteases are key players in the degradation of extracellular matrix which promotes the cascade of tumor metastasis. As a kind of serine proteases, the kallikrein family performs vital function on the cancer proteolysis scene, which have been proved in diverse malignant tumors. However, the specific member of kallikrein family and its function in PDAC remain unexplored. In this study, by data mining of GEO datasets, we have identified KLK10 is upregulated gene in PDAC. We found that KLK10 was significantly overexpressed in tissues of pancreatic intraepithelial neoplasia (PanIN) and PDAC from Pdx1-Cre; LSL-KrasG12D/+ mice (KC) and Pdx1-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ mice (KPC) by immunohistochemical analysis. Moreover, KLK10 is extremely elevated in the PDAC tissues, especially that from the PDAC patients with lymphatic and distant metastasis. Aberrant KLK10 expression is significantly correlated with poor prognosis and shorter survival by univariable and multivariable analysis. Functionally, knockdown of KLK10 observably inhibits invasion and metastatic phenotype of PDAC cells in vitro and metastasis in vivo. In addition, blockade of KLK10 attenuates epithelial-mesenchymal transition and activation of FAK-SRC-ERK signaling, which explains the mechanism of KLK10 in promoting metastasis. Collectively, KLK10 should be considered as a promising biomarker for diagnosis and potential target for therapy in PDAC.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Transición Epitelial-Mesenquimal/genética , Calicreínas/genética , Neoplasias Pancreáticas/genética , Regulación hacia Arriba/genética , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Calicreínas/metabolismo , Ratones Endogámicos C57BL , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias Pancreáticas/patología , Fenotipo , Pronóstico , Transducción de Señal , Familia-src Quinasas/metabolismo , Neoplasias Pancreáticas
8.
Surg Today ; 45(8): 1049-52, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25352010

RESUMEN

Signet-ring cell carcinoma (SRCC) is rare in the biliary system. We report a case of SRCC coexisting with adenocarcinoma, arising in a choledochal cyst of the extrahepatic bile duct. The patient was a 52-year-old man, hospitalized for the investigation of jaundice and pruritus. Abdominal computed tomography and magnetic resonance cholangiopancreatography showed a huge choledochal cyst and distal common bile duct cancer. The patient underwent a pancreaticoduodenectomy with extended lymph node dissection. Histologic examination confirmed an SRCC coexisting with adenocarcinoma arising in a choledochal cyst. Postoperative chemotherapy had to be discontinued after only two cycles because the patient suffered serious side effects. Recurrence was detected in the bilioenteric anastomosis 4 months after surgery, and he died 6 months after surgery. To our knowledge, this represents the first case of SRCC arising in a choledochal cyst of the extrahepatic bile duct ever to be reported.


Asunto(s)
Adenocarcinoma/cirugía , Conductos Biliares Extrahepáticos/cirugía , Carcinoma de Células en Anillo de Sello/cirugía , Quiste del Colédoco/cirugía , Neoplasias del Conducto Colédoco/cirugía , Neoplasias Primarias Múltiples , Adenocarcinoma/diagnóstico , Carcinoma de Células en Anillo de Sello/diagnóstico , Pancreatocolangiografía por Resonancia Magnética , Quiste del Colédoco/diagnóstico , Neoplasias del Conducto Colédoco/diagnóstico , Resultado Fatal , Humanos , Escisión del Ganglio Linfático , Masculino , Persona de Mediana Edad , Pancreaticoduodenectomía , Recurrencia
9.
Hepatobiliary Pancreat Dis Int ; 13(1): 81-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24463084

RESUMEN

BACKGROUND: CD74 is known as a type II transmembrane glycoprotein that is associated with the major histocompatibility complex class II alpha and beta chains. Recent studies have demonstrated that the expression of CD74 is also linked to some forms of tumors. The present study was to assess the effect of CD74 expression on the prognosis of resectable pancreatic ductal adenocarcinoma (PDAC). METHODS: Forty-six patients who had received a curative resection of primary PDAC and postoperative chemotherapy were included in this study. Immunohistochemical staining was conducted of CD74 on paraffin-embedded tumor sample slices. The patients were grouped according to CD74 staining: CD74 (-): CD74 positive tumor cells<25%; and CD74 (+): CD74 positive tumor cells ≥25%. The correlation of CD74 expression level with clinicopathological features and cumulative survival rate was calculated. RESULTS: The numbers of CD74 (+) and (-) patients were 32 and 14, respectively. CD74 (+) patients showed a high rate of perineural invasion (P=0.007). The 3- and 5-year cumulative survival rates of CD74 (-) patients were significantly higher than those of CD74 (+) patients (62% and 41% vs 9% and 0%, P=0.000). Multivariate analysis showed that CD74 expression and lymphatic permeation were the independent prognostic indicators. CONCLUSIONS: The overexpression of CD74 is a key factor associated with perineural invasion. Lower-stage (I and II) PDAC patients with CD74 overexpression have a poor prognosis even if they receive a curative resection. CD74 can be used as a prognostic indicator for resectable PDAC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Antígeno CD47/metabolismo , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/mortalidad , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Ductal Pancreático/patología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Estadificación de Neoplasias , Páncreas/metabolismo , Páncreas/patología , Páncreas/cirugía , Pancreatectomía , Neoplasias Pancreáticas/patología , Valor Predictivo de las Pruebas , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
10.
Hepatobiliary Pancreat Dis Int ; 13(4): 416-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25100127

RESUMEN

BACKGROUND: Prostacyclin has been shown to increase portal hypertension, but the mechanism is unclear. This study aimed to investigate whether the overproduction of prostacyclin (PGI2) in cirrhosis participates in the splanchnic vascular hyporesponsiveness to vasoconstrictors in cirrhotic rats. METHODS: Cirrhotic model was created by subcutaneous injection of 60% carbon tetrachloride (CCl4) corn oil solution combined with intermittent drinking of 5% alcohol, and age-matched rats served as controls. The isolated third-generation mesenteric arterioles were used to examine the contractile response to norepinephrine. The changes in vascular diameter were observed under a microscope imaging device. The plasma concentration of 6-ketone-prostaglandin F1alpha (6-keto-PGF1alpha, a stable metabolite of PGI2) was tested via enzyme immunoassays and the expression of cyclooxygenase (COX) in mesenteric arteries was detected by Western blotting. RESULTS: In parallel with the increase of plasma 6-keto-PGF1alpha, the contractile response of arterioles from cirrhotic rats to norepinephrine was significantly impaired compared with that from controls. Inhibition of PGI2 or protein kinase A with indomethacin or Rp-adenosine 3', 5'-cyclic monophosphothioate (Rp-cAMPS) partially reversed the vascular hypo-contractile response to norepinephrine in arterioles from cirrhotic rats. Indomethacin significantly decreased the plasma 6-keto-PGF1alpha. Furthermore, indomethacin significantly attenuated the effect of Rp-cAMPS on arterioles from cirrhotic rats. COX-1 expression was up-regulated in mesenteric arteries from cirrhotic rats, whereas COX-2 was not detectable in the mesenteric arteries from both cirrhotic and control rats. CONCLUSION: Enhanced COX-1 expression in cirrhotic rats resulted in elevated PGI2 production which partially contributed to the splanchnic vascular hyporesponsiveness to a vasoconstrictor via the protein kinase A pathway.


Asunto(s)
Epoprostenol/metabolismo , Cirrosis Hepática Alcohólica/metabolismo , Cirrosis Hepática Experimental/metabolismo , Circulación Esplácnica , Vasoconstricción , 6-Cetoprostaglandina F1 alfa/sangre , Animales , Arteriolas/metabolismo , Arteriolas/fisiopatología , Tetracloruro de Carbono , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Relación Dosis-Respuesta a Droga , Epoprostenol/sangre , Etanol , Cirrosis Hepática Alcohólica/etiología , Cirrosis Hepática Alcohólica/fisiopatología , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/fisiopatología , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas Sprague-Dawley , Transducción de Señal , Circulación Esplácnica/efectos de los fármacos , Regulación hacia Arriba , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología
11.
J Integr Plant Biol ; 56(5): 480-91, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24279988

RESUMEN

Pre-harvest sprouting (PHS) seriously affects wheat yield and quality of the grain. ABI3 is a key factor in the activation of seed development and repression of germination in Arabidopsis. An ABI3-interacting protein (AIP2) could polyubiquitinate ABI3, impair seed dormancy and promote seed germination in Arabidopsis. In this study, two wheat AIP2 genes, TaAIP2A and TaAIP2B, were isolated. Subcellular localization assay and yeast two-hybrid analysis revealed that TaAIP2A and TaAIP2B may function through interaction with wheat Viviporous-1 (TaVp1). The transcripts TaAIP2A and TaAIP2B were more abundant in wheat PHS susceptible cultivars than that of resistant ones, and decreased gradually following seed development. Expression of TaAIP2A and TaAIP2B in Arabidopsis aip2-1 mutant lines resulted in earlier flowering, promotion of seed germination, and reduced ABA sensitivity, respectively, somehow mimicking the phenotype of the wild type, with TaAIP2B having a stronger role in these aspects. Furthermore, the expression of upstream genes ABI1 and ABI2 were upregulated, whereas that of downstream genes ABI3 and ABI5 were downregulated in both TaAIP2A and TaAIP2B complemented lines upon ABA treatment. These results suggested that wheat AIP2s could negatively regulate the ABA signaling pathway and play important roles in seed germination, and thus wheat PHS resistance finally.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/metabolismo , Triticum/enzimología , Triticum/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Triticum/fisiología , Ubiquitina-Proteína Ligasas/genética
12.
Gene ; : 148735, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944166

RESUMEN

BACKGROUND: OCIAD2(Ovarian carcinoma immunoreactive antigen-like protein 2) is a protein reported in various cancers. However, the role of OCIAD2 has not been explored in pan-cancer datasets. The purpose of this research lies in analyzing the expression level and prognostic-related value of OCIAD2 in different human cancers, as well as revealing the underlying mechanism in specific cancer type (pancreatic adenocarcinoma, PAAD). METHODS: The correlation between OCIAD2 expression level and clinical relevance in different human cancers was investigated from bioinformatical perspective (GTEx and TCGA). The OCIAD2 expression level and clinical significance in PAAD were explored in GEO datasets and tissue microarray. Functional experiments were used to determine the OCIAD2 cell functions in vitro and in vivo. GSEA, western blot and immunohistochemistry were used to uncover the potential mechanism. RESULTS: OCIAD2 expression level was closely correlated with clinical relevance in many cancer types through pan-cancer analysis, and we found OCIAD2 was highly expressed in PAAD and associated with poorer prognosis. OCIAD2 acted as the promotor of Warburg effect and influenced PAAD cells proliferation, migration and apoptosis. Mechanistically, OCIAD2 upregulation may boost glycolysis in PAAD via activating the AKT signaling pathway in PAAD. CONCLUSIONS: In PAAD, OCIAD2 promotes Warburg effect via AKT signaling pathway and targeting cancer cells metabolic reprogramming could be a potential treatment.

13.
Cell Oncol (Dordr) ; 46(1): 17-48, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36367669

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Neoplasias Pancreáticas/patología , Inmunoterapia/métodos , Carcinoma Ductal Pancreático/patología , Terapia de Inmunosupresión , Neoplasias Pancreáticas
14.
Nat Commun ; 14(1): 861, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792623

RESUMEN

To explore the mechanism of coadaptation and the potential drivers of pancreatic ductal adenocarcinoma (PDAC) metastasis to the liver, we study key molecules involved in this process and their translational value. Premetastatic niche (PMN) and macrometastatic niche (MMN) formation in a mouse model is observed via CT combined with 3D organ reconstruction bioluminescence imaging, and then we screen slit guidance ligand 2 (SLIT2) and its receptor roundabout guidance receptor 1 (ROBO1) as important factors. After we confirm the expression and distribution of SLIT2 and ROBO1 in samples from PDAC patients and several mouse models, we discover that SLIT2-ROBO1-mediated coadaptation facilitated the implantation and outgrowth of PDAC disseminated tumour cells (DTCs) in the liver. We also demonstrate the dependence receptor (DR) characteristics of ROBO1 in a follow-up mechanistic study. A neutralizing antibody targeting ROBO1 significantly attenuate liver metastasis of PDAC by preventing the coadaptation effect. Thus, we demonstrate that coadaptation is supported by the DR characteristics in the PMN and MMN.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animales , Ratones , Carcinoma Ductal Pancreático/genética , Movimiento Celular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal , Neoplasias Pancreáticas
15.
EBioMedicine ; 80: 104050, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35561453

RESUMEN

BACKGROUND: Cancer elicits a complex adaptive response in an organism. Limited information is available for the body-wide effects induced by cancer. Here, we evaluated multiorgan changes in mouse models of pancreatic ductal adenocarcinoma (PDAC) and its precursor lesions (pancreatic intraepithelial neoplasia, PanIN) to decipher changes that occur during PDAC development. METHODS: RNA-sequencing was employed in the brain, colon, stomach, kidney, heart, liver, and lung tissues of mice with PanIN and PDAC. A combination of differential expression analysis and functional-category enrichment was applied for an in-depth understanding of the multiorgan transcriptome. Differentially expressed genes were verified by quantitative real-time polymerase chain reaction. Neutrophil and macrophage infiltration in multiple organs was analyzed by immunohistochemical staining. Leukotriene B4 (LTB4) levels in mouse and human serum samples were determined by enzyme-linked immunosorbent assay. FINDINGS: Transcriptional changes within diverse organs during PanIN and PDAC stages were identified. Using Gene Ontology enrichment analysis, increased neutrophil infiltration was discovered as a central and prominent affected feature, which occurred in the liver, lung, and stomach at the PanIN stage. The brain appeared to be well protected from the sequels of PanIN or PDAC. Importantly, serum LTB4 was able to discriminate PDAC from normal controls, chronic pancreatitis, and intraductal papillary mucinous neoplasms with high performance. INTERPRETATION: Our study provides a high-resolution cartographic view of the dynamic multiorgan transcriptomic landscape of mice with PDAC and its precursor lesions. Our findings suggest that LTB4 could serve as a biomarker for the early detection of PDAC. FUNDING: The complete list of funders can be found in the Acknowledgement section.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Detección Precoz del Cáncer , Humanos , Leucotrieno B4 , Ratones , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
16.
Cancer Lett ; 538: 215693, 2022 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-35472437

RESUMEN

Owing to the lack of early diagnosis, pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal tumours. Because acinar-to-ductal metaplasia (ADM) is a critical process to pancreatic regeneration and PDAC initiation, we applied GSE65146, a dataset composed of transcripts at different time points in wild-type and KrasG12D mutant mice upon pancreatitis induction, to obtain regeneration- and tumour initiation-related genes. By overlapping with genes differentially expressed in human PDAC, we defined the initiation- and progression-related genes, and the most prognostic gene, SULF2, was selected for further verification. By using multiple PDAC genetically engineered murine models (GEMMs), we further verified that the expression of SULF2 was increased at the ADM and PDAC stages. Functionally, SULF2 was able to promote the dedifferentiation of acinar cells as well as the metastatic ability of PDAC. Additionally, our study revealed that SULF2 could enhance TGFß-SMAD signalling via GDF15. More importantly, serum SULF2 was elevated in patients with PDAC, and in combination with CA19-9, it provided a better method for PDAC diagnosis. Herein, our study screened out key genes for the initiation and progression of PDAC, providing potential indicators for the diagnosis of the disease.


Asunto(s)
Carcinoma Ductal Pancreático , Factor 15 de Diferenciación de Crecimiento , Neoplasias Pancreáticas , Proteínas Smad , Sulfatasas , Células Acinares , Animales , Carcinoma Ductal Pancreático/patología , Progresión de la Enfermedad , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/patología , Sulfatasas/metabolismo
17.
Cell Oncol (Dordr) ; 45(3): 367-379, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35486320

RESUMEN

BACKGROUND: Metabolic reprogramming has emerged as a core hallmark of cancer, and cancer metabolism has long been equated with aerobic glycolysis. Moreover, hypoxia and the hypovascular tumor microenvironment (TME) are major hallmarks of pancreatic ductal adenocarcinoma (PDAC), in which glycolysis is imperative for tumor cell survival and proliferation. Here, we explored the impact of interleukin 1 receptor-associated kinase 2 (IRAK2) on the biological behavior of PDAC and investigated the underlying mechanism. METHODS: The expression pattern and clinical relevance of IRAK2 was determined in GEO, TCGA and Ren Ji datasets. Loss-of-function and gain-of-function studies were employed to investigate the cellular functions of IRAK2 in vitro and in vivo. Gene set enrichment analysis, Seahorse metabolic analysis, immunohistochemistry and Western blot were applied to reveal the underlying molecular mechanisms. RESULTS: We found that IRAK2 is highly expressed in PDAC patient samples and is related to a poor prognosis. IRAK2 knockdown led to a significant impairment of PDAC cell proliferation via an aberrant Warburg effect. Opposite results were obtained after exogenous IRAK2 overexpression. Mechanistically, we found that IRAK2 is critical for sustaining the activation of transcription factors such as those of the nuclear factor-κB (NF-κB) family, which have increasingly been recognized as crucial players in many steps of cancer initiation and progression. Treatment with maslinic acid (MA), a NF-κB inhibitor, markedly attenuated the aberrant oncological behavior of PDAC cells caused by IRAK2 overexpression. CONCLUSIONS: Our data reveal a role of IRAK2 in PDAC metabolic reprogramming. In addition, we obtained novel insights into how immune-related pathways affect PDAC progression and suggest that targeting IRAK2 may serve as a novel therapeutic approach for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/farmacología , FN-kappa B/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Neoplasias Pancreáticas
18.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36355508

RESUMEN

Pancreatic adenocarcinoma (PAAD), one of the most malignant tumors, not only has abundant mesenchymal components, but is also characterized by an extremely high metastatic risk. The purpose of this study was to construct a model of stroma- and metastasis-associated prognostic signature, aiming to benefit the existing clinical staging system and predict the prognosis of patients. First, stroma-associated genes were screened from the TCGA database with the ESTIMATE algorithm. Subsequently, transcriptomic data from clinical tissues in the RenJi cohort were screened for metastasis-associated genes. Integrating the two sets of genes, we constructed a risk prognostic signature by Cox and LASSO regression analysis. We then obtained a risk score by a quantitative formula and divided all samples into high- and low-risk groups based on the scores. The results demonstrated that patients with high-risk scores have a worse prognosis than those with low-risk scores, both in the TCGA database and in the RenJi cohort. In addition, tumor mutation burden, chemotherapeutic drug sensitivity and immune infiltration analysis also exhibited significant differences between the two groups. In exploring the potential mechanisms of how stromal components affect tumor metastasis, we simulated different matrix stiffness in vitro to explore its effect on EMT key genes in PAAD cells. We found that cancer cells stimulated by high matrix stiffness may trigger EMT and promote PAAD metastasis.

19.
Oncogene ; 41(8): 1203-1215, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082383

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC), cancer with a high mortality rate and the highest rate of KRAS mutation, reportedly internalizes proteins via macropinocytosis to adapt to low amino acid levels in the tumor microenvironment. Here, we aimed to identify a key regulator of macropinocytosis for the survival of tumor cells in a low amino acid environment in PDAC. FYVE, RhoGEF, and PH domain-containing protein 6 (FGD6) were identified as key regulators of macropinocytosis. FGD6 promoted PDAC cell proliferation, macropinocytosis, and tumor growth both in vitro and in vivo. The macropinocytosis level was decreased with FGD6 knockdown in PDAC cell lines. Moreover, FGD6 promoted macropinocytosis by participating in the trans-Golgi network and enhancing the membrane localization of growth factor receptors, especially the TGF-beta receptor. TGF-beta enhanced macropinocytosis in PDAC cells. Additionally, YAP nuclear translocation induced by a low amino acid tumor environment initiated FGD6 expression by coactivation with YY1. Clinical data analysis based on TCGA and GEO datasets showed that FGD6 expression was upregulated in PDAC tissue, and high FGD6 expression was correlated with poor prognosis in patients with PDAC. In tumor tissue from KrasG12D/+/Trp53R172H/-/Pdx1-Cre (KPC) mice, FGD6 expression escalated during PDAC development. Our results uncover a previously unappreciated mechanism of macropinocytosis in PDAC. Strategies to target FGD6 and growth factors membrane localization might be developed for the treatment of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático
20.
Hepatobiliary Pancreat Dis Int ; 10(1): 64-71, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21269937

RESUMEN

BACKGROUND: Hepatic fibrosis is a necessary step in the development of hepatic cirrhosis. In this study we used lentiviral vector-mediated transfection technology to evaluate the effect of peroxisome proliferator-activated receptor gamma (PPAR-gamma) on rat hepatic fibrosis. METHODS: Hepatic fibrosis in rats was induced by CCl4 for 2 weeks (early fibrosis) and 8 weeks (sustained fibrosis). The rats were randomly divided into four groups: normal control, fibrosis, blank vector, and PPAR-gamma. They were infected with the recombinant lentiviral expression vector carrying the rat PPAR-gamma gene by portal vein injection. The liver of the rats was examined histologically and hydroxyproline was assessed. In vitro primary hepatic stellate cells (HSCs) were infected with the recombinant lentiviral expression vector carrying the rat PPAR-gamma gene. The status of HSC proliferation was measured by the MTT assay. The protein levels of PPAR-gamma, alpha-smooth muscle actin (alpha-SMA) and type I collagen expression were evaluated by the Western blotting method. RESULTS: In vitro studies revealed that expression of PPAR-gamma inhibited expression of alpha-SMA and type I collagen in activated HSCs (P<0.01) as well as HSC proliferation (P<0.01). In vivo experiments indicated that in the early hepatic fibrosis group, the hydroxyproline content and the level of collagen I protein in the liver in the PPAR-gamma transfected group were not significantly different compared to the hepatic fibrosis group and the blank vector group; whereas the expressions of PPAR-gamma and alpha-SMA were different compared to the hepatic fibrosis group (P<0.01). In the sustained hepatic fibrosis group, there were significant differences in the hydroxyproline content and the expression of PPAR-gamma, alpha-SMA, and type I collagen between each group. CONCLUSION: PPAR-gamma can inhibit HSC proliferation and hepatic fibrosis, and suppress alpha-SMA and type I collagen expression.


Asunto(s)
Proliferación Celular , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado/patología , PPAR gamma/metabolismo , Actinas/metabolismo , Animales , Tetracloruro de Carbono , Células Cultivadas , Colágeno Tipo I/metabolismo , Expresión Génica , Hidroxiprolina/metabolismo , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Masculino , PPAR gamma/genética , Ratas , Ratas Sprague-Dawley , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA