Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Biol Chem ; 300(8): 107558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002669

RESUMEN

α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.


Asunto(s)
Fucosa , Fucosiltransferasas , Inmunoglobulina G , Ratones Noqueados , Receptores de IgG , Animales , Fucosa/metabolismo , Inmunoglobulina G/metabolismo , Inmunoglobulina G/inmunología , Fucosiltransferasas/metabolismo , Fucosiltransferasas/genética , Ratones , Receptores de IgG/metabolismo , Receptores de IgG/genética , Glicosilación , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Fragmentos Fc de Inmunoglobulinas/inmunología , Receptores Fc , Antígenos de Histocompatibilidad Clase I
2.
J Biol Chem ; 300(1): 105513, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042483

RESUMEN

α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.


Asunto(s)
Fucosa , Inflamación , Lipopolisacáridos , Animales , Humanos , Ratones , Receptor gp130 de Citocinas , Fucosa/farmacología , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/genética , Lipopolisacáridos/toxicidad , Enfermedades Neuroinflamatorias , ARN Mensajero
3.
Dev Biol ; 504: 75-85, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37708968

RESUMEN

Tissue development and regeneration are dynamic processes involving complex cell migration and cell-cell interactions. We have developed a protocol for complementary time-lapse and three-dimensional (3D) imaging of tissue for developmental and regeneration studies which we apply here to the zebrafish cardiac vasculature. 3D imaging of fixed specimens is used to first define the subject at high resolution then live imaging captures how it changes dynamically. Hearts from adult and juvenile zebrafish are extracted and cleaned in preparation for the different imaging modalities. For whole-mount 3D confocal imaging, single or multiple hearts with native fluorescence or immuno-labeling are prepared for stabilization or clearing, and then imaged. For live imaging, hearts are placed in a prefabricated fluidic device and set on a temperature-controlled microscope for culture and imaging over several days. This protocol allows complete visualization of morphogenic processes in a 3D context and provides the ability to follow cell behaviors to complement in vivo and fixed tissue studies. This culture and imaging protocol can be applied to different cell and tissue types. Here, we have used it to observe zebrafish coronary vasculature and the migration of coronary endothelial cells during heart regeneration.


Asunto(s)
Células Endoteliales , Pez Cebra , Animales , Células Endoteliales/metabolismo , Corazón/diagnóstico por imagen , Imagenología Tridimensional/métodos
4.
J Biol Chem ; 299(8): 105051, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451482

RESUMEN

Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3ß1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin ß1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans.


Asunto(s)
Quinasa 1 de Adhesión Focal , Polisacáridos , Transducción de Señal , Humanos , Quinasa 1 de Adhesión Focal/metabolismo , Células HeLa , Proteínas de la Membrana/metabolismo , Fosforilación , Polisacáridos/metabolismo
5.
J Biol Chem ; 299(4): 103051, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813234

RESUMEN

The phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562 cells, which are also known as K562/adriamycin-resistant (ADR) cells. Lectin blot, mass spectrometry, and RT-PCR analysis showed that the expression levels of N-acetylglucosaminyltransferase III (GnT-III) mRNA and its products, bisected N-glycans, are significantly decreased in K562/ADR cells, compared with the levels in parent K562 cells. By contrast, the expression levels of both P-glycoprotein (P-gp) and its intracellular key regulator, NF-κB signaling, are significantly increased in K562/ADR cells. These upregulations were sufficiently suppressed by the overexpression of GnT-III in K562/ADR cells. We found that the expression of GnT-III consistently decreased chemoresistance for doxorubicin and dasatinib, as well as activation of the NF-κB pathway by tumor necrosis factor (TNF) α, which binds to two structurally distinct glycoproteins, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), on the cell surface. Interestingly, our immunoprecipitation analysis revealed that only TNFR2, but not TNFR1, contains bisected N-glycans. The lack of GnT-III strongly induced TNFR2's autotrimerization without ligand stimulation, which was rescued by the overexpression of GnT-III in K562/ADR cells. Furthermore, the deficiency of TNFR2 suppressed P-gp expression while it increased GnT-III expression. Taken together, these results clearly show that GnT-III negatively regulates chemoresistance via the suppression of P-gp expression, which is regulated by the TNFR2-NF/κB signaling pathway.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , FN-kappa B , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal , Doxorrubicina/farmacología , Polisacáridos/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
6.
J Am Chem Soc ; 146(9): 6037-6044, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377954

RESUMEN

Alkene hydroformylation is one of the largest industrial reactions on an industrial scale; however, the development of nonnoble heterogeneous catalysts is usually limited by their low activities and stabilities. Herein, we constructed a 1% Co2C/SiO2 catalyst featuring Co-Cvacancy-Co-C symmetry-breaking sites, which generated a polar surface exhibiting a moderate charge density gradient at the localized Co atoms. Comparatively, this catalyst exhibited notable enhancements in the adsorption and activation of the reactants, as well as in the polarity between intermediates. Significantly, the spatial distance between the adsorption sites of intermediates was reduced, thereby effectively decreasing the energy barrier of reaction processes. As the density of the symmetry-breaking sites increased, the turnover number for propene hydroformylation soared to 18 363, exceeding the activity of heterogeneous Co-based catalysts reported thus far by 1 or 2 orders of magnitude, and the catalyst exhibited high stability during the reaction. This study provides a methodology for constructing atomically active sites, which holds great potential for the design and development of highly efficient catalysts.

7.
Mol Cancer ; 23(1): 102, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755678

RESUMEN

Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.


Asunto(s)
Resistencia a Antineoplásicos , Proteínas Asociadas a Microtúbulos , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , ARN Circular , Serina-Treonina Quinasas TOR , Factores de Transcripción , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Metástasis de la Neoplasia , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Calmodulina/metabolismo , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/metabolismo
8.
Cancer Sci ; 115(4): 1196-1208, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288901

RESUMEN

Fms-like tyrosine kinase-3 (FLT3) is a commonly mutated gene in acute myeloid leukemia (AML). The two most common mutations are the internal-tandem duplication domain (ITD) mutation and the tyrosine kinase domain (TKD) mutation. FLT3-ITD and FLT3-TKD exhibit distinct protein stability, cellular localization, and intracellular signaling. To understand the underlying mechanisms, we performed proximity labeling with TurboID to identify proteins that regulate FLT3-ITD or -TKD differently. We found that BRCA1/BRCA2-containing complex subunit 36 (BRCC36), a specific K63-linked polyubiquitin deubiquitinase, was exclusively associated with ITD, not the wild type of FLT3 and TKD. Knockdown of BRCC36 resulted in decreased signal transducers and activators of transcription 5 phosphorylation and cell proliferation in ITD cells. Consistently, treatment with thiolutin, an inhibitor of BRCC36, specifically suppressed cell proliferation and induced cell apoptosis in ITD cells. Thiolutin efficiently affected leukemia cell lines expressing FLT3-ITD cell viability and exhibited mutual synergies with quizartinib, a standard clinical medicine for AML. Furthermore, mutation of the lysine at 609 of ITD led to significant suppression of K63 polyubiquitination and decreased its stability, suggesting that K609 is a critical site for K63 ubiquitination specifically recognized by BRCC36. These data indicate that BRCC36 is a specific regulator for FLT3-ITD, which may shed light on developing a novel therapeutic approach for AML.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Transducción de Señal/fisiología , Mutación , Estabilidad Proteica
9.
Planta ; 259(3): 66, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332379

RESUMEN

MAIN CONCLUSION: Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.


Asunto(s)
Ácido Abscísico , Robinia , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Robinia/genética , Tetraploidía , Ácidos Indolacéticos/metabolismo , Perfilación de la Expresión Génica , Piruvatos/metabolismo , Raíces de Plantas/metabolismo
10.
Bioinformatics ; 39(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952182

RESUMEN

MOTIVATION: The precise characterization of cell-type transcriptomes is pivotal to understanding cellular lineages, deconvolution of bulk transcriptomes, and clinical applications. Single-cell RNA sequencing resources like the Human Cell Atlas have revolutionised cell-type profiling. However, challenges persist due to data heterogeneity and discrepancies across different studies. One limitation of prevailing tools such as CIBERSORTx is their inability to address hierarchical data structures and handle nonoverlapping gene sets across samples, relying on filtering or imputation. RESULTS: Here, we present cellsig, a Bayesian sparse multilevel model designed to improve signature estimation by adjusting data for multilevel effects and modelling for gene-set sparsity. Our model is tailored to large-scale, heterogeneous pseudobulk and bulk RNA sequencing data collections with nonoverlapping gene sets. We tested the performances of cellsig on a novel curated Human Bulk Cell-type Catalogue, which harmonizes 1435 samples across 58 datasets. We show that cellsig significantly enhances cell-type marker gene ranking performance. This approach is valuable for cell-type signature selection, with implications for marker gene validation, single-cell annotation, and deconvolution benchmarks. AVAILABILITY AND IMPLEMENTATION: Codes and the interactive app are available at https://github.com/stemangiola/cellsig; and the database is available at https://doi.org/10.5281/zenodo.7582421.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Teorema de Bayes , Secuencia de Bases , Análisis de Secuencia de ARN , Análisis de la Célula Individual
11.
J Transl Med ; 22(1): 753, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135185

RESUMEN

BACKGROUND: Omicron variant impacts populations with its rapid contagiousness, and part of patients suffered from persistent symptoms termed as long COVID. The molecular and immune mechanisms of this currently dominant global variant leading to long COVID remain unclear, due to long COVID heterogeneity across populations. METHODS: We recruited 66 participants in total, 22 out of 66 were healthy control without COVID-19 infection history, and 22 complaining about long COVID symptoms 6 months after first infection of Omicron, referred as long COVID (LC) Group. The left ones were defined as non-long COVID (NLC) Group. We profiled them via plasma neutralizing antibody titer, SARS-CoV-2 viral load, transcriptomic and proteomics screening, and machine learning. RESULTS: No serum residual SARS-CoV-2 was observed in the participants 6 months post COVID-19 infection. No significant difference in neutralizing antibody titers was found between the long COVID (LC) Group and the non-long COVID (NLC) Group. Transcriptomic and proteomic profiling allow the stratification of long COVID into neutrophil function upregulated (NU-LC) and downregulated types (ND-LC). The NU-LC, identifiable through a refined set of 5 blood gene markers (ABCA13, CEACAM6, CRISP3, CTSG and BPI), displays evidence of relatively higher neutrophil counts and function of degranulation than the ND-LC at 6 months after infection, while recovered at 12 months post COVID-19. CONCLUSION: The transcriptomic and proteomic profiling revealed heterogeneity among long COVID patients. We discovered a subgroup of long COVID population characterized by neutrophil activation, which might associate with the development of psychiatric symptoms and indicate a higher inflammatory state. Meanwhile, a cluster of 5 genes was manually curated as the most potent discriminators of NU-LC from long COVID population. This study can serve as a foundational exploration of the heterogeneity in the pathogenesis of long COVID and assist in therapeutic targeting and detailed epidemiological investigation of long COVID.


Asunto(s)
COVID-19 , Neutrófilos , Proteómica , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/virología , COVID-19/sangre , Neutrófilos/inmunología , Masculino , Femenino , Persona de Mediana Edad , Transcriptoma/genética , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Adulto , Síndrome Post Agudo de COVID-19 , Carga Viral , Anciano , Perfilación de la Expresión Génica , Activación Neutrófila , Multiómica
12.
Plant Cell Environ ; 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39468797

RESUMEN

Plants, being immobile, are exposed to environmental adversities such as wind, snow and animals that damage their structure, making regeneration essential for their survival. The adventitious roots (ARs) primarily emerge from a detached explant to uptake nutrients; therefore, the molecular network involved in their regeneration needs to be explored. DNA methylation, a key epigenetic mark, influences molecular pathways, and recent studies suggested its role in regeneration. In our research, the application of 5-azacytidine (5-azaC), an inhibitor of DNA methylation, caused the earlier initiation and development of root primordia and consequently enhanced the AR regeneration rate in Robinia psuedoacacia L (black locust). The whole-genome bisulfite sequencing (WGBS) revealed a decrease in global methylation and an increase in hypomethylated cytosine sites and regions across all contexts including CHH, CHG and mergedCG caused transcriptional variations in 5-azaC-treated sample. The yeast two-hybrid (Y2H) assay revealed a RpMYB2-centred network of transcriptionally activated transcription factors (TFs) including RpWRKY23, RpGATA23, RpSPL16 and other genes like RpSDP, RpSS1, RpBEN1, RpGULL05 and RpCUV with nuclear localization suggesting their potential co-localization. Additionally, yeast one-hybrid (Y1H) assay showed the interaction of RpMYB2 interactors, RpGATA23 and RpWRKY23, with promoters of RpSK6 and RpCDC48, and luciferase reporting assay (LRA) validated their binding with RpSK6. Our results revealed that hypomethylation-mediated transcriptomic modifications activated the RpMYB2-centred gene network to enhance AR regeneration in black locust hypocotyl cuttings. These findings pave the way for genetic modification to improve plant regeneration ability and increase wood production while withstanding environmental damage.

13.
Plant Cell Environ ; 47(5): 1797-1812, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38314665

RESUMEN

As the most abundant form of methylation modification in messenger RNA (mRNA), the distribution of N6-methyladenosine (m6A) has been preliminarily revealed in herbaceous plants under salt stress, but its function and mechanism in woody plants were still unknown. Here, we showed that global m6A levels increased during poplar response to salt stress. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) revealed that m6A significantly enriched in the coding sequence region and 3'-untranslated regions in poplar, by recognising the conserved motifs, AGACU, GGACA and UGUAG. A large number of differential m6A transcripts have been identified, and some have been proved involving in salt response and plant growth and development. Further combined analysis of MeRIP-seq and RNA-seq revealed that the m6A hypermethylated and enrich in the CDS region preferred to positively regulate expression abundance. Writer inhibitor, 3-deazaneplanocin A treatment increased the sensitivity of poplar to salt stress by reducing mRNA stability to regulate the expression of salt-responsive transcripts PagMYB48, PagGT2, PagNAC2, PagGPX8 and PagARF2. Furthermore, we verified that the methyltransferase PagFIP37 plays a positively role in the response of poplar to salt stress, overexpressed lines have stronger salt tolerance, while RNAi lines were more sensitive to salt, which relied on regulating mRNA stability in an m6A manner of salt-responsive transcripts PagMYB48, PagGT2, PagNAC2, PagGPX8 and PagARF2. Collectively, these results revealed the regulatory role of m6A methylation in poplar response to salt stress, and revealed the importance and mechanism of m6A methylation in the response of woody plants to salt stress for the first time.


Asunto(s)
Adenosina/análogos & derivados , Populus , Metilación de ARN , Estrés Salino/genética , Metiltransferasas/genética , Populus/genética , ARN Mensajero/genética
14.
J Exp Bot ; 75(3): 733-745, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37930766

RESUMEN

Reversal of plant developmental status from the mature to the juvenile phase, thus leading to the restoration of the developmental potential, is referred to as plant rejuvenation. It involves multilayer regulation, including resetting gene expression patterns, chromatin remodeling, and histone modifications, eventually resulting in the restoration of juvenile characteristics. Although plants can be successfully rejuvenated using some forestry practices to restore juvenile morphology, physiology, and reproductive capabilities, studies on the epigenetic mechanisms underlying this process are in the nascent stage. This review provides an overview of the plant rejuvenation process and discusses the key epigenetic mechanisms involved in DNA methylation, histone modification, and chromatin remodeling in the process of rejuvenation, as well as the roles of small RNAs in this process. Additionally, we present new inquiries regarding the epigenetic regulation of plant rejuvenation, aiming to advance our understanding of rejuvenation in sexually and asexually propagated plants. Overall, we highlight the importance of epigenetic mechanisms in the regulation of plant rejuvenation, providing valuable insights into the complexity of this process.


Asunto(s)
Epigénesis Genética , Memoria Epigenética , Rejuvenecimiento , Plantas/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas
15.
Opt Lett ; 49(17): 4930-4933, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208000

RESUMEN

A polarization-insensitive multimode silicon waveguide crossing is investigated and experimentally characterized in this Letter. By employing the particle swarm optimization (PSO) algorithm and finite difference time domain (FDTD) method, the lengths and widths of the waveguides in the proposed device are optimized for attaining wide bandwidth, small insertion loss (IL), low cross talk (CT), and compact size. Measurement results reveal that the footprint of the presented device is 11.92 µm × 11.92 µm. From 1520 to 1600 nm, the measured insertion loss and cross talk are smaller than 0.67 dB and -28.6 dB in the case of the TE0 mode, lower than 0.65 dB and -28.7 dB in the case of the TE1 mode, less than 0.48 dB and -36.3 dB in the case of the TM0 mode, and lower than 0.62 dB and -28 dB in the case of the TM1 mode.

16.
Am J Bot ; 111(9): e16393, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39164836

RESUMEN

PREMISE: The impact of inbreeding on biological processes is well documented in individuals with severe inbreeding depression. However, the biological processes influencing the adaptive growth of normal selfed individuals are unknown. Here, we aimed to investigate how inbreeding affects gene expression for adaptive growth of normal selfed seedlings from a self-fertilizing parent in Chinese fir (Cunninghamia lanceolata). METHODS: Using RNA-seq data from above- and underground tissues of abnormal and normal selfed seedlings, we analyzed GO biological processes network. We also sequenced small RNAs in the aboveground tissues and measured the copy number variations (CNV) of the hub genes. RESULTS: Phenotypic fitness analysis revealed that the normal seedlings were better adapted than their abnormal counterparts. Upregulated differentially expressed genes (DEGs) were associated with development processes, and downregulated DEGs were mainly enriched in fundamental metabolism and stress response. Results of mRNA-miRNA parallel sequencing revealed that upregulated target genes were predominantly associated with development, highlighting their crucial role in phosphorylation in signal transduction networks. We also discovered a moderate correlation (0.1328 < R2 < 0.6257) between CNV and gene expression levels for three hub genes (TMKL1, GT2, and RHY1A). CONCLUSIONS: We uncovered the key biological processes underpinning the growth of normal selfed seedlings and established the relationship between CNV and the expression levels of hub genes in selfed seedlings. Understanding the candidate genes involved in the growth of selfed seedlings will help us comprehend the genetic mechanisms behind inbreeding depression in the evolutionary biology of plants.


Asunto(s)
Cunninghamia , Variaciones en el Número de Copia de ADN , Endogamia , MicroARNs , ARN Mensajero , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cunninghamia/genética , Cunninghamia/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Plantones/genética , Plantones/crecimiento & desarrollo , ARN de Planta/genética
17.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38279314

RESUMEN

Polyploid breeding techniques aid in the cultivation of new forestry cultivars, thus expanding the suite of strategies for the improvement of arboreal traits and innovation within the field of forestry. Compared to diploid Robinia pseudoacacia L. (black locust) 'D26-5①' (2×), its dwarfed homologous tetraploid 'D26-5②' (4×) variety has better application prospects in garden vegetation guardrails and urban landscape. However, the molecular mechanism of the generation and growth of this dwarf variety is still unclear. Here, plant growth and development as well as histological differences between the diploid and its autotetraploid were investigated. Levels of endogenous hormones at three different developmental stages (20, 40, and 70 days) of 2× and homologous 4× tissue culture plantlets were assessed, and it was found that the brassinosteroid (BR) contents of the former were significantly higher than the latter. Transcriptome sequencing data analysis of 2× and homologous 4× showed that differentially expressed genes (DEGs) were significantly enriched in plant hormone synthesis and signal transduction, sugar and starch metabolism, and the plant circadian rhythm pathway, which are closely related to plant growth and development. Therefore, these biological pathways may be important regulatory pathways leading to dwarfism and slow growth in tetraploids. Additionally, utilizing weighted gene coexpression network analysis (WGCNA), we identified three crucial differentially expressed genes (DEGs)-PRR5, CYP450, and SPA1-that potentially underlie the observed ploidy variation. This study provides a new reference for the molecular mechanism of dwarfism in dwarfed autotetraploid black locusts. Collectively, our results of metabolite analysis and comparative transcriptomics confirm that plant hormone signaling and the circadian rhythm pathway result in dwarfism in black locusts.


Asunto(s)
Enanismo , Robinia , Transcriptoma , Tetraploidía , Robinia/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
18.
J Sci Food Agric ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177281

RESUMEN

BACKGROUND: Depression is a common psychological disorder, and traditional therapeutic drugs often result in side effects such as emesis, dry mouth, headache, dysentery and constipation. Probiotics and goat milk have garnered widespread attention for their ability to modulate immune function and regulate the endocrine system, and for their anti-inflammatory effects. In this work, the effects of Tibetan goat kefir on the behavior, immune status, neuroendocrine response and gut microbiological composition of chronic unpredictable mild stress (CUMS) mouse models were evaluated. RESULTS: The results indicated that Tibetan kefir goat milk significantly alleviated behavioral despair in mice. Furthermore, the results demonstrated that Tibetan kefir goat milk mitigated the inflammatory response in the mice and moderated the hyperactivity of the hypothalamic-pituitary-adrenal axis and the expression of brain-derived neurotrophic factor. Meanwhile, chronic stress-induced gut microbial abnormalities were restored. In addition, the correlation between gut microbiota and nervous system was evaluated. CONCLUSION: These results explained the potential mechanism of Tibetan kefir in the antidepressant effect on the CUMS model and enriched diets for depressed patients. © 2024 Society of Chemical Industry.

19.
Chin J Cancer Res ; 36(2): 226-232, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38751434

RESUMEN

Colorectal cancer has a high incidence and mortality rate in China, with the majority of cases being middle and low rectal cancer. Surgical intervention is currently the main treatment modality for locally advanced rectal cancer, with the common goal of improving oncological outcomes while preserving function. The controversy regarding the circumferential resection margin distance in rectal cancer surgery has been resolved. With the promotion of neoadjuvant therapy concepts and advancements in technology, treatment strategies have become more diverse. Following tumor downstaging, there is an increasing trend towards extending the safe distance of distal rectal margin. This provides more opportunities for patients with low rectal cancer to preserve their anal function. However, there is currently no consensus on the specific distance of distal resection margin.

20.
Immunology ; 169(2): 141-156, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36510675

RESUMEN

Taurine (Tau) is a special sulphur-containing amino acid and has been widely used as a dietary supplement. Although Tau exists in lymphocytes in large quantities, the physiological significance of Tau to modulate human immunity is unknown. In the present study, we first found that Tau regulates the B-cell receptor (BCR)-mediated signal transduction and induces the B cells activation. The IgG production of mice after ovalbumin immunization was also increased by Tau administration. Moreover, the isothermal titration calorimetry and surface plasmon resonance analysis have shown that Tau specifically bound to the IgG2a-BCR. The Tau could bind to IgG F(ab')2 regions via fluorescence spectroscopy analysis. In the molecular docking analysis, Tau bound to the framework regions (FRs) of variable region of the heavy chains (VH ) and in the light chains (VL ) of IgG2a-BCR. Our results suggested that Tau could improve the activation of B cells by interaction with the VH /VL FRs of BCR.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Región Variable de Inmunoglobulina , Animales , Ratones , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Taurina , Simulación del Acoplamiento Molecular , Receptores de Antígenos de Linfocitos B , Inmunoglobulina G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA