Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Med ; 22(1): 226, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840198

RESUMEN

BACKGROUND: Previous studies have linked adolescent motherhood to adverse neurodevelopmental outcomes in offspring, yet the sex-specific effect and underlying mechanisms remain unclear. METHODS: This study included 6952 children aged 9-11 from the Adolescent Brain Cognitive Development study. The exposed group consisted of children of mothers < 20 years at the time of birth, while the unexposed group was composed of children of mothers aged 20-35 at birth. We employed a generalized linear mixed model to investigate the associations of adolescent motherhood with cognitive, behavioral, and autistic-like traits in offspring. We applied an inverse-probability-weighted marginal structural model to examine the potential mediating factors including adverse perinatal outcomes, family conflict, and brain structure alterations. RESULTS: Our results revealed that children of adolescent mothers had significantly lower cognitive scores (ß, - 2.11, 95% CI, - 2.90 to - 1.31), increased externalizing problems in male offspring (mean ratio, 1.28, 95% CI, 1.08 to 1.52), and elevated internalizing problems (mean ratio, 1.14, 95% CI, 0.99 to 1.33) and autistic-like traits (mean ratio, 1.22, 95% CI, 1.01 to 1.47) in female. A stressful family environment mediated ~ 70% of the association with internalizing problems in females, ~ 30% with autistic-like traits in females, and ~ 20% with externalizing problems in males. Despite observable brain morphometric changes related to adolescent motherhood, these did not act as mediating factors in our analysis, after adjusting for family environment. No elevated rate of adverse perinatal outcomes was observed in the offspring of adolescent mothers in this study. CONCLUSIONS: Our results reveal distinct sex-specific neurodevelopmental outcomes impacts of being born to adolescent mothers, with a substantial mediating effect of family environment on behavioral outcomes. These findings highlight the importance of developing sex-tailored interventions and support the hypothesis that family environment significantly impacts the neurodevelopmental consequences of adolescent motherhood.


Asunto(s)
Trastorno Autístico , Encéfalo , Cognición , Problema de Conducta , Humanos , Femenino , Masculino , Niño , Encéfalo/crecimiento & desarrollo , Adolescente , Cognición/fisiología , Conflicto Familiar , Madres , Adulto , Embarazo , Adulto Joven , Embarazo en Adolescencia , Factores Sexuales
2.
Psychol Med ; 54(2): 359-373, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37376848

RESUMEN

BACKGROUND: Childhood is a crucial neurodevelopmental period. We investigated whether childhood reading for pleasure (RfP) was related to young adolescent assessments of cognition, mental health, and brain structure. METHODS: We conducted a cross-sectional and longitudinal study in a large-scale US national cohort (10 000 + young adolescents), using the well-established linear mixed model and structural equation methods for twin study, longitudinal and mediation analyses. A 2-sample Mendelian randomization (MR) analysis for potential causal inference was also performed. Important factors including socio-economic status were controlled. RESULTS: Early-initiated long-standing childhood RfP (early RfP) was highly positively correlated with performance on cognitive tests and significantly negatively correlated with mental health problem scores of young adolescents. These participants with higher early RfP scores exhibited moderately larger total brain cortical areas and volumes, with increased regions including the temporal, frontal, insula, supramarginal; left angular, para-hippocampal; right middle-occipital, anterior-cingulate, orbital areas; and subcortical ventral-diencephalon and thalamus. These brain structures were significantly related to their cognitive and mental health scores, and displayed significant mediation effects. Early RfP was longitudinally associated with higher crystallized cognition and lower attention symptoms at follow-up. Approximately 12 h/week of youth regular RfP was cognitively optimal. We further observed a moderately significant heritability of early RfP, with considerable contribution from environments. MR analysis revealed beneficial causal associations of early RfP with adult cognitive performance and left superior temporal structure. CONCLUSIONS: These findings, for the first time, revealed the important relationships of early RfP with subsequent brain and cognitive development and mental well-being.


Asunto(s)
Salud Mental , Placer , Adulto , Adolescente , Humanos , Niño , Estudios Longitudinales , Estudios Transversales , Lectura , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Cognición
3.
Appl Microbiol Biotechnol ; 108(1): 220, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372806

RESUMEN

Aeromonas is the main pathogen causing bacterial diseases in fish. The disadvantages of chemical drugs to control fish diseases have been highlighted, and it is urgent to find an eco-friendly control method. In this study, an actinomycete strain with antibacterial activity against fish pathogenic bacteria was screened from soil samples. Combined with morphological characteristics, physiological and biochemical characteristics, and gyrB gene and whole genome comparison analysis, it was identified as a new strain of Streptomyces enissocaesilis, named Streptomyces enissocaesilis L-82. The strain has broad-spectrum antibacterial activity against fish pathogens. A substance with a mass-to-charge ratio of 227.20 [M + H] + was isolated and purified by high-performance liquid chromatography and mass spectrometry. It was presumed to be a derivative of 5-dimethylallylindole-3-acetonitrile. The strain is safe and non-toxic to crucian carp, and can stably colonize crucian carp and inhibit the proliferation of A. hydrophila. After feeding the feed containing 1 × 108 CFU/mL strain concentration, the weight growth rate and specific growth rate of crucian carp increased, the activity of ACP and SOD in serum increased, and the survival rate of crucian carp increased after challenge. Genome-wide analysis showed that the strain had strong ability to metabolize and tolerate extreme environments. And has a strong potential for disease resistance. Therefore, the strain is expected to be developed as a feed additive for fish farming. KEY POINTS: • The new Streptomyces enissocaesilis L-82 has a broad spectrum and stable antibacterial activity and meets the safety standards of feed additives. • Strain L-82 can colonize crucian carp, improve the growth, antioxidant, and immune performance of the host, and improve the survival rate after being infected with A. hydrophila. • Genome-wide analysis suggests that the strain has great disease resistance potential and is expected to be developed as a feed additive for fish culture.


Asunto(s)
Carpas , Carpa Dorada , Streptomyces , Animales , Resistencia a la Enfermedad , Antibacterianos/farmacología
4.
World J Microbiol Biotechnol ; 40(3): 101, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38366186

RESUMEN

Xenorhabdus, known for its symbiotic relationship with Entomopathogenic nematodes (EPNs), belongs to the Enterobacteriaceae family. This dual-host symbiotic nematode exhibits pathogenic traits, rendering it a promising biocontrol agent against insects. Our prior investigations revealed that Xenorhabdus stockiae HN_xs01, isolated in our laboratory, demonstrates exceptional potential in halting bacterial growth and displaying anti-tumor activity. Subsequently, we separated and purified the supernatant of the HN_xs01 strain and obtained a new compound with significant inhibitory activity on tumor cells, which we named XNAE. Through LC-MS analysis, the mass-to-nucleus ratio of XNAE was determined to be 254.24. Our findings indicated that XNAE exerts a time- and dose-dependent inhibition on B16 and HeLa cells. After 24 h, its IC50 for B16 and HeLa cells was 30.178 µg/mL and 33.015 µg/mL, respectively. Electron microscopy revealed conspicuous damage to subcellular structures, notably mitochondria and the cytoskeleton, resulting in a notable reduction in cell numbers among treated tumor cells. Interestingly, while XNAE exerted a more pronounced inhibitory effect on B16 cells compared to HeLa cells, it showed no discernible impact on HUVEC cells. Treatment of B16 cells with XNAE induced early apoptosis and led to cell cycle arrest in the G2 phase, as evidenced by flow cytometry analysis. The impressive capability of X. stockiae HN_xs01 in synthesizing bioactive secondary metabolites promises to significantly expand the reservoir of natural products. Further exploration to identify the bioactivity of these compounds holds the potential to shed light on their roles in bacteria-host interaction. Overall, these outcomes underscore the promising potential of XNAE as a bioactive compound for tumor treatment.


Asunto(s)
Nematodos , Xenorhabdus , Animales , Humanos , Xenorhabdus/metabolismo , Células HeLa , Nematodos/microbiología , Enterobacteriaceae , Simbiosis
5.
Appl Microbiol Biotechnol ; 107(17): 5439-5451, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37428187

RESUMEN

Pirin family proteins perform a variety of biological functions and widely exist in all living organisms. A few studies have shown that Pirin family proteins may be involved in the biosynthesis of antibiotics in actinomycetes. However, the function of Pirin-like proteins in S. spinosa is still unclear. In this study, the inactivation of the sspirin gene led to serious growth defects and the accumulation of H2O2. Surprisingly, the overexpression and knockout of sspirin slightly accelerated the consumption and utilization of glucose, weakened the TCA cycle, delayed sporulation, and enhanced sporulation in the later stage. In addition, the overexpression of sspirin can enhance the ß-oxidation pathway and increase the yield of spinosad by 0.88 times, while the inactivation of sspirin hardly produced spinosad. After adding MnCl2, the spinosad yield of the sspirin overexpression strain was further increased to 2.5 times that of the wild-type strain. This study preliminarily revealed the effects of Pirin-like proteins on the growth development and metabolism of S. spinosa and further expanded knowledge of Pirin-like proteins in actinomycetes. KEY POINTS: • Overexpression of the sspirin gene possibly triggers carbon catabolite repression (CCR) • Overexpression of the sspirin gene can promote the synthesis of spinosad • Knockout of the sspirin gene leads to serious growth and spinosad production defects.


Asunto(s)
Actinobacteria , Saccharopolyspora , Peróxido de Hidrógeno/metabolismo , Saccharopolyspora/metabolismo , Actinobacteria/metabolismo , Macrólidos/metabolismo , Combinación de Medicamentos
6.
J Fish Dis ; 46(2): 99-112, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36263741

RESUMEN

The Streptomyces lateritius Z1-26 was isolated from soil samples which showed broad-spectrum antibacterial activity against a broad range of fish pathogens. The In Vivo Imaging System (IVIS) monitored that strain Z1-26 could survive and colonize in the gills and abdomen of crucian carp. The effects of dietary supplementation with strain Z1-26 were evaluated with respect to the growth performance, antioxidant capacity, and immune response of crucian carp. The results showed that the Z1-26-fed fish had a significantly higher growth rate than the fish fed the control diet. The immune and antioxidant parameters revealed that the non-specific immune indicators (AKP, SOD, and LZM) of the serum, the expression of immune-related genes (IgM, C3, and LZM), and antioxidant-related genes (Nrf2 and Keap1) of the immune organs were significantly increased, whereas the expression of pro-inflammatory factors (IL-1ß, IL-8, and TNF-α) of the immune organs was significantly down-regulated in crucian carp fed strain Z1-26 compared with fish fed a control diet. Moreover, fish fed with Z1-26 supplemented diets showed a significantly improved survival rate after Aeromonas hydrophila infection. In addition, the whole genome analysis showed that strain Z1-26 possesses 28 gene clusters, including 6 polyketide synthetase (PKS), 4 non-ribosomal peptide-synthetase (NRPS), 1 bacteriocin, and 1 lantipeptide. In summary, these results indicated that strain Z1-26 could improve the growth performance and disease resistance in crucian carp, and has the potential to be developed as a candidate probiotics for the control of bacterial diseases in aquaculture.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Carpa Dorada/genética , Carpas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Antioxidantes/metabolismo , Enfermedades de los Peces/microbiología , Factor 2 Relacionado con NF-E2/metabolismo , Dieta , Antibacterianos/farmacología , Aeromonas hydrophila/fisiología , Proteínas de Peces/genética , Alimentación Animal/análisis
7.
Microb Pathog ; 169: 105646, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716927

RESUMEN

Aeromonas veronii AvX005 is a pathogenic bacterium with high toxicity to grass carp (Ctenopharyngodon idellus). The expression levels of g-type (goose-type lysozyme, Lys-g) and c-type lysozyme (chicken-type lysozyme, Lys-c) in the spleen of grass carp infected with AvX005 were significantly increased by approximately 4.5 times and 27 times, respectively. The recombinant proteins rLys-g and rLys-c produced in a recombinant expression system of Escherichia coli showed significant antibacterial activity against the pathogenic bacteria AvX005. A challenge test was conducted after rLys-g and rLys-c were expressed in grass carp L8824 liver cells, and compared with the survival rate of the control cells (46.3%), the survival rate of the experimental cells (77.6% for rLys-g and 68.6% for rLys-c) was significantly increased. Grass carp were infected with AvX005 on the second day after delivering pcDNA3.1-lys-g and pcDNA-lys-c with the Quil A/cholesterol/DDA/Carbopol (QCDC) adjuvant, and both pcDNA3.1-lys-g and pcDNA-lys-c provided 70% relative protection for grass carp. The activity of lysozyme and alkaline phosphatase in the serum of grass carp was significantly increased after injection of DNA. The expression of the immune factors IgM, C3 and IL8 in the kidney was upregulated to varying degrees for pcDNA3.1-lys-g and immune factors C3 and IgM was upregulated for pcDNA-lys-c. The results indicated that pcDNA3.1-lys-g and pcDNA-lys-c may be used as immunostimulants to protect grass carp from the pathogenic bacterium AvX005.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Resinas Acrílicas , Adyuvantes Inmunológicos/farmacología , Aeromonas hydrophila/fisiología , Aeromonas veronii , Animales , Carpas/metabolismo , Colesterol , Enfermedades de los Peces/microbiología , Inmunidad Innata , Inmunoglobulina M , Muramidasa/genética , Muramidasa/farmacología , Saponinas de Quillaja
8.
Microb Pathog ; 166: 105488, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367573

RESUMEN

Many fishes infected with Pseudomonas plecoglossicida generally suffer from "visceral white spot disease" or even die. In this study, a dominant pathogen strain was isolated from the intestinal tract of diseased crucian carp in the Wangcheng Lake area, Changsha, and it was identified as P. plecoglossicida. The selected strain was a new strain named as P. plecoglossicida LQJ06.Strain LQJ06 basically colonized the intestine and poisoned zebrafish as show by fluorescent labelling. Pathological structural analysis of tissue sections indicated that the intestinal tract was seriously damaged, epithelial cells in the intestinal tissue were necrotic, intestinal villi were sloughed, liver cells were vacuolated, nuclei were pyknotic and shifted, and lymphocytes were proliferated in the spleen. P. plecoglossicida LQJ06 strain could invade and proliferate in the grass carp liver cell line L8824, which led to a stress response, including apoptosis. Cell morphology was changed owing to the toxicity of the culture supernatant of the LQJ06 strain, which mainly manifested as aggregation between cells, pyknosisd and slow growth or even death. An inactivated vaccine derived from P. plecoglossicida LQJ06 prepared in this study was safe and nontoxic to grass carp liver cells. Compared with those after oral administration, most of the cellular immune factors were expressed earlier and at a higher level after injection immunization. The intestinal tract and liver from zebrafish mainly expressed the IFN-γ2 and IL-1ß genes, respectively, after immunization. The upregulation of these immune-related genes proved that the vaccine could strengthen the immunity of zebrafish, induce inflammation and promote resistance to pathogenic infection. The results of these preliminary tests provide a scientific basis for further research on the prevention and control of P. plecoglossicida, and an essential preliminary basis for the development of an inactivated vaccine against P. plecoglossicida.


Asunto(s)
Carpas , Enfermedades de los Peces , Animales , Enfermedades de los Peces/prevención & control , Pseudomonas , Vacunas de Productos Inactivados , Virulencia , Pez Cebra
9.
Appl Microbiol Biotechnol ; 106(23): 7857-7866, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36326838

RESUMEN

Xenorhabdus can produce a large number of secondary metabolites with insecticidal, bacteriostatic, and antitumor activities. Efficient gene editing tools will undoubtedly facilitate the functional genomics research and bioprospecting in Xenorhabdus. In this study, BlastP analysis using the amino acid sequences of Redαß or RecET recombinases as queries resulted in the identification of an operon (XBJ1_operon 0213) containing RecET-like recombinases encoding genes from the genome of Xenorhabdus bovienii strain SS-2004. Three proteins encoded by this operon was indispensable for full activity of recombineering, namely XBJ1-1173 (RecE-like protein), XBJ1-1172 (RecT-like protein), and XBJ1-1171 (single-strand annealing protein). Using this newly developed recombineering system, a gene cluster responsible for biosynthesis of a novel secondary metabolite (Min16) was identified from X. stockiae HN_xs01 strain. Min16 which exhibited antibacterial and cytotoxic activities was determined to be a cyclopeptide composed of Acyl-Phe-Thr-Phe-Pro-Pro-Leu-Val by using high-resolution mass spectrometry and nuclear magnetic resonance analysis, and was designated as changshamycin. This host-specific recombineering system was proven to be effective for gene editing in Xenorhabdus, allowing for efficient discovery of novel natural products with attractive bioactivities. KEY POINTS: • Screening and identification of efficient gene editing tools from Xenorhabdus • Optimization of the Xenorhabdus electroporation parameters • Discovery of a novel cyclopeptide compound with multiple biological activities.


Asunto(s)
Productos Biológicos , Xenorhabdus , Xenorhabdus/genética , Recombinasas/genética , Recombinasas/metabolismo , Productos Biológicos/metabolismo , Operón , Péptidos Cíclicos/metabolismo
10.
Appl Microbiol Biotechnol ; 106(8): 3081-3091, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35376972

RESUMEN

PII signal transduction proteins are widely found in bacteria and plant chloroplast, and play a central role in nitrogen metabolism regulation, which interact with many key proteins in metabolic pathways to regulate carbon/nitrogen balance by sensing changes in concentrations of cell-mediated indicators such as α-ketoglutarate. In this study, the knockout strain Saccharopolyspora pogona-ΔpII and overexpression strain S. pogona-pII were constructed using CRISPR/Cas9 technology and the shuttle vector POJ260, respectively, to investigate the effects on the growth and secondary metabolite biosynthesis of S. pogona. Growth curve, electron microscopy, and spore germination experiments were performed, and it was found that the deletion of the pII gene inhibited the growth to a certain extent in the mutant. HPLC analysis showed that the yield of butenyl-spinosyn in the S. pogona-pII strain increased to 245% than that in the wild-type strain while that in S. pogona-ΔpII decreased by approximately 51%. This result showed that the pII gene can promote the growth and butenyl-spinosyn biosynthesis of S. pogona. This research first investigated PII nitrogen metabolism regulators in S. pogona, providing significant scientific evidence and a research basis for elucidating the mechanism by which these factors regulate the growth of S. pogona, optimizing the synthesis network of butenyl-spinosyn and constructing a strain with a high butenyl-spinosyn yield. KEY POINTS: • pII key nitrogen regulatory gene deletion can inhibit the growth and development of S. pogona. • Overexpressed pII gene can significantly promote the butenyl-spinosyn biosynthesis. • pII gene can affect the amino acid circulation and the accumulation of butenyl-spinosyn precursors in S. pogona.


Asunto(s)
Nitrógeno , Saccharopolyspora , Proteínas Bacterianas/genética , Genes Reguladores , Macrólidos/metabolismo , Nitrógeno/metabolismo , Saccharopolyspora/metabolismo
11.
Environ Microbiol ; 23(4): 2230-2243, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33331075

RESUMEN

Lysine metabolism plays an important role in the formation of the insecticidal crystal proteins of Bacillus thuringiensis (Bt). The genes lam, gabD and sucA encode three key enzymes of the lysine metabolic pathway in Bt4.0718. The lam gene mainly affects the cell growth at stable period, negligibly affected sporulation and insecticidal crystal protein (ICP) production. While, the deletion mutant strains of the gabD and sucA genes showed that the growth, sporulation and crystal protein formation were inhibited, cells became slender, and insecticidal activity was significantly reduced. iTRAQ proteomics and qRT-PCR used to analyse the differentially expressed protein (DEP) between the two mutant strains and the wild type strain. The functions of DEPs were visualized and statistically classified, which affect bacterial growth and metabolism by regulating biological metabolism pathways: the major carbon metabolism pathways, amino acid metabolism, oxidative phosphorylation pathways, nucleic acid metabolism, fatty acid synthesis and peptidoglycan synthesis. The gabD and sucA genes in lysine metabolic pathway are closely related to the sporulation and crystal proteins formation. The effects of DEPs and functional genes on basic cellular metabolic pathways were studied to provide new strategies for the construction of highly virulent insecticidal strains, the targeted transformation of functional genes.


Asunto(s)
Bacillus thuringiensis , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Endotoxinas , Técnicas de Inactivación de Genes , Proteínas Hemolisinas , Lisina
12.
Microb Pathog ; 161(Pt A): 105273, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34740811

RESUMEN

The Streptomyces virginiae strain W18 was screened from soil, which exhibited broad-spectrum antibacterial activity against fish pathogens. Safety assays showed that strain W18 had no toxicity to fish. Additionally, strain W18 promoted the growth performance of Carassius auratus after feeding in feed mixed with bacteria for one month. Moreover, the activities of AKP, ACP, and SOD in the serum of C. auratus were significantly increased, while the activity of LZM did not greatly change. To detect the expression levels of the genes related to immune factors in the livers, kidneys, and spleens of C. auratus, qRT-PCR was performed. The expression levels of KEAP1, IL-8, TNF-α, IL-ß, and C3 were upregulated in all three organs compared to the control, but LZM expression was downregulated in the kidney. The challenge experiment illustrated that the probability of infection with Aeromonas veronii was reduced by 60% and 40% when C. auratus was fed with two different doses of strain W18 in advance. The whole genome of strain W18 was sequenced, and the gene clusters of secondary metabolites in strain W18 were analyzed by AntiSMASH. The results showed that strain W18 contained a total of 26 gene clusters, and functional annotation analysis was conducted by using the non-coding databases COG and KEGG. All of the above results indicated that the use of strain W18 as a feed additive could enhance the resistance of C. auratus toward pathogenic bacteria and disease. In conclusion, an antagonistic strain (W18) against fish pathogenic bacteria was obtained in this study, which is of great significance for finding new treatment methods for bacterial diseases in the aquaculture industry.


Asunto(s)
Aeromonas veronii/patogenicidad , Resistencia a la Enfermedad , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Streptomyces , Alimentación Animal , Animales , Antibiosis , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Carpa Dorada , Infecciones por Bacterias Gramnegativas/veterinaria , Streptomyces/genética
13.
Microb Cell Fact ; 20(1): 157, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34391414

RESUMEN

BACKGROUND: Butenyl-spinosyn, produced by Saccharopolyspora pogona, is a promising biopesticide due to excellent insecticidal activity and broad pesticidal spectrum. Bacterioferritin (Bfr, encoded by bfr) regulates the storage and utilization of iron, which is essential for the growth and metabolism of microorganisms. However, the effect of Bfr on the growth and butenyl-spinosyn biosynthesis in S. pogona has not been explored. RESULTS: Here, we found that the storage of intracellular iron influenced butenyl-spinosyn biosynthesis and the stress resistance of S. pogona, which was regulated by Bfr. The overexpression of bfr increased the production of butenyl-spinosyn by 3.14-fold and enhanced the tolerance of S. pogona to iron toxicity and oxidative damage, while the knockout of bfr had the opposite effects. Based on the quantitative proteomics analysis and experimental verification, the inner mechanism of these phenomena was explored. Overexpression of bfr enhanced the iron storage capacity of the strain, which activated polyketide synthase genes and enhanced the supply of acyl-CoA precursors to improve butenyl-spinosyn biosynthesis. In addition, it induced the oxidative stress response to improve the stress resistance of S. pogona. CONCLUSION: Our work reveals the role of Bfr in increasing the yield of butenyl-spinosyn and enhancing the stress resistance of S. pogona, and provides insights into its enhancement on secondary metabolism, which provides a reference for optimizing the production of secondary metabolites in actinomycetes.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Grupo Citocromo b/genética , Grupo Citocromo b/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Insecticidas/metabolismo , Hierro/metabolismo , Macrólidos/metabolismo , Saccharopolyspora/metabolismo , Proteínas Bacterianas/farmacología , Grupo Citocromo b/farmacología , Ferritinas/farmacología , Ingeniería Genética , Macrólidos/clasificación , Proteómica , Saccharopolyspora/efectos de los fármacos , Saccharopolyspora/genética , Saccharopolyspora/crecimiento & desarrollo
14.
Appl Microbiol Biotechnol ; 105(4): 1519-1533, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33484320

RESUMEN

Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and broad pesticidal spectrum. However, its synthetic level was low in the wild-type strain. At present, important functional genes involved in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently editing its genome to improve the butenyl-spinosyn yield. To accelerate the genetic modification of S. pogona, we conducted comparative proteomics analysis to screen differentially expressed proteins related to butenyl-spinosyn biosynthesis. A TetR family regulatory protein was selected from the 289 differentially expressed proteins, and its encoding gene (SP_1288) was successfully deleted by CRISPR/Cas9 system. We further deleted a 32-kb polyketide synthase gene cluster (cluster 28) to reduce the competition for precursors. Phenotypic analysis revealed that the deletion of the SP_1288 and cluster 28 resulted in a 3.10-fold increase and a 35.4% decrease in the butenyl-spinosyn levels compared with the wild-type strain, respectively. The deletion of cluster 28 affected the cell growth, glucose consumption, mycelium morphology, and sporulation by controlling the expression of ptsH, ptsI, amfC, and other genes related to sporulation, whereas SP_1288 did not. These findings confirmed not only that the CRISPR/Cas9 system can be applied to the S. pogona genome editing but also that SP_1288 and cluster 28 are closely related to the butenyl-spinosyn biosynthesis and growth development of S. pogona. The strategy reported here will be useful to reveal the regulatory mechanism of butenyl-spinosyn and improve antibiotic production in other actinomycetes. KEY POINTS: • SP_1288 deletion can significantly promote the butenyl-spinosyn biosynthesis. • Cluster 28 deletion showed pleiotropic effects on S. pogona. • SP_1288 and cluster 28 were deleted by CRISPR/Cas9 system in S. pogona.


Asunto(s)
Sintasas Poliquetidas , Saccharopolyspora , Macrólidos , Familia de Multigenes , Sintasas Poliquetidas/genética , Saccharopolyspora/genética
15.
Microb Cell Fact ; 19(1): 195, 2020 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-33069248

RESUMEN

BACKGROUND: A new Bacillus thuringiensis X023 (BtX023) with high insecticidal activity was isolated in Hunan Province, China. The addition of metals (Cu, Fe, Mg and Mn) to the medium could influence the formation of spores and/or insecticidal crystal proteins (ICPs). In previous studies, Cu ions considerably increased the synthesis of ICPs by enhancing the synthesis of poly-ß-hydroxy butyrate. However, the present study could provide new insights into the function of Cu ions in ICPs. RESULTS: Bioassay results showed that wild strain BtX023 exhibited high insecticidal activity against Plutella xylostella. The addition of 1 × 10-5 M Cu2+ could considerably increase the expression of cry1Ac and vip3Aa, and the insecticidal activity was enhanced. Quantitative real-time polymerase chain reaction (qRT-PCR) and proteomic analyses revealed that the upregulated proteins included amino acid synthesis, the glyoxylate pathway, oxidative phosphorylation, and poly-ß-hydroxy butyrate synthesis. The Cu ions enhanced energy metabolism and primary amino acid synthesis, will providing abundant raw material accumulation for ICP synthesis. CONCLUSION: The new strain BtX023 exerted a strong insecticidal effect on P. xylostella by producing ICPs. The addition of 1 × 10-5 M Cu2+ in the medium could considerably enhance the expression of the cry1Ac and vip3Aa genes, thereby further increasing the toxicity of BtX023 to Helicoverpa armigera and P. xylostella by enhancing energy synthesis, the glyoxylate cycle, and branched-chain amino acids synthesis, but not poly-ß-hydroxy butyrate synthesis.


Asunto(s)
Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Cationes/farmacología , Cobre/farmacología , Insecticidas , Mariposas Nocturnas/efectos de los fármacos , Animales , Bioensayo , China , Medios de Cultivo/química , Metabolismo Energético , Larva/efectos de los fármacos , Proteómica
16.
Appl Microbiol Biotechnol ; 103(5): 2243-2250, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30617818

RESUMEN

It was reported that the highly conserved C-terminal region of Bacillus thuringiensis Cry1A protoxins was very important for parasporal crystal formation and solubility feature in alkaline environment. In order to improve the solubilization efficiency of Cry2Aa crystal, the coding sequences of Cry2Aa protein and the C-terminal half of Cry1Ac were fused seamlessly through Red/ET homologous recombination and expressed in an acrystalliferous B. thuringiensis strain under the control of the cry1Ac promoter and terminator. Microscopic observation revealed that the recombinant strain containing the chimeric gene cry2Aa-1Ac produced distinct parasporal inclusion with semispherical to approximately cuboidal shape during sporulation. SDS-PAGE analysis showed that this strain expressed stable 130-kDa Cry2Aa-1Ac chimeric protein, which was confirmed to be the correctly expressed product by LC-MS/MS. The chimeric protein inclusion could be effectively dissolved at pH 10.5 and activated by trypsin like the parental Cry1Ac crystal. While, the parental Cry2Aa crystal exhibited very low solubility under this condition. Bioassays against third-instar larvae of Helicoverpa armigera proved that the chimeric protein was more toxic than Cry2Aa. Additionally, synergistic effect was clearly detected between the chimeric protein and Cry1Ac against H. armigera, while there was only additive effect for the combination of wild Cry2Aa and Cry1Ac. These results indicated that the developed chimeric protein might serve as a potent insecticidal toxin used in the field against lepidopteran pests.


Asunto(s)
Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/metabolismo , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Insecticidas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Control Biológico de Vectores/métodos , Precursores de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cromatografía Liquida , Sinergismo Farmacológico , Endotoxinas/química , Endotoxinas/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Insecticidas/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Solubilidad , Espectrometría de Masas en Tándem
17.
Appl Microbiol Biotechnol ; 103(21-22): 8987-8999, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31637491

RESUMEN

This study evaluated the inhibition and interaction of Bacillus velezensis BvL03 as a probiotic agent against Aeromonas hydrophila. Strain BvL03 isolated from sediment samples of fish ponds had excellent antimicrobial activity against several fish pathogenic bacteria, especially Aeromonas, including A. hydrophila, A. veronii, A. caviae, and A. sobria. The successful amplification of lipopeptide antimicrobial chemical biosynthetic genes, including iturin family (ituA, ituB, and ituD), bacillomycin family (bacA, bacD, and bacAB), surfactin family (srfAB, srfC, and srfAA), and subtilosin family (albF and sunT) from the genome of BvL03 strain, confirmed its predominant antimicrobial activity. The challenge test suggested that BvL03 significantly decreased fish mortality when challenged with A. hydrophila, which had a cumulative mortality of 12.5% in the treatment group. Toxicity and hemolytic activity of A. hydrophila after co-cultured with BvL03 were relieved as confirmed by the cell experiments, when the initial inoculated concentration of BvL03 was 109 cfu/mL or higher. Moreover, the BvL03 strain labeled with GFP protein (BvL03-GFP) and AhX040 strain labeled with mCherry protein (AhX040-mCherry) were injected into grass carps. The fluorescence levels were monitored by using In Vivo Imaging System (IVIS), in which the green color was steadily increasing, whereas the red color was gradually weakening. Whole genome sequencing revealed that strain BvL03 possesses 15 gene clusters related to antibacterial compounds, including 5 NRPS gene clusters and 3 PKS gene clusters. These results suggested that B. velezensis BvL03 has the potential to be developed as a probiotic candidate against A. hydrophila infection in aquaculture.


Asunto(s)
Aeromonas hydrophila/fisiología , Antibiosis/fisiología , Bacillus/fisiología , Agentes de Control Biológico/metabolismo , Carpas/microbiología , Enfermedades de los Peces/microbiología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Enfermedades de los Peces/prevención & control , Lipopéptidos/genética , Lipopéptidos/metabolismo , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Probióticos , Secuenciación Completa del Genoma
18.
J Invertebr Pathol ; 163: 82-85, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30928458

RESUMEN

To evaluate the function of conserved cysteine residues in Cry1Ac protoxin, we constructed a series of Cry1Ac mutants in which single or multiple cysteine residues were replaced with serine. It was found that cysteine substitution had little effect on the protoxin expression and bipyramidal crystal formation. Bioassays using Plutella xylostella larvae showed that two mutants with fourteen cysteine residues in the C-terminal half and all sixteen residues replaced had similar toxicity as wildtype Cry1Ac protoxin. Our study suggests that the conserved cysteine resudues in the Cry1Ac protoxin are not essential for deposition into a bipyramidal crystal even though the C-terminal half was directly involved in crystal formation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cisteína/genética , Endotoxinas/química , Endotoxinas/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Animales , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/biosíntesis , Bioensayo , Cisteína/metabolismo , Endotoxinas/toxicidad , Genes Bacterianos , Proteínas Hemolisinas/toxicidad , Larva/efectos de los fármacos , Larva/microbiología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Mutación , Control Biológico de Vectores , Precursores de Proteínas/biosíntesis
19.
BMC Med Genet ; 19(1): 192, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30376821

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder in which genetics plays a key aetiological role. The gene encoding NAD(P)H steroid dehydrogenase-like protein (NSDHL) is expressed in developing cortical neurons and glia, and its mutation may result in intellectual disability or congenital hemidysplasia. CASE PRESENTATION: An 8-year-old boy presented with a 260-kb NSDHL-containing duplication at Xq28 (151,868,909 - 152,129,300) inherited from his mother. His clinical features included defects in social communication and interaction, restricted interests, attention deficit, impulsive behaviour, minor facial anomalies and serum free fatty acid abnormality. CONCLUSION: This is the first report of an ASD patient with a related NSDHL-containing duplication at Xq28. Further studies and case reports are required for genetic research to demonstrate that duplication as well as mutation can cause neurodevelopmental diseases.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/genética , Trastorno del Espectro Autista/genética , Duplicación Cromosómica , Cromosomas Humanos Par 10/química , Herencia Materna , Adulto , Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/fisiopatología , Niño , Ácidos Grasos no Esterificados/sangre , Femenino , Dosificación de Gen , Expresión Génica , Humanos , Masculino
20.
Microb Cell Fact ; 17(1): 31, 2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-29482589

RESUMEN

BACKGROUND: Syringolin, synthesized by a mixed non-ribosomal peptide synthetase/polyketide synthetase in Pseudomonas syringae pv. syringae (Pss) B728a, is a novel eukaryotic proteasome inhibitor. Meanwhile, directly modifying large fragments in the PKS/NRPS gene cluster through traditional DNA engineering techniques is very difficult. In this study, we directly cloned the syl gene cluster from Pss B301D-R via Red/ET recombineering to effectively express syringolin in heterologous hosts. RESULTS: A 22 kb genomic fragment containing the sylA-sylE gene cluster was cloned into the pASK vector, and the obtained recombinant plasmid was transferred into Streptomyces coelicolor and Streptomyces lividans for the heterologous expression of syringolin. Transcriptional levels of recombinant syl gene in S. coelicolor M145 and S. lividans TK24 were evaluated via RT-PCR and the production of syringolin compounds was detected via LC-MS analysis. The extracts of the engineered bacteria showed cytotoxic activity to B16, 4T1, Meth-A, and HeLa tumor cells. It is noteworthy that the syringolin displayed anticancer activity against C57BL/6 mice with B16 murine melanoma tumor cells. Together, our results herein demonstrate the potential of syrinolin as effective antitumor agent that can treat various cancers without apparent adverse effects. CONCLUSIONS: This present study is the first to report the heterologous expression of the entire syl gene cluster in Streptomyces strains and the successful expression of syringolin in both S. coelicolor M145 and S. lividans TK24. Syringolin derivatives demonstrated high cytotoxicity in vitro and in vivo. Hence, this paper provided an important foundation for the discovery and production of new antitumor compounds.


Asunto(s)
Antineoplásicos/farmacología , Péptidos Cíclicos/farmacología , Pseudomonas syringae/química , Animales , Clonación Molecular , Ingeniería Genética , Células HeLa , Humanos , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Familia de Multigenes , Péptidos Cíclicos/genética , Pseudomonas syringae/genética , Recombinación Genética , Streptomyces coelicolor/metabolismo , Streptomyces lividans/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA