Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Viruses ; 14(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35215932

RESUMEN

There are currently no antiviral agents for human metapneumovirus (HMPV), respiratory syncytial virus (RSV), mumps virus (MuV), or measles virus (MeV). Favipiravir has been developed as an anti-influenza agent, and this agent may be effective against these viruses in vitro. However, the molecular mechanisms through which the agent affects virus replication remain to be fully elucidated. Thus, to clarify the detailed molecular interactions between favipiravir and the RNA-dependent RNA polymerase (RdRp) of HMPV, RSV, MuV, MeV, and influenza virus, we performed in silico studies using authentic bioinformatics technologies. As a result, we found that the active form of favipiravir (favipiravir ribofuranosyl-5'-triphosphate [F-RTP]) can bind to the RdRp active sites of HMPV, RSV, MuV, and MeV. The aspartic acid residue of RdRp active sites was involved in the interaction. Moreover, F-RTP was incorporated into the growing viral RNA chain in the presence of nucleotide triphosphate and magnesium ions. The results suggested that favipiravir shows two distinct mechanisms in various viruses: RdRp active site inhibition and/or genome replication inhibition.


Asunto(s)
Amidas/química , Antivirales/química , Pirazinas/química , Virus ARN/química , Secuencia de Aminoácidos , Dominio Catalítico , Magnesio/química , Simulación del Acoplamiento Molecular , Nucleótidos/química , Conformación Proteica , Virus ARN/clasificación , ARN Viral/química , ARN Polimerasa Dependiente del ARN/química , Alineación de Secuencia
2.
Microorganisms ; 10(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36014079

RESUMEN

DNA gyrase plays important roles in genome replication in various bacteria, including Pseudomonasaeruginosa. The gyrA gene encodes the gyrase subunit A protein (GyrA). Mutations in GyrA are associated with resistance to quinolone-based antibiotics. We performed a detailed molecular evolutionary analyses of the gyrA gene and associated resistance to the quinolone drug, ciprofloxacin, using bioinformatics techniques. We produced an evolutionary phylogenetic tree using the Bayesian Markov Chain Monte Carlo (MCMC) method. This tree indicated that a common ancestor of the gene was present over 760 years ago, and the offspring formed multiple clusters. Quinolone drug-resistance-associated amino-acid substitutions in GyrA, including T83I and D87N, emerged after the drug was used clinically. These substitutions appeared to be positive selection sites. The molecular affinity between ciprofloxacin and the GyrA protein containing T83I and/or D87N decreased significantly compared to that between the drug and GyrA protein, with no substitutions. The rate of evolution of the gene before quinolone drugs were first used in the clinic, in 1962, was significantly lower than that after the drug was used. These results suggest that the gyrA gene evolved to permit the bacterium to overcome quinolone treatment.

3.
Viruses ; 13(12)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34960794

RESUMEN

We performed evolution, phylodynamics, and reinfection-related antigenicity analyses of respiratory syncytial virus subgroup A (RSV-A) fusion (F) gene in globally collected strains (1465 strains) using authentic bioinformatics methods. The time-scaled evolutionary tree using the Bayesian Markov chain Monte Carlo method estimated that a common ancestor of the RSV-A, RSV-B, and bovine-RSV diverged at around 450 years ago, and RSV-A and RSV-B diverged around 250 years ago. Finally, the RSV-A F gene formed eight genotypes (GA1-GA7 and NA1) over the last 80 years. Phylodynamics of RSV-A F gene, including all genotype strains, increased twice in the 1990s and 2010s, while patterns of each RSV-A genotype were different. Phylogenetic distance analysis suggested that the genetic distances of the strains were relatively short (less than 0.05). No positive selection sites were estimated, while many negative selection sites were found. Moreover, the F protein 3D structure mapping and conformational epitope analysis implied that the conformational epitopes did not correspond to the neutralizing antibody binding sites of the F protein. These results suggested that the RSV-A F gene is relatively conserved, and mismatches between conformational epitopes and neutralizing antibody binding sites of the F protein are responsible for the virus reinfection.


Asunto(s)
Evolución Molecular , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/genética , Proteínas del Envoltorio Viral/genética , Animales , Anticuerpos Neutralizantes , Teorema de Bayes , Bovinos , Epítopos , Genotipo , Humanos , Cadenas de Markov , Filogenia , Virus Sincitial Respiratorio Humano/genética , Virus Sincitiales Respiratorios/clasificación , Proteínas del Envoltorio Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA