Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 289(35): 24188-201, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25016017

RESUMEN

Stromal interacting molecule 1 (STIM1) regulates store-operated Ca(2+) entry (SOCE). Here we show that STIM1 expression in endothelial cells (ECs) is increased during sepsis and, therefore, contributes to hyperpermeability. LPS induced STIM1 mRNA and protein expression in human and mouse lung ECs. The induced STIM1 expression was associated with augmented SOCE as well as a permeability increase in both in vitro and in vivo models. Because activation of both the NF-κB and p38 MAPK signaling pathways downstream of TLR4 amplifies vascular inflammation, we studied the influence of these two pathways on LPS-induced STIM1 expression. Inhibition of either NF-κB or p38 MAPK activation by pharmacological agents prevented LPS-induced STIM1 expression. Silencing of the NF-κB proteins (p65/RelA or p50/NF-κB1) or the p38 MAPK isoform p38α prevented LPS-induced STIM1 expression and increased SOCE in ECs. In support of these findings, we found NF-κB and AP1 binding sites in the 5'-regulatory region of human and mouse STIM1 genes. Further, we demonstrated that LPS induced time-dependent binding of the transcription factors NF-κB (p65/RelA) and AP1 (c-Fos/c-Jun) to the STIM1 promoter. Interestingly, silencing of c-Fos, but not c-Jun, markedly reduced LPS-induced STIM1 expression in ECs. We also observed that silencing of p38α prevented c-Fos expression in response to LPS in ECs, suggesting that p38α signaling mediates the expression of c-Fos. These results support the proposal that cooperative signaling of both NF-κB and AP1 (via p38α) amplifies STIM1 expression in ECs and, thereby, contributes to the lung vascular hyperpermeability response during sepsis.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Endotoxinas/farmacología , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/metabolismo , Animales , Secuencia de Bases , Permeabilidad Capilar , Células Cultivadas , Cartilla de ADN , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Molécula de Interacción Estromal 1 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Am J Pathol ; 184(8): 2237-49, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24929240

RESUMEN

Impairment of tissue fluid homeostasis and migration of inflammatory cells across the vascular endothelial barrier are crucial factors in the pathogenesis of acute lung injury (ALI). The goal for treatment of ALI is to target pathways that lead to profound dysregulation of the lung endothelial barrier. Although studies have shown that chemical epigenetic modifiers can limit lung inflammation in experimental ALI models, studies to date have not examined efficacy of a combination of DNA methyl transferase inhibitor 5-Aza 2-deoxycytidine and histone deacetylase inhibitor trichostatin A (herein referred to as Aza+TSA) after endotoxemia-induced mouse lung injury. We tested the hypothesis that treatment with Aza+TSA after lipopolysaccharide induction of ALI through epigenetic modification of lung endothelial cells prevents inflammatory lung injury. Combinatorial treatment with Aza+TSA mitigated the increased endothelial permeability response after lipopolysaccharide challenge. In addition, we observed reduced lung inflammation and lung injury. Aza+TSA also significantly reduced mortality in the ALI model. The protection was ascribed to inhibition of the eNOS-Cav1-MLC2 signaling pathway and enhanced acetylation of histone markers on the vascular endothelial-cadherin promoter. In summary, these data show for the first time the efficacy of combinatorial Aza+TSA therapy in preventing ALI in lipopolysaccharide-induced endotoxemia and raise the possibility of an essential role of DNA methyl transferase and histone deacetylase in the mechanism of ALI.


Asunto(s)
Lesión Pulmonar Aguda/patología , Azacitidina/análogos & derivados , Permeabilidad Capilar/efectos de los fármacos , Inhibidores Enzimáticos/administración & dosificación , Ácidos Hidroxámicos/administración & dosificación , Pulmón/efectos de los fármacos , Acetilación , Lesión Pulmonar Aguda/enzimología , Animales , Azacitidina/administración & dosificación , Western Blotting , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Decitabina , Modelos Animales de Enfermedad , Quimioterapia Combinada , Células Endoteliales/efectos de los fármacos , Endotoxemia/enzimología , Endotoxemia/patología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Etiquetado Corte-Fin in Situ , Inflamación/enzimología , Inflamación/patología , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
J Biol Chem ; 288(23): 17030-17041, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23625915

RESUMEN

The Ca(2+) sensor STIM1 is crucial for activation of store-operated Ca(2+) entry (SOCE) through transient receptor potential canonical and Orai channels. STIM1 phosphorylation serves as an "off switch" for SOCE. However, the signaling pathway for STIM1 phosphorylation is unknown. Here, we show that SOCE activates AMP-activated protein kinase (AMPK); its effector p38ß mitogen-activated protein kinase (p38ß MAPK) phosphorylates STIM1, thus inhibiting SOCE in human lung microvascular endothelial cells. Activation of AMPK using 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR) resulted in STIM1 phosphorylation on serine residues and prevented protease-activated receptor-1 (PAR-1)-induced Ca(2+) entry. Furthermore, AICAR pretreatment blocked PAR-1-induced increase in the permeability of mouse lung microvessels. Activation of SOCE with thrombin caused phosphorylation of isoform α1 but not α2 of the AMPK catalytic subunit. Moreover, knockdown of AMPKα1 augmented SOCE induced by thrombin. Interestingly, SB203580, a selective inhibitor of p38 MAPK, blocked STIM1 phosphorylation and led to sustained STIM1-puncta formation and Ca(2+) entry. Of the three p38 MAPK isoforms expressed in endothelial cells, p38ß knockdown prevented PAR-1-mediated STIM1 phosphorylation and potentiated SOCE. In addition, inhibition of the SOCE downstream target CaM kinase kinase ß (CaMKKß) or knockdown of AMPKα1 suppressed PAR-1-mediated phosphorylation of p38ß and hence STIM1. Thus, our findings demonstrate that SOCE activates CaMKKß-AMPKα1-p38ß MAPK signaling to phosphorylate STIM1, thereby suppressing endothelial SOCE and permeability responses.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Calcio/metabolismo , Células Endoteliales/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Proteínas de Neoplasias/metabolismo , Receptor PAR-1/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Canales de Calcio , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/fisiología , Células Cultivadas , Células Endoteliales/citología , Técnicas de Silenciamiento del Gen , Humanos , Hipoglucemiantes/farmacología , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteína Quinasa 11 Activada por Mitógenos/genética , Proteínas de Neoplasias/genética , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Receptor PAR-1/genética , Ribonucleótidos/farmacología , Molécula de Interacción Estromal 1
4.
J Biol Chem ; 288(12): 8585-8595, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23362283

RESUMEN

Dentin phosphophoryn (DPP) is a major noncollagenous protein in the dentin matrix. In this study, we demonstrate that pluripotent stem cells such as C3H10T1/2 and human bone marrow cells can be committed to the osteogenic lineage by DPP. Treatment with DPP can stimulate the release of intracellular Ca(2+). This calcium flux triggered the activation of Ca(2+)-calmodulin-dependent protein kinase II (CaMKII). Activated CaMKII induced the phosphorylation of Smad1 and promoted nuclear translocation of p-Smad1. Inhibition of store Ca(2+) depletion by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) or down-regulation of CaMKII by KN-62, a selective cell-permeable pharmacological inhibitor or a dominant negative plasmid of CaMKII, blocked DPP-mediated Smad1 phosphorylation. Activation of Smad1 resulted in the expression of osteogenic markers such as Runx2, Osterix, DMP1, Bone sialoprotein, Osteocalcin, NFATc1, and Schnurri-2, which have been implicated in osteoblast differentiation. These findings suggest that DPP is capable of triggering commitment of pluripotent stem cells to the osteogenic lineage.


Asunto(s)
Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Diferenciación Celular , Proteínas de la Matriz Extracelular/fisiología , Células Madre Mesenquimatosas/enzimología , Fosfoproteínas/fisiología , Sialoglicoproteínas/fisiología , Proteína Smad1/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Antígenos de Diferenciación/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Bovinos , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Fosforilación , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Smad Reguladas por Receptores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Am J Physiol Cell Physiol ; 304(11): C1042-52, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23426966

RESUMEN

Electromechanical coupling via membrane depolarization-mediated activation of voltage-dependent Ca(2+) channels (VDCC) is an important mechanism in regulating pulmonary vascular tone, while mouse is an animal model often used to study pathogenic mechanisms of pulmonary vascular disease. The function of VDCC in mouse pulmonary artery (PA) smooth muscle cells (PASMC), however, has not been characterized, and their functional role in reactive oxygen species (ROS)-mediated regulation of vascular function remains unclear. In this study, we characterized the electrophysiological and pharmacological properties of VDCC in PASMC and the divergent effects of ROS produced by xanthine oxidase (XO) and hypoxanthine (HX) on VDCC in PA and mesenteric artery (MA). Our data show that removal of extracellular Ca(2+) or application of nifedipine, a dihydropyridine VDCC blocker, both significantly inhibited 80 mM K(+)-mediated PA contraction. In freshly dissociated PASMC, the maximum inward Ca(2+) currents were -2.6 ± 0.2 pA/pF at +10 mV (with a holding potential of -70 mV). Window currents were between -40 and +10 mV with a peak at -15.4 mV. Nifedipine inhibited currents with an IC(50) of 0.023 µM, and 1 µM Bay K8644, a dihydropyridine VDCC agonist, increased the inward currents by 61%. XO/HX attenuated 60 mM K(+)-mediated increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) due to Ca(2+) influx through VDCC in PASMC. Exposure to XO/HX caused relaxation in PA preconstricted by 80 mM K(+) but not in aorta and MA. In contrast, H(2)O(2) inhibited high K(+)-mediated increase in [Ca(2+)](cyt) and caused relaxation in both PA and MA. Indeed, RT-PCR and Western blot analysis revealed significantly lower expression of Ca(V)1.3 in MA compared with PA. Thus our study characterized the properties of VDCC and demonstrates that ROS differentially regulate vascular contraction by regulating VDCC in PA and systemic arteries.


Asunto(s)
Canales de Calcio/metabolismo , Contracción Muscular/fisiología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Western Blotting , Ratones , Técnicas de Placa-Clamp , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
J Biol Chem ; 287(16): 13182-93, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22367208

RESUMEN

Calpains are calcium-regulated cysteine proteases that have been implicated in the regulation of cell death pathways. Here, we used our calpain-1 null mouse model to evaluate the function of calpain-1 in neural degeneration following a rodent model of traumatic brain injury. In vivo, calpain-1 null mice show significantly less neural degeneration and apoptosis and a smaller contusion 3 days post-injury than wild type littermates. Protection from traumatic brain injury corroborated with the resistance of calpain-1 neurons to apoptosis induced by oxidative stress. Biochemical analysis revealed that caspase-3 activation, extracellular calcium entry, mitochondrial membrane permeability, and release of apoptosis-inducing factor from mitochondria are partially blocked in the calpain-1 null neurons. These findings suggest that the calpain-1 knock-out mice may serve as a useful model system for neuronal protection and apoptosis in traumatic brain injury and other neurodegenerative disorders in which oxidative stress plays a role.


Asunto(s)
Apoptosis/fisiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Calpaína/genética , Calpaína/metabolismo , Estrés Oxidativo/fisiología , Animales , Factor Inductor de la Apoptosis/metabolismo , Calcio/metabolismo , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Membranas Mitocondriales/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , ARN Interferente Pequeño/genética
7.
Mol Pharmacol ; 81(4): 510-26, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22210847

RESUMEN

We addressed the requirement for stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca(2+)-sensor, and Orai1, a Ca(2+) selective channel, in regulating Ca(2+) entry through the store-operated channels mouse transient receptor potential canonical (TRPC) 4 or human TRPC1. Studies were made using murine and human lung endothelial cells (ECs) challenged with thrombin known to induce Ca(2+) entry via TRPC1/4. Deletion or knockdown of TRPC4 abolished Ca(2+) entry secondary to depletion of ER Ca(2+) stores, preventing the disruption of the endothelial barrier. Knockdown of STIM1 (but not of Orai1or Orai3) or expression of the dominant-negative STIM1(K684E-K685E) mutant in ECs also suppressed Ca(2+) entry secondary to store depletion. Ectopic expression of WT-STIM1 or WT-Orai1 in TRPC4(-/-)-ECs failed to rescue Ca(2+) entry; however, WT-TRPC4 expression in TRPC4(-/-)-ECs restored Ca(2+) entry indicating the requirement for TRPC4 in mediating store-operated Ca(2+) entry. Moreover, expression of the dominant-negative Orai1(R91W) mutant or Orai3(E81W) mutant in WT-ECs failed to prevent thrombin-induced Ca(2+) entry. In contrast, expression of the dominant-negative TRPC4(EE647-648KK) mutant in WT-ECs markedly reduced thrombin-induced Ca(2+) entry. In ECs expressing YFP-STIM1, ER-store Ca(2+) depletion induced formation of fluorescent membrane puncta in WT but not in TRPC4(-/-) cells, indicating that mobilization of STIM1 and engagement of its Ca(2+) sensing function required TRPC4 expression. Coimmunoprecipitation studies showed coupling of TRPC1 and TRPC4 with STIM1 on depletion of ER Ca(2+) stores. Thus, TRPC1 and TRPC4 can interact with STIM1 to form functional store-operated Ca(2+)-entry channels, which are essential for mediating Ca(2+) entry-dependent disruption of the endothelial barrier.


Asunto(s)
Calcio/metabolismo , Endotelio Vascular/metabolismo , Glicoproteínas de Membrana/fisiología , Canales Catiónicos TRPC/fisiología , Animales , Western Blotting , Canales de Calcio , Células Cultivadas , Endotelio Vascular/citología , Ratones , Ratones Noqueados , ARN Interferente Pequeño , Molécula de Interacción Estromal 1
8.
Histochem Cell Biol ; 138(1): 113-25, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22527697

RESUMEN

Glucose-regulated protein 78 (GRP-78) is one of the many endoplasmic reticulum chaperone proteins that have been shown to possess multifunctional roles. We have previously demonstrated that GRP-78 functions as a receptor for dentin matrix protein 1 (DMP1) and is required for DMP1-mediated calcium release; that it is a secreted protein and can bind to type I collagen and DMP1 extracellularly and aid in the nucleation of calcium phosphate. We provide evidence in this study that tyrosine phosphorylation is required for DMP1/GRP-78-mediated calcium release in mesenchymal cells. We further demonstrate that GRP-78 is localized in the nucleus of mesenchymal cells and that the cell surface GRP-78 is not associated with the G-protein Gαq in mesenchymal cells. Results from this study show that during development of mineralized tissues, increased expression of GRP-78 can be observed in condensing cartilage and mesenchymal cells of the alveolar bone, endochondral bone and dental pulp. Additionally, we show that GRP-78 is present in the mineralizing matrices of teeth, bone and in the extracellular matrix of differentiating human marrow stromal cells and dental pulp stem cells. Collectively, our observations provide a new perspective on GRP-78 with respect to mineralized matrix formation.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Calcificación Fisiológica , Diferenciación Celular , Pulpa Dental/metabolismo , Chaperón BiP del Retículo Endoplásmico , Matriz Extracelular/metabolismo , Proteínas de Choque Térmico/análisis , Humanos , Ratones , Especificidad de Órganos , Fosforilación
9.
J Biol Chem ; 285(47): 36339-51, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20841352

RESUMEN

Calcium signaling and calcium transport play a key role during osteoblast differentiation and bone formation. Here, we demonstrate that DMP1 mediated calcium signaling, and its downstream effectors play an essential role in the differentiation of preosteoblasts to fully functional osteoblasts. DMP1, a key regulatory bone matrix protein, can be endocytosed by preosteoblasts, triggering a rise in cytosolic levels of calcium that initiates a series of downstream events leading to cellular stress. These events include release of store-operated calcium that facilitates the activation of stress-induced p38 MAPK leading to osteoblast differentiation. However, chelation of intracellular calcium and inhibition of the p38 signaling pathway by specific pharmacological inhibitors and dominant negative plasmid suppressed this activation. Interestingly, activated p38 MAPK can translocate to the nucleus to phosphorylate transcription factors that coordinate the expression of downstream target genes such as Runx 2, a key modulator of osteoblast differentiation. These studies suggest a novel paradigm by which DMP1-mediated release of intracellular calcium activates p38 MAPK signaling cascade to regulate gene expression and osteoblast differentiation.


Asunto(s)
Calcio/metabolismo , Diferenciación Celular , Proteínas de la Matriz Extracelular/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Western Blotting , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Proteínas de la Matriz Extracelular/genética , Técnica del Anticuerpo Fluorescente , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Integrinas/antagonistas & inhibidores , Integrinas/genética , Integrinas/metabolismo , Ratones , Ratones Endogámicos C3H , Fosforilación , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cráneo/citología , Cráneo/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética
10.
Am J Physiol Cell Physiol ; 298(3): C656-64, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20032510

RESUMEN

NF-kappaB signaling is known to induce the expression of antiapoptotic and proinflammatory genes in endothelial cells (ECs). We have shown recently that Ca(2+) influx through canonical transient receptor potential (TRPC) channels activates NF-kappaB in ECs. Here we show that Ca(2+) influx signal prevents thrombin-induced apoptosis by inducing NF-kappaB-dependent A20 expression in ECs. Knockdown of TRPC1 expressed in human umbilical vein ECs with small interfering RNA (siRNA) suppressed thrombin-induced Ca(2+) influx and NF-kappaB activation in ECs. Interestingly, we observed that thrombin induced >25% of cell death (apoptosis) in TRPC1-knockdown ECs whereas thrombin had no effect on control or control siRNA-transfected ECs. To understand the basis of EC survival, we performed gene microarray analysis using ECs. Thrombin stimulation increased only a set of NF-kappaB-regulated genes 3- to 14-fold over basal levels in ECs. Expression of the antiapoptotic gene A20 was the highest among these upregulated genes. Like TRPC1 knockdown, thrombin induced apoptosis in A20-knockdown ECs. To address the importance of Ca(2+) influx signal, we measured thrombin-induced A20 expression in control and TRPC1-knockdown ECs. Thrombin-induced p65/RelA binding to A20 promoter-specific NF-kappaB sequence and A20 protein expression were suppressed in TRPC1-knockdown ECs compared with control ECs. Furthermore, in TRPC1-knockdown ECs, thrombin induced the expression of proapoptotic proteins caspase-3 and BAX. Importantly, thrombin-induced apoptosis in TRPC1-knockdown ECs was prevented by adenovirus-mediated expression of A20. These results suggest that Ca(2+) influx via TRPC channels plays a critical role in the mechanism of cell survival signaling through A20 expression in ECs.


Asunto(s)
Apoptosis , Señalización del Calcio , Células Endoteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Canales Catiónicos TRPC/metabolismo , Trombina/metabolismo , Factor de Transcripción ReIA/metabolismo , Adenoviridae/genética , Apoptosis/genética , Sitios de Unión , Compuestos de Boro/farmacología , Señalización del Calcio/efectos de los fármacos , Caspasa 3/metabolismo , Supervivencia Celular , Células Cultivadas , Proteínas de Unión al ADN , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Perfilación de la Expresión Génica/métodos , Vectores Genéticos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Interferencia de ARN , Canales Catiónicos TRPC/genética , Trombina/genética , Factores de Tiempo , Factor de Transcripción ReIA/genética , Transfección , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Proteína X Asociada a bcl-2/metabolismo
11.
J Endod ; 41(8): 1259-64, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26051078

RESUMEN

INTRODUCTION: Chronic inflammation disrupts dental pulp regeneration by disintegrating the recruitment process of progenitors for repair. Bone marrow-derived mesenchymal stem cells (BM-MSCs) share the common features with dental pulp stem cells (DPSCs). The aim of the study was to investigate the migration of BM-MSCs toward DPSCs in response to inflammatory chemoattractants. Additionally, our studies also delineated the signaling mechanisms from BM-MSCs in mediating the proliferation and differentiation of DPSCs in vitro. METHODS: Human DPSCs and BM-MSCs between passages 2 and 4 were used and were grown in odontogenic differentiation medium. Mineralization was determined by alizarin red staining analysis. Migration was assessed using crystal violet staining in cells grown in Boyden chamber Transwell inserts (Corning Inc Foundation, Tewksbury, MA). The mineralization potential of DPSCs was evaluated using alkaline phosphatase activity assay. Real-time polymerase chain reaction analysis was performed to assess the gene expression profile of chemokine (C-X-C motif) ligand (Cxcl) 3, 5, 6, 10, 11, 12, 14, and 16; stromal cell-derived factor (SDF) α; vascular endothelial growth factor; and fibroblast growth factor. RESULTS: Interferon gamma (FN-γ) treatment significantly abrogated the differentiation potential of DPSCs as shown by using alizarin red and alkaline phosphatase activity analysis. An increase in the migration of BM-MSCs was documented when cocultured with IFN-γ-treated DPSCs. RNA expression studies showed an increase in the levels of Cxcl6 and Cxcl12 in BM-MSCs when cocultured with IFN-γ-treated DPSCs. Additionally, an up-regulation of proangiogenic factors vascular endothelial growth factor and fibroblast growth factor were observed in DPSCs exposed to IFN-γ. CONCLUSIONS: Our findings indicate that inflamed IFN-γ-treated DPSCs release factors (presumably Cxcl6 and 12) that contribute to the homing of MSCs. This model might provide a potential research tool for studying MSC-DPSC cross talk and for future studies involving the recruitment and sustainability of progenitor stem cells sustaining the inflammatory cascade to treat pulp inflammation.


Asunto(s)
Movimiento Celular/fisiología , Pulpa Dental/inmunología , Interferón gamma/metabolismo , Células Madre/inmunología , Fosfatasa Alcalina/metabolismo , Calcificación Fisiológica/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Quimiocinas CXC/metabolismo , Técnicas de Cocultivo , Medios de Cultivo , Pulpa Dental/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Interferón gamma/administración & dosificación , Células Madre/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
PLoS One ; 9(11): e113419, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25427002

RESUMEN

Dental-pulp tissue is often exposed to inflammatory injury. Sequested growth factors or angiogenic signaling proteins that are released following inflammatory injury play a pivotal role in the formation of reparative dentin. While limited or moderate angiogenesis may be helpful for dental pulp maintenance, the induction of significant level of angiogenesis is probably highly detrimental. Hitherto, several studies have addressed the effects of proinflammatory stimuli on the survival and differentiation of dental-pulp stem cells (DPSC), in vitro. However, the mechanisms communal to the inflammatory and angiogenic signaling involved in DPSC survival and differentiation remain unknown. Our studies observed that short-term exposure to TNF-α (6 and 12 hours [hrs]) induced apoptosis with an upregulation of VEGF expression and NF-κB signaling. However, long-term (chronic) exposure (14 days) to TNF-α resulted in an increased proliferation with a concomitant shortening of the telomere length. Interestingly, DPSC pretreated with Nemo binding domain (NBD) peptide (a cell permeable NF-κB inhibitor) significantly ameliorated TNF-α- and/or VEGF-induced proliferation and the shortening of telomere length. NBD peptide pretreatment significantly improved TNF-α-induced downregulation of proteins essential for differentiation, such as bone morphogenic proteins (BMP)-1 & 2, BMP receptor isoforms-1&2, trasnforming growth factor (TGF), osteoactivin and osteocalcin. Additionally, inhibition of NF-κB signaling markedly increased the mineralization potential, a process abrogated by chronic exposure to TNF-α. Thus, our studies demonstrated that chronic inflammation mediates telomere shortening via NF-κB signaling in human DPSC. Resultant chromosomal instability leads to an emergence of increased proliferation of DPSC, while negatively regulating the differentiation of DPSC, in vitro.


Asunto(s)
Pulpa Dental/metabolismo , Osteoblastos/metabolismo , Células Madre/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína Morfogenética Ósea 1/genética , Proteína Morfogenética Ósea 1/metabolismo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Diferenciación Celular , Proliferación Celular , Pulpa Dental/irrigación sanguínea , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Glicoproteínas de Membrana , FN-kappa B/genética , FN-kappa B/metabolismo , Neovascularización Patológica , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteocalcina , Péptidos/farmacología , Cultivo Primario de Células , Transducción de Señal , Células Madre/citología , Células Madre/efectos de los fármacos , Telómero/efectos de los fármacos , Acortamiento del Telómero/efectos de los fármacos , Factor de Crecimiento Transformador beta1 , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética
13.
J Signal Transduct ; 2012: 951497, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056939

RESUMEN

Pulmonary circulation is an important circulatory system in which the body brings in oxygen. Pulmonary arterial hypertension (PAH) is a progressive and fatal disease that predominantly affects women. Sustained pulmonary vasoconstriction, excessive pulmonary vascular remodeling, in situ thrombosis, and increased pulmonary vascular stiffness are the major causes for the elevated pulmonary vascular resistance (PVR) in patients with PAH. The elevated PVR causes an increase in afterload in the right ventricle, leading to right ventricular hypertrophy, right heart failure, and eventually death. Understanding the pathogenic mechanisms of PAH is important for developing more effective therapeutic approach for the disease. An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC migration and proliferation which lead to pulmonary vascular wall thickening and remodeling. It is thus pertinent to define the pathogenic role of Ca(2+) signaling in pulmonary vasoconstriction and PASMC proliferation to develop new therapies for PAH. [Ca(2+)](cyt) in PASMC is increased by Ca(2+) influx through Ca(2+) channels in the plasma membrane and by Ca(2+) release or mobilization from the intracellular stores, such as sarcoplasmic reticulum (SR) or endoplasmic reticulum (ER). There are two Ca(2+) entry pathways, voltage-dependent Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCC) and voltage-independent Ca(2+) influx through store-operated Ca(2+) channels (SOC) and receptor-operated Ca(2+) channels (ROC). This paper will focus on the potential role of VDCC, SOC, and ROC in the development and progression of sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in PAH.

14.
Am J Physiol Cell Physiol ; 296(3): C403-13, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19052258

RESUMEN

Caveolin-1 (Cav-1) regulates agonist-induced Ca(2+) entry in endothelial cells; however, how Cav-1 regulates this process is poorly understood. Here, we describe that Cav-1 scaffold domain (NH(2)-terminal residues 82-101; CSD) interacts with transient receptor potential canonical channel 1 (TRPC1) and inositol 1,4,5-trisphosphate receptor 3 (IP(3)R3) to regulate Ca(2+) entry. We have shown previously that the TRPC1 COOH-terminal residues 781-789 bind to CSD. In the present study, we show that the TRPC1 COOH-terminal residues 781-789 truncated (TRPC1-CDelta781-789) mutant expression abolished Ca(2+) store release-induced Ca(2+) influx in human dermal microvascular endothelial cell line (HMEC) and human embryonic kidney (HEK-293) cells. To understand the basis of loss of Ca(2+) influx, we determined TRPC1 binding to IP(3)R3. We observed that the wild-type (WT)-TRPC1 but not TRPC1-CDelta781-789 effectively interacted with IP(3)R3. Similarly, WT-TRPC1 interacted with Cav-1, whereas TRPC1-CDelta781-789 binding to Cav-1 was markedly suppressed. We also assessed the direct binding of Cav-1 with TRPC1 and observed that the WT-Cav-1 but not the Cav-1DeltaCSD effectively interacted with TRPC1. Since the interaction between TRPC1 and Cav-1DeltaCSD was reduced, we measured Ca(2+) store release-induced Ca(2+) influx in Cav-1DeltaCSD-transfected cells. Surprisingly, Cav-1DeltaCSD expression showed a gain-of-function in Ca(2+) entry in HMEC and HEK-293 cells. We observed a similar gain-of-function in Ca(2+) entry when Cav-1DeltaCSD was expressed in lung endothelial cells of Cav-1 knockout mice. Immunoprecipitation results revealed that WT-Cav-1 but not Cav-1DeltaCSD interacted with IP(3)R3. Furthermore, we observed using confocal imaging the colocalization of IP(3)R3 with WT-Cav-1 but not with Cav-1DeltaCSD on Ca(2+) store release in endothelial cells. These findings suggest that CSD interacts with TRPC1 and IP(3)R3 and thereby regulates Ca(2+) store release-induced Ca(2+) entry in endothelial cells.


Asunto(s)
Señalización del Calcio , Caveolina 1/metabolismo , Células Endoteliales/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Caveolina 1/deficiencia , Caveolina 1/genética , Células Cultivadas , Humanos , Ratones , Ratones Noqueados , Microscopía Confocal , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Canales Catiónicos TRPC/genética , Trombina/metabolismo , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA