Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 300(7): 107418, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815867

RESUMEN

ATP-citrate lyase (ACLY) links carbohydrate and lipid metabolism and provides nucleocytosolic acetyl-CoA for protein acetylation. ACLY has two major splice isoforms: the full-length canonical "long" isoform and an uncharacterized "short" isoform in which exon 14 is spliced out. Exon 14 encodes 10 amino acids within an intrinsically disordered region and includes at least one dynamically phosphorylated residue. Both isoforms are expressed in healthy tissues to varying degrees. Analysis of human transcriptomic data revealed that the percent spliced in (PSI) of exon 14 is increased in several cancers and correlated with poorer overall survival in a pan-cancer analysis, though not in individual tumor types. This prompted us to explore potential biochemical and functional differences between ACLY isoforms. Here, we show that there are no discernible differences in enzymatic activity or stability between isoforms or phosphomutants of ACLY in vitro. Similarly, both isoforms and phosphomutants were able to rescue ACLY functions, including fatty acid synthesis and bulk histone acetylation, when re-expressed in Acly knockout cells. Deletion of Acly exon 14 in mice did not overtly impact development or metabolic physiology nor did it attenuate tumor burden in a genetic model of intestinal cancer. Notably, expression of epithelial splicing regulatory protein 1 (ESRP1) is highly correlated with ACLY PSI. We report that ACLY splicing is regulated by ESRP1. In turn, both ESRP1 expression and ACLY PSI are correlated with specific immune signatures in tumors. Despite these intriguing patterns of ACLY splicing in healthy and cancer tissues, functional differences between the isoforms remain elusive.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Empalme Alternativo , Neoplasias , Humanos , Animales , Ratones , ATP Citrato (pro-S)-Liasa/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Fenotipo , Exones , Acetilación
2.
Gut ; 73(4): 639-648, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38123998

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at an advanced stage. Liquid biopsy approaches may facilitate detection of early stage PDAC when curative treatments can be employed. DESIGN: To assess circulating marker discrimination in training, testing and validation patient cohorts (total n=426 patients), plasma markers were measured among PDAC cases and patients with chronic pancreatitis, colorectal cancer (CRC), and healthy controls. Using CA19-9 as an anchor marker, measurements were made of two protein markers (TIMP1, LRG1) and cell-free DNA (cfDNA) pancreas-specific methylation at 9 loci encompassing 61 CpG sites. RESULTS: Comparative methylome analysis identified nine loci that were differentially methylated in exocrine pancreas DNA. In the training set (n=124 patients), cfDNA methylation markers distinguished PDAC from healthy and CRC controls. In the testing set of 86 early stage PDAC and 86 matched healthy controls, CA19-9 had an area under the receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.83 to 0.94), which was increased by adding TIMP1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.06), LRG1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02) or exocrine pancreas-specific cfDNA methylation markers at nine loci (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02). In the validation set of 40 early stage PDAC and 40 matched healthy controls, a combined panel including CA19-9, TIMP1 and a 9-loci cfDNA methylation panel had greater discrimination (AUC 0.86, 95% CI 0.77 to 0.95) than CA19-9 alone (AUC 0.82; 95% CI 0.72 to 0.92). CONCLUSION: A combined panel of circulating markers including proteins and methylated cfDNA increased discrimination compared with CA19-9 alone for early stage PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Nucleicos Libres de Células , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Páncreas/patología , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Metilación de ADN
3.
Cell Metab ; 2024 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-39471816

RESUMEN

ATP citrate lyase (ACLY) synthesizes acetyl-CoA for de novo lipogenesis (DNL), which is elevated in metabolic dysfunction-associated steatotic liver disease. Hepatic ACLY is inhibited by the LDL-cholesterol-lowering drug bempedoic acid (BPA), which also improves steatosis in mice. While BPA potently suppresses hepatic DNL and increases fat catabolism, it is unclear if ACLY is its primary molecular target in reducing liver triglyceride. We show that on a Western diet, loss of hepatic ACLY alone or together with the acetyl-CoA synthetase ACSS2 unexpectedly exacerbates steatosis, linked to reduced PPARα target gene expression and fatty acid oxidation. Importantly, BPA treatment ameliorates Western diet-mediated triacylglyceride accumulation in both WT and liver ACLY knockout mice, indicating that its primary effects on hepatic steatosis are ACLY independent. Together, these data indicate that hepatic ACLY plays an unexpected role in restraining diet-dependent lipid accumulation and that BPA exerts substantial effects on hepatic lipid metabolism independently of ACLY.

4.
Artículo en Inglés | MEDLINE | ID: mdl-34250387

RESUMEN

Plasma circulating tumor DNA (ctDNA) analysis is routine for genotyping of advanced non-small-cell lung cancer (NSCLC); however, early response assessment using plasma ctDNA has yet to be well characterized. MATERIALS AND METHODS: Patients with advanced EGFR-mutant NSCLC across three phase I NCI osimertinib combination trials were analyzed in this study, and an institutional cohort of patients with KRAS-, EGFR-, and BRAF-mutant advanced NSCLC receiving systemic treatment was used for validation. Plasma was collected before treatment initiation and serially before each cycle of therapy, and key driver mutations in ctDNA were characterized by droplet digital polymerase chain reaction. Timing of plasma versus imaging response was compared in a separate cohort of patients with EGFR-mutant NSCLC treated with osimertinib. Across cohorts, we also studied ctDNA variability before treatment start. RESULTS: In the NCI cohort, 14/16 (87.5%) patients exhibited ≥ 90% decrease in mutation abundance by the first on-treatment timepoint (20-28 days from treatment start) with minimal subsequent change. Similarly, 47/56 (83.9%) patients with any decrease in the institutional cohort demonstrated ≥ 90% decrease in mutation abundance by the first follow-up draw (7-30 days from treatment start). All 16 patients in the imaging cohort with radiographic partial response showed best plasma response within one cycle, preceding best radiographic response by a median of 24 weeks (range: 3-147 weeks). Variability in ctDNA levels before treatment start was observed. CONCLUSION: Plasma ctDNA response is an early phenomenon, with the majority of change detectable within the first cycle of therapy. These kinetics may offer an opportunity for early insight into treatment effect before standard imaging timepoints.


Asunto(s)
Acrilamidas/uso terapéutico , Compuestos de Anilina/uso terapéutico , Biomarcadores de Tumor/sangre , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , ADN Tumoral Circulante/sangre , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Estadificación de Neoplasias , Resultado del Tratamiento
5.
Oral Oncol ; 95: 120-126, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31345379

RESUMEN

OBJECTIVES: Quantifying tumor DNA in tissue and circulating in blood permits high-quality molecular monitoring to detect and track cancer progression. Evaluating tumor DNA in both blood and saliva in human papillomavirus (HPV)-associated oropharyngeal cancer (OPC) could provide a non-invasive and clinically actionable method for real-time disease detection. METHODS: We previously validated an ultrasensitive droplet-digital (dd)PCR assay targeting the dominant high-risk HPV subtypes causally linked to OPC. Here we enrolled an observational cohort to evaluate the predictive and prognostic potential of paired plasma-salivary tumor DNA among 21 patients with advanced HPV+OPC. RESULTS: In patients with recurrent, persistent locoregional (LR) disease, median baseline normalized salivary HPV DNA was 10.9 copies/ng total DNA, nearly 20x higher compared with those with distant disease only (p = 0.01). A cutoff of 5 copies/ng yielded 87% sensitivity and 67% specificity for accurately predicting LR disease. Total tumor burden among those with LR disease strongly correlated with salivary HPV DNA levels (R = 0.83, p = 0.02). The rise and fall of salivary HPV DNA predicted treatment failure and response, respectively, in all patients with LR disease, and predated imaging findings. Among paired salivary-plasma (cell-free) cfDNA samples, only higher plasma HPV cfDNA levels were associated with poor outcomes (p < 0.01), suggesting that each bodily fluid provides unique information about HPV disease status. CONCLUSIONS: Salivary HPV DNA provides valuable information about tumor burden and predicts treatment response in advanced HPV+OPC. Paired blood-saliva samples could be used to monitor HPV DNA with broad applications to inform diagnosis, prognosis, and surveillance in HPV-associated diseases.


Asunto(s)
Biomarcadores de Tumor/análisis , ADN Viral/análisis , Neoplasias Orofaríngeas/diagnóstico , Papillomaviridae/genética , Infecciones por Papillomavirus/diagnóstico , Saliva/química , Anciano , ADN Tumoral Circulante/sangre , Estudios de Factibilidad , Femenino , Humanos , Biopsia Líquida/métodos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Orofaríngeas/mortalidad , Neoplasias Orofaríngeas/terapia , Neoplasias Orofaríngeas/virología , Infecciones por Papillomavirus/mortalidad , Infecciones por Papillomavirus/terapia , Infecciones por Papillomavirus/virología , Proyectos Piloto , Pronóstico , Estudios Prospectivos , Análisis de Supervivencia , Resultado del Tratamiento , Carga Tumoral
6.
Lung Cancer ; 134: 96-99, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31320002

RESUMEN

OBJECTIVES: Plasma genotyping represents an opportunity for convenient detection of clinically actionable mutations in advanced cancer patients, such has been well-documented in non-small cell lung cancer (NSCLC). Oncogenic gene fusions are complex variants that may be more challenging to detect by next-generation sequencing (NGS) of plasma cell-free DNA (cfDNA). Rigorous evaluation of plasma NGS assays in the detection of fusions is needed to maximize clinical utility. MATERIALS AND METHODS: Additional plasma was collected from patients with advanced NSCLC and ALK, ROS1, or RET gene fusions in tissue who had undergone clinical plasma NGS using Guardant360™(G360, Guardant Health). We then sequenced extracted cfDNA with a plasma NGS kit focused on known driver mutations in NSCLC (ctDx-Lung, Resolution Bioscience) with cloud-based bioinformatic analysis and blinded variant calling. RESULTS: Of 16 patients assayed known to harbor anALK, ROS1, or RET in tumor, G360 detected fusions in 7 cases, ctDx-Lung detected fusions in 13 cases, and 3 cases were detected by neither. Of the 7 fusions detected by both assays, G360 reported lower mutant allelic fractions (AF). In cases missed by G360, tumor derived TP53 mutations were often detected confirming presence of tumor DNA. Raw sequencing data showed that inverted or out-of-frame variants were overrepresented in cases detected using ctDx-Lung but not by G360. CONCLUSION: Focusing on complex, clinically actionable mutations using tumor as a reference standard allows for evaluation of technical differences in plasma NGS assays that may impact clinical performance. Noting the heterogeneity of fusion sequences observed in NSCLC, we hypothesize that differences in hybrid capture techniques and bioinformatic calling may be sources of variations in sensitivity among these assays.


Asunto(s)
Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células , ADN de Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias/diagnóstico , Neoplasias/genética , Proteínas de Fusión Oncogénica/genética , Reordenamiento Génico , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Mutación , Juego de Reactivos para Diagnóstico , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA