Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Neurochem Res ; 49(12): 3308-3325, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39298035

RESUMEN

An imbalance between reactive oxygen species (ROS) production and antioxidant defense driven by oxidative stress and inflammation is a critical factor in the progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. Coriander (Coriandrum sativum L.), a culinary plant in the Apiaceae family, displays various biological activities, including anticancer, antimicrobial, and antioxidant effects. Herein, neuroprotective properties of three major bioactive compounds derived from coriander (i.e., linalool, linalyl acetate, and geranyl acetate) were investigated on hydrogen peroxide-induced SH-SY5Y neuroblastoma cell death by examining cell viability, ROS production, mitochondrial membrane potential, and apoptotic profiles. Moreover, underlying mechanisms of the compounds were determined by measuring intracellular sirtuin 1 (SIRT1) enzyme activity incorporated with molecular docking. The results showed that linalool, linalyl acetate, and geranyl acetate elicited their neuroprotection against oxidative stress via protecting cell death, reducing ROS production, preventing cell apoptosis, and modulating SIRT1 longevity. Additionally, in silico pharmacokinetic predictions indicated that these three compounds are drug-like agents with a high probability of absorption and distribution, as well as minimal potential toxicities. These findings highlighted the potential neuroprotective linalool, linalyl acetate, and geranyl acetate for developing alternative natural compound-based neurodegenerative therapeutics and prevention.


Asunto(s)
Coriandrum , Neuroblastoma , Fármacos Neuroprotectores , Estrés Oxidativo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Humanos , Línea Celular Tumoral , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuroblastoma/tratamiento farmacológico , Coriandrum/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Sirtuina 1/metabolismo , Extractos Vegetales/farmacología
2.
J Proteome Res ; 22(10): 3348-3359, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37676068

RESUMEN

Cognitive flexibility is a crucial ability in humans that can be affected by chronic methamphetamine (METH) addiction. The present study aimed to elucidate the mechanisms underlying cognitive impairment in mice chronically administered METH via an oral self-administration method. Further, the effect of melatonin treatment on recovery of METH-induced cognitive impairment was also investigated. Cognitive performance of the mice was assessed using an attentional set shift task (ASST), and possible underlying neurotoxic mechanisms were investigated by proteomic and western blot analysis of the prefrontal cortex (PFC). The results showed that mice-administered METH for 21 consecutive days exhibited poor cognitive performance compared to controls. Cognitive deficit in mice partly recovered after METH withdrawal. In addition, mice treated with melatonin during METH withdrawal showed a higher cognitive recovery than vehicle-treated METH withdrawal mice. Proteomic and western blot analysis revealed that METH self-administration increased neurotoxic markers, including disruption to the regulation of mitochondrial function, mitophagy, and decreased synaptic plasticity. Treatment with melatonin during withdrawal restored METH-induced mitochondria and synaptic impairments. These findings suggest that METH-induced neurotoxicity partly depends on mitochondrial dysfunction leading to autophagy-dependent cell death and that the recovery of neurological impairments may be enhanced by melatonin treatment during the withdrawal period.


Asunto(s)
Disfunción Cognitiva , Melatonina , Metanfetamina , Síndrome de Abstinencia a Sustancias , Humanos , Ratones , Animales , Metanfetamina/toxicidad , Melatonina/farmacología , Proteómica , Disfunción Cognitiva/inducido químicamente
3.
Nutr Neurosci ; 24(2): 90-101, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30929586

RESUMEN

Background: An imbalance of free radicals and antioxidant defense systems in physiological processes can result in protein/DNA damage, inflammation, and cellular apoptosis leading to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sesamin and sesamol, compounds derived from sesame seeds and oil, have been reported to exert various pharmacological effects, especially antioxidant activity. However, their molecular mechanisms against the oxidative stress induced by exogenous hydrogen peroxide (H2O2) remain to be elucidated. Aim: In this study, neuroprotective effects of sesamin and sesamol on H2O2-induced human neuroblastoma (SH-SY5Y) cell death and possible signaling pathways in the cells were explored. Methods: MTT assay and flow cytometry were conducted to determine cell viability and apoptotic profiles of neuronal cells treated with sesamin and sesamol. Carboxy-DCFDA assay was used to measure reactive oxygen species (ROS). Moreover, Western blot analysis was performed to investigate protein profiles associated with neuroprotection. Results: Pretreatment of the cells with 1 µM of sesamin and sesamol remarkably reduced the SH-SY5Y cell death induced by 400 µM H2O2 as well as the intracellular ROS production. Moreover, the molecular mechanisms underlying neuroprotection of the compounds were associated with activating SIRT1-SIRT3-FOXO3a expression, inhibiting BAX (proapoptotic protein), and upregulating BCL-2 (anti-apoptotic protein). Conclusion: The findings suggest that sesamin and sesamol are compounds that potentially protect neuronal cells against oxidative stress similar to that of the resveratrol, the reference compound. These antioxidants are thus of interest for further investigation in in vivo models of neuroprotection.


Asunto(s)
Benzodioxoles/administración & dosificación , Dioxoles/administración & dosificación , Peróxido de Hidrógeno/metabolismo , Lignanos/administración & dosificación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Fenoles/administración & dosificación , Línea Celular Tumoral , Proteína Forkhead Box O3/metabolismo , Humanos , Peróxido de Hidrógeno/administración & dosificación , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo
4.
Med Res Rev ; 39(5): 1730-1778, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30628099

RESUMEN

The continual increase of the aging population worldwide renders Alzheimer's disease (AD) a global prime concern. Several attempts have been focused on understanding the intricate complexity of the disease's development along with the on- andgoing search for novel therapeutic strategies. Incapability of existing AD drugs to effectively modulate the pathogenesis or to delay the progression of the disease leads to a shift in the paradigm of AD drug discovery. Efforts aimed at identifying AD drugs have mostly focused on the development of disease-modifying agents in which effects are believed to be long lasting. Of particular note, the secretase enzymes, a group of proteases responsible for the metabolism of the ß-amyloid precursor protein (ßAPP) and ß-amyloid (Aß) peptides production, have been underlined for their promising therapeutic potential. This review article attempts to comprehensively cover aspects related to the identification and use of drugs targeting the secretase enzymes. Particularly, the roles of secretases in the pathogenesis of AD and their therapeutic modulation are provided herein. Moreover, an overview of the drug development process and the contribution of computational (in silico) approaches for facilitating successful drug discovery are also highlighted along with examples of relevant computational works. Promising chemical scaffolds, inhibitors, and modulators against each class of secretases are also summarized herein. Additionally, multitarget secretase modulators are also taken into consideration in light of the current growing interest in the polypharmacology of complex diseases. Finally, challenging issues and future outlook relevant to the discovery of drugs targeting secretases are also discussed.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Animales , Descubrimiento de Drogas , Humanos , Neurotransmisores/metabolismo
5.
Chem Res Toxicol ; 32(11): 2182-2191, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31638783

RESUMEN

Oxidative stress has been documented as one of the significant causes of neurodegenerative diseases. Therefore, antioxidant therapy for the prevention of neurodegenerative diseases seems to be an interesting strategy in drug discovery. The quinoline-based compound, namely 5-nitro-8-quinolinol (NQ), has shown excellent antimicrobial, anticancer, and anti-inflammatory activities. However, its neuroprotective effects and precise molecular mechanisms in human neuronal cells have not been elucidated. In this work, the effects of NQ on cell viability and morphology were evaluated by the MTT assay and microscopic observation. Moreover, the underlying mechanisms of this compound, inducing the survival rate of neuronal cells under oxidative stress, were investigated by reactive oxygen species (ROS) assay, flow cytometry, Western blotting, and immunofluorescence techniques. In addition, the molecular interaction of sirtuin1 (SIRT1) with NQ was constructed using the AutoDock 4.2 program. Interestingly, NQ protected SH-SY5Y cells against H2O2-induced neurotoxicity through scavenging ROS, upregulating the levels of SIRT1 and FOXO3a, increasing the levels of antioxidant enzymes (catalase and superoxide dismutase), promoting antiapoptotic BCL-2 protein expression, and reducing apoptosis. Besides, molecular docking also revealed that NQ interacted satisfactorily with the active site of SIRT1 similar to the resveratrol, which is the SIRT1 activator and strong antioxidant. These findings suggest that NQ prevents oxidative-stress-induced neurodegeneration because of its antioxidant capacity as well as antiapoptotic property through SIRT1-FOXO3a signaling pathway. Thus, NQ might be a drug that could be repurposed for prevention of neurodegeneration.


Asunto(s)
Reposicionamiento de Medicamentos , Enfermedades Neurodegenerativas/prevención & control , Neuronas/efectos de los fármacos , Nitroquinolinas/farmacología , Sustancias Protectoras/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteína Forkhead Box O3/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Simulación del Acoplamiento Molecular , Neuronas/metabolismo , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo
6.
Neurochem Res ; 44(7): 1567-1581, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30888577

RESUMEN

Dexamethasone is an approved steroid for clinical use to activate or suppress cytokines, chemokines, inflammatory enzymes and adhesion molecules. It enters the brain, by-passing the blood brain barrier, and acts through genomic mechanisms. High levels of dexamethasone are able to induce neuronal cell loss, reduce neurogenesis and cause neuronal dysfunction. The exact mechanisms of steroid, especially the dexamethasone contribute to neuronal damage remain unclear. Therefore, the present study explored the mitochondrial dynamics underlying dexamethasone-induced toxicity of human neuroblastoma SH-SY5Y cells. Neuronal cells treatment with the dexamethasone resulted in a marked decrease in cell proliferation. Dexamethasone-induced neurotoxicity also caused upregulation of mitochondrial fusion and cleaved caspase-3 proteins expression. Mitochondria fusion was found in large proportions of dexamethasone-treated cells. These results suggest that dexamethasone-induced hyperfused mitochondrial structures are associated with a caspase-dependent death process in dexamethasone-induced neurotoxicity. These findings point to the high dosage of dexamethasone as being neurotoxic through impairment of mitochondrial dynamics.


Asunto(s)
Dexametasona/toxicidad , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dinaminas , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba
7.
Neurochem Res ; 43(3): 619-636, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29417471

RESUMEN

An increase in oxidative stress is a key factor responsible for neurotoxicity induction and cell death leading to neurodegenerative diseases including Parkinson's and Alzheimer's diseases. Plant phenolics exert diverse bioactivities i.e., antioxidant, anti-inflammatory, and neuroprotective effects. Herein, phenolic compounds, namely protocatechuic aldehyde (PCA) constituents of Hydnophytum formicarum Jack. including vanillic acid (VA) and trans-ferulic acid (FA) found in Spilanthes acmella Murr., were explored for anti-neurodegenerative properties using an in vitro model of oxidative stress-induced neuroblastoma SH-SY5Y cells. Exposure of the neuronal cells with H2O2 resulted in the decrease of cell viability, but increasing in the level of reactive oxygen species (ROS) together with morphological changes and inducing cellular apoptosis. SH-SY5Y cells pretreated with 5 µM of PCA, VA, and FA were able to attenuate cell death caused by H2O2-induced toxicity, as well as decreased ROS level and apoptotic cells after 24 h of treatment. Pretreated SH-SY5Y cells with phenolic compounds also helped to upregulate H2O2-induced depletion of the expressions of sirtuin-1 (SIRT1) and forkhead box O (FoxO) 3a as well as induce the levels of antioxidant (superoxide dismutase (SOD) 2 and catalase) and antiapoptotic B-cell lymphoma 2 (Bcl-2) proteins. The findings suggest that these phenolics might be promising compounds against neurodegeneration.


Asunto(s)
Ácidos Carboxílicos/farmacología , Peróxido de Hidrógeno/farmacología , Hidroxibenzoatos/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/fisiología , Antioxidantes/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Am J Neurodegener Dis ; 12(1): 1-15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937109

RESUMEN

The deficit in cognitive function is more concerning in methamphetamine (MA) users. The cognitive deficit was suspected to be the consequence of neuroinflammation-induced neurological dysregulation. In addition, activating the key enzyme in the tryptophan metabolic pathway by pro-inflammatory cytokines results in metabolite toxicity, further generating cognitive impairments. However, the evidence for the role of neuroinflammation and tryptophan metabolites involved in MA-induced cognitive deficit needs more conclusive study. OBJECTIVES: This retrospective study aimed to determine blood-inflammatory markers, tryptophan metabolite-related molecules, and cognitive function in MA abusers compared to healthy control (HC) participants. METHODS: The cognitive functions were evaluated using Stroop, Go/No-Go, One Back Task (OBT), and Wisconsin Card Sorting Test-64 (WCST-64). Blood samples were analyzed for complete blood count (CBC) analysis, serum inflammatory cytokines interleukin (IL)-6 and IL-18 and tryptophan metabolites. RESULTS: MA group exhibited poor cognitive performance in selective attention, inhibition, working memory, cognitive flexibility, concept formation and processing speed compared to HC. Reduction in red blood cell (RBC) components but induction in white blood cells (WBCs) and IL-6 were observed in MA abusers, which might indicate anemia of (systemic chronic low-grade) inflammation. In addition, the depletion of precursor in the tryptophan metabolic pathway, L-tryptophan was also observed in MA users, which might represent induction in tryptophan metabolites. CONCLUSION: These findings emphasize that blood biomarkers might be a surrogate marker to predict the role of neuroinflammation and abnormal tryptophan metabolite in MA-induced cognitive impairments.

9.
ACS Omega ; 8(49): 46977-46988, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107906

RESUMEN

The discovery of novel bioactive molecules as potential multifunctional neuroprotective agents has clinically drawn continual interest due to devastating oxidative damage in the pathogenesis and progression of neurodegenerative diseases. Synthetic 8-aminoquinoline antimalarial drug is an attractive pharmacophore in drug development and chemical modification owing to its wide range of biological activities, yet the underlying molecular mechanisms are not fully elucidated in preclinical models for oxidative damage. Herein, the neuroprotective effects of two 8-aminoquinoline-uracil copper complexes were investigated on the hydrogen peroxide-induced human neuroblastoma SH-SY5Y cells. Both metal complexes markedly restored cell survival, alleviated apoptotic cascades, maintained antioxidant defense, and prevented mitochondrial function by upregulating the sirtuin 1 (SIRT1)/3-FOXO3a signaling pathway. Intriguingly, in silico molecular docking and pharmacokinetic prediction suggested that these synthetic compounds acted as SIRT1 activators with potential drug-like properties, wherein the uracil ligands (5-iodoracil and 5-nitrouracil) were essential for effective binding interactions with the target protein SIRT1. Taken together, the synthetic 8-aminoquinoline-based metal complexes are promising brain-targeting drugs for attenuating neurodegenerative diseases.

10.
Rejuvenation Res ; 25(1): 2-15, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35044248

RESUMEN

Spilanthes acmella Murr., a well-known Thai traditional medicine, has been used for treatment of toothache, rheumatism, and fever. Diverse pharmacological activities of S. acmella Murr. have been reported. In this study, antioxidative and neuroprotective effects of S. acmella Murr. extracts as well as bioactive scopoletin, vanillic acid, and trans-ferulic acid found in the aerial parts of this plant species have been described. Protective effect of S. acmella Murr. extracts and bioactive compounds on dexamethasone-induced neuronal cell death was investigated. Different plant crude ethyl acetate (EtOAc) and methanol (MeOH) extracts including pure compounds of S. acmella Murr. were evaluated in human neuroblastoma SH-SY5Y cells. Cytotoxic effects were performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mechanisms involved in the antioxidant effects of S. acmella Murr. regarding the activation of antioxidant marker proteins such as superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) were determined using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay, Western blot analysis, and immunocytochemistry. Dexamethasone significantly caused the decrease of SH-SY5Y cell viability. Conversely, the increases in reactive oxygen species (ROS), autophagy, and apoptosis were observed in dexamethasone-treated cells. S. acmella Murr. MeOH and EtOAc extracts, as well as the bioactive compounds, reversed the toxic effect of dexamethasone by increasing the cell viability, SIRT3 protein expression but reducing the ROS, autophagy, and apoptosis. This study demonstrated that S. acmella Murr. may exert its protective effects against ROS through SOD2 and SIRT3 signaling pathways in dexamethasone-induced neurotoxicity. S. acmella Murr. may be a candidate therapy for neuroprotection.


Asunto(s)
Asteraceae , Fármacos Neuroprotectores , Antioxidantes/farmacología , Asteraceae/química , Muerte Celular , Supervivencia Celular , Humanos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/uso terapéutico , Especies Reactivas de Oxígeno
11.
Front Mol Neurosci ; 15: 890838, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935335

RESUMEN

Parkinson's disease (PD) is considered one of the health problems in the aging society. Due to the limitations of currently available drugs in preventing disease progression, the discovery of novel neuroprotective agents has been challenged. Sulfonamide and its derivatives were reported for several biological activities. Herein, a series of 17 bis-sulfonamide derivatives were initially tested for their neuroprotective potential and cytotoxicity against the 6-hydroxydopamine (6-OHDA)-induced neuronal death in SH-SY5Y cells. Subsequently, six compounds (i.e., 2, 4, 11, 14, 15, and 17) were selected for investigations on underlying mechanisms. The data demonstrated that the pretreatment of selected compounds (5 µM) can significantly restore the level of cell viability, protect against mitochondrial membrane dysfunction, decrease the activity of lactate dehydrogenase (LDH), decrease the intracellular oxidative stress, and enhance the activity of NAD-dependent deacetylase sirtuin-1 (SIRT1). Molecular docking was also performed to support that these compounds could act as SIRT1 activators. In addition, in silico pharmacokinetic and toxicity profile prediction was also conducted for guiding the potential development. Thus, the six neuroprotective bis-sulfonamides were highlighted as potential agents to be further developed for PD management.

12.
Front Nutr ; 8: 648995, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055852

RESUMEN

Background: Accumulating studies have confirmed that oxidative stress leads to the death of neuronal cells and is associated with the progression of neurodegenerative diseases, including Alzheimer's disease (AD). Despite the compelling evidence, there is a drawback to the use of the antioxidant approach for AD treatment, partly due to limited blood-brain barrier (BBB) permeability. Phytosterol is known to exhibit BBB penetration and exerts various bioactivities such as antioxidant and anticancer effects, and displays a potential treatment for dyslipidemia, cardiovascular disease, and dementia. Objective: In this study, the protective effects of stigmasterol, a phytosterol compound, on cell death induced by hydrogen peroxide (H2O2) were examined in vitro using human neuronal cells (SH-SY5Y cells). Methods: MTT assay, reactive oxygen species measurement, mitochondrial membrane potential assay, apoptotic cell measurement, and protein expression profiles were performed to determine the neuroprotective properties of stigmasterol. Results: H2O2 exposure significantly increased the levels of reactive oxygen species (ROS) within the cells thereby inducing apoptosis. On the contrary, pretreatment with stigmasterol maintained ROS levels inside the cells and prevented oxidative stress-induced cell death. It was found that pre-incubation with stigmasterol also facilitated the upregulation of forkhead box O (FoxO) 3a, catalase, and anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in the neurons. In addition, the expression levels of sirtuin 1 (SIRT1) were also increased while acetylated lysine levels were decreased, indicating that SIRT1 activity was stimulated by stigmasterol, and the result was comparable with the known SIRT1 activator, resveratrol. Conclusion: Taken together, these results suggest that stigmasterol could be potentially useful to alleviate neurodegeneration induced by oxidative stress.

13.
Front Nutr ; 8: 714463, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155508

RESUMEN

BACKGROUND: alpha-Mangostin, a polyphenolic xanthone, is primarily found in the pericarp of mangosteen throughout Southeast Asia and is considered as the "Queen of Fruit" in Thailand. Nonetheless, it is not clarified how alpha-mangostin protects neuronal cells against oxidative stress. OBJECTIVE: In this study, molecular mechanisms underlying the neuroprotective effect of alpha-mangostin in defending hydrogen peroxide (H2O2)-induced neurotoxicity was explored. METHODS: cytotoxicity, reactive oxygen species (ROS) generation, apoptotic cascades, and protein expression profiles were performed incorporation of molecular docking. RESULTS: Human SH-SY5Y cells were pretreated with 1 µM alpha-mangostin for 3 h prior to exposure to 400 µM H2O2. alpha-Mangostin significantly inhibited oxidative stress-induced cell death in neuronal cells by reducing BAX protein, decreasing caspase-3/7 activation, and increasing anti-apoptotic BCL-2 protein. Collectively, alpha-mangostin was demonstrated to be a prominent ROS suppressor which reversed the reduction of antioxidant enzymes (CAT and SOD2). Surprisingly, alpha-mangostin significantly promoted the expression of the sirtuin family and the FOXO3a transcription factor exerting beneficial effects on cell survival and longevity. A molecular docking study predicted that alpha-mangostin is directly bound to the active site of SIRT1. CONCLUSION: Findings from this study suggest that alpha-mangostin potentially serves as a promising therapeutic compound against oxidative stress by activation of the SIRT1/3-FOXO3a pathway comparable to the effect of memantine, an anti-AD drug used for the treatment of moderate to severe dementia.

14.
Neurochem Int ; 148: 105083, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34052298

RESUMEN

Chronic stress is a risk factor for the development of psychiatric illnesses through impairment of the ability to appropriately regulate physiological and behavioral responses, but the molecular events that lead to damage of hippocampal neurons remain unclear. The medicinal herb Spilanthes acmella Murr. has been used as a traditional medicine for various diseases and its extracts exhibit antioxidant activity. The present study explored the molecular signals of mitochondrial dynamics and investigated the beneficial effects of S. acmella Murr. An ethyl acetate extract of this plant was used to assess mitochondrial dynamics in response to chronic restraint stress (CRS) in male Sprague-Dawley rats. The results demonstrated that the S. acmella Murr. extract reduced the expression of mitochondrial fission protein but induced HSP60, MnSOD and ATPsynthase in the hippocampus of the CRS rats. In addition, S. acmella Murr. extract reversed depressive symptoms in the forced swim test. Our findings suggested that S. acmella Murr. extract provides a potential treatment of chronic stress, and that the mechanism is associated with the alleviation of neuronal injury and maintenance of mitochondrial function.


Asunto(s)
Asteraceae/química , Mitocondrias/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Animales , Antioxidantes , Conducta Animal/efectos de los fármacos , Chaperonina 60/biosíntesis , Chaperonina 60/genética , Enfermedad Crónica , Cognición/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/psicología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Plantas Medicinales , Ratas , Ratas Sprague-Dawley , Restricción Física
15.
J Pineal Res ; 48(2): 94-101, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20050990

RESUMEN

Methamphetamine (METH) is a potent psychostimulant drug that may cause neuronal cell degeneration. The underlying mechanisms of METH-induced neuronal toxicity remains poorly understood. In this study, we investigated an important role of calpain-dependent cascades in methamphetamine-induced toxicity in human dopaminergic neuroblastoma SH-SY5Y cultured cell lines. In addition, the protective effect of melatonin against METH-induced calpain-dependent death pathway was also investigated. The results of this study show that METH significantly decreased cell viability and tyrosine hydroxylase phosphorylation in SH-SY5Y cultured cells. Melatonin reversed the toxic effect of METH by inducing cell viability. In addition, melatonin was able to restore the reduction in mitochondrial function and phosphorylation of tyrosine hydroxylase in SH-SY5Y treated cells. An induction of calpain expression and activity but a reduction of calpain inhibitor (calpastatin) protein levels were observed in SH-SY5Y cells treated with METH but these effects were diminished by melatonin. These results implicated calpain-dependent death pathways in the processes of METH-induced toxicity and also indicated that melatonin has the capacity to reverse this toxic effect in SH-SY5Y cultured cells.


Asunto(s)
Calpaína/metabolismo , Metanfetamina/farmacología , Neuroblastoma/metabolismo , Proteínas de Unión al Calcio/biosíntesis , Calpaína/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Melatonina/farmacología , Metanfetamina/antagonistas & inhibidores
16.
J Pharm Biomed Anal ; 178: 112925, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31669910

RESUMEN

The measurement of cortisol (stress hormone) is important for diagnosis and monitoring of stress-related diseases. A paper-based immunosensor with a competitive assay was developed for quick and easy detection of cortisol levels in serum. The paper-based sensor was fabricated using a simple and cheap wax printing method. Cortisol conjugated-BSA was immobilized on the paper's surface in the detection zone for the competitive immunoassay. Anti-cortisol mAb-conjugated gold nanoparticles, as signal indicator, were used to detect cortisol in the sample. A 2-step procedure included applying the sample and washing for cortisol determination. The results showed that the device had the ability to differentiate cortisol levels into three ranges: < 25 µg/dL, 25-50 µg/dL and > 50 µg/dL by visual detection. The limit of detection determined by an image processing program was 21.5 µg/dL. This assay was successfully developed to detect cortisol in serum, and showed good recovery and precision. Our results correlated well with those obtained using an electrochemiluminescence method. This paper-based immunosensor provided a rapid and simple screening test for serum cortisol detection.


Asunto(s)
Bioensayo/métodos , Técnicas Biosensibles/métodos , Hidrocortisona/química , Inmunoensayo/métodos , Adulto , Técnicas Electroquímicas/métodos , Femenino , Oro/química , Humanos , Límite de Detección , Masculino , Nanopartículas del Metal/química , Adulto Joven
17.
J Chem Neuroanat ; 106: 101793, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32348875

RESUMEN

The interaction between the activation of protein phosphatase, calcineurin (CaN), and the dephosphorylation and nuclear translocation of nuclear factor of activated T-cells (NFAT), a transcriptional factor in the immune system, has attracted interest as a key factor responsible for the cell death process. In this study, the effects of melatonin on the interaction between CaN and NFAT signaling during oxidative stress-induced cell death were investigated. Human neuroblastoma SH-SY5Y cells were treated with the non-radical reactive oxygen species hydrogen peroxide (H2O2). Cells were treated with 200 µM H2O2 for the indicated time. Some H2O2-treated cells were pretreated with melatonin for 1 h. Control cells were treated with the same concentration of ethanol used to dilute melatonin. H2O2-induced cell death promoted increases in reactive oxygen species (ROS) production and the nuclear translocation of NFAT, which were related to increased levels the active, cleaved form of CaN (32.5 kDa). In addition, pretreatment of H2O2-treated cells with melatonin decreased cell death, ROS production, the levels of the active-cleaved form of CaN and the nuclear translocation of NFAT. Based on these findings, melatonin may exert its neuroprotective effects on oxidative damage-induced cell death by inhibiting CaN-activated the nuclear translocation of NFAT.


Asunto(s)
Antioxidantes/farmacología , Calcineurina/metabolismo , Muerte Celular/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Melatonina/farmacología , Factores de Transcripción NFATC/metabolismo , Estrés Oxidativo/efectos de los fármacos , Línea Celular Tumoral , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
18.
RSC Adv ; 10(28): 16593-16606, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35498835

RESUMEN

Neuronal cell death is a key feature of neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Plant polyphenols, namely butein, isoliquiritigenin, and scopoletin, have been shown to exhibit various biological activities including anti-inflammatory, antimicrobial, and antioxidant activities. Herein, butein, isoliquiritigenin, and scopoletin were explored for their neuroprotective properties against oxidative stress-induced human dopaminergic SH-SY5Y cell death. The cells exposed to hydrogen peroxide (H2O2) revealed a reduction in cell viability and increases in apoptosis and levels of reactive oxygen species (ROS). Interestingly, pretreatment of SH-SY5Y cells with 5 µM of butein, isoliquiritigenin, or scopoletin protected against the cell death induced by H2O2, and decreased the levels of apoptotic cells and ROS. In addition, the levels of SIRT1, FoxO3a, ADAM10, BCL-2, and antioxidant enzymes (catalase and SOD2) were maintained in the cells pretreated with butein, isoliquiritigenin, or scopoletin before H2O2 treatment compared to cells without pretreatment and the reference (resveratrol). Molecular docking analysis revealed that the interactions between the activator-binding sites of SIRT1 and the phenolic compounds were similar to those of resveratrol. Taken together, the data suggest that these polyphenolic compounds could be potential candidates for prevention and/or treatment of neurodegeneration.

19.
Neurochem Int ; 124: 82-93, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30593827

RESUMEN

Melatonin, a highly lipophilic molecule secreted by the pineal gland in the brain, plays a role in various biological functions. Previous studies reported that melatonin exerts its effect on mesenchymal stem cell (MSC) survival and differentiation into osteogenic- and adipogenic-lineage. However, the effect of melatonin in neurogenic differentiation in amniotic fluid (AF)-MSCs remains to be explored, thus we investigated the potential role of melatonin on dopaminergic neuron differentiation in AF-MSCs. The results showed that various concentrations of melatonin did not affect cell viability and proliferative effects of AF-MSCs. Increases in the levels of neuronal protein marker (ßIII-tubulin) and dopaminergic neuronal markers (tyrosine hydroxylase, TH and NURR1), but decrease in the level of glial fibrillary acidic protein (GFAP), were observed in melatonin-treated AF-MSCs. Melatonin induced alteration in differential expression patterns of mesenchymal stem cell antigens by reducing CD29, CD45, CD73, CD90 and CD105, but no changing CD34 expressing cells. AF-MSCs were sequentially induced in neurobasal medium containing standard inducing cocktails (ST: bFGF, SHH, FGF8, BDNF), 1 µM melatonin, or a combination of ST and melatonin. The levels of TUJ1, TH, MAP2, NURR1 and dopamine transporter (DAT) were significantly increased in all treated groups when compared with control-untreated cells. Pretreated AF-MSCs with non-selective MT1/MT2 receptors antagonist, luzindole and selective MT2 receptor antagonist, 4-P-PDOT diminished melatonin-induced increase in dopaminergic neuronal markers and phosphorylated ERK but did not diminish increase in phosphorylated CaMKII by melatonin. Pretreatment with mitogen-activated protein kinase (MEK) inhibitor, PD98059 and CaMKII inhibitor, KN-93 were able to abolish increase in the levels of dopaminergic markers in melatonin-treated AF-MSCs. These findings suggest that melatonin promotes dopaminergic neuronal differentiation of AF-MSCs possibly via the induction in ERK and CaMKII pathways through melatonin receptor-dependent and -independent mechanisms, respectively.


Asunto(s)
Líquido Amniótico/citología , Líquido Amniótico/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Melatonina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Líquido Amniótico/fisiología , Antioxidantes/farmacología , Diferenciación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Neuronas Dopaminérgicas/fisiología , Femenino , Humanos , Células Madre Mesenquimatosas/fisiología , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Embarazo
20.
EXCLI J ; 17: 1198-1209, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30713483

RESUMEN

Cortisol is known as a stress biomarker. The measurement of cortisol levels is an early warning indicator for health conditions and diagnosis of stress-related diseases. Herein, a lateral flow immunoassay using a gold nanoparticle label with a silver enhancement system was developed for the simple, sensitive and rapid detection of cortisol. The developed assay was based on a competitive platform of which cortisol-BSA conjugate was immobilized at the test zone to compete with an analyte. The quantitative analysis was performed using gold nanoparticles (AuNPs) as signal labeling. Sequentially, the silver enhancement solution was applied in order to enhance the sensitivity of the assay with the results easily seen by the naked eye. Using this system, the limit of detection (LOD) was found to be 0.5 ng/mL with a 3.6 fold more sensitive detection than without the enhancement system (LOD = 1.8 ng/mL). The salivary cortisol analysis was in the range of 0.5-150 ng/mL (R2 = 0.9984), which is in the clinical acceptable range. For the semi-quantitative analysis, the intensity color of the results was analyzed using an image processing program. The proposed method was successfully applied to detect cortisol in saliva. In addition, the results from our method also complied with the ones of those obtained by using the commercial enzyme-linked immunosorbent assay (ELISA). This developed assay offers great promise for a non-invasive screening test of salivary cortisol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA