Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(5): 1629-1634, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38286028

RESUMEN

Spontaneous fluorescence rates of single-molecule emitters are typically on the order of nanoseconds. However, coupling them with plasmonic nanostructures can substantially increase their fluorescence yields. The confinement between a tip and sample in a scanning tunneling microscope creates a tunable nanocavity, an ideal platform for exploring the yields and excitation decay rates of single-molecule emitters, depending on their coupling strength to the nanocavity. With such a setup, we determine the excitation lifetimes from the direct time-resolved measurements of phthalocyanine fluorescence decays, decoupled from the metal substrates by ultrathin NaCl layers. We find that when the tip is approached to single molecules, their lifetimes are reduced to the picosecond range due to the effect of coupling with the tip-sample nanocavity. On the other hand, ensembles of the adsorbed molecules measured without the nanocavity manifest nanosecond-range lifetimes. This approach overcomes the drawbacks associated with the estimation of lifetimes for single molecules from their respective emission line widths.

2.
Nano Lett ; 19(12): 8605-8611, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31738569

RESUMEN

We investigate electroluminescence of single molecular emitters on NaCl on Ag(111) and Au(111) with submolecular resolution in a low-temperature scanning probe microscope with tunneling current, atomic force, and light detection capabilities. The role of the tip state is studied in the photon maps of a prototypical emitter, zinc phthalocyanine (ZnPc), using metal and CO-metal tips. CO-functionalization is found to have an impact on the resolution and contrast of the photon maps due to the localized overlap of the p-orbitals on the tip with the molecular orbitals of the emitter. The possibility of using the same CO-functionalized tip for tip-enhanced photon detection and high resolution atomic force is demonstrated. We study the electroluminescence of ZnPc, induced by charge carrier injection at sufficiently high bias voltages. We propose that the distinct level alignment of the ZnPc frontier orbitals with the Au(111) and Ag(111) Fermi levels governs the primary excitation mechanisms as the injection of electrons and holes from the tip into the molecule, respectively. These findings put forward the importance of the tip status in the photon maps and contribute to a better understanding of the photophysics of organic molecules on surfaces.

3.
Molecules ; 25(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957742

RESUMEN

The effect of phase composition and morphology on high-temperature strength in the compression of Fe-Al-Si-based iron aluminides manufactured by casting was investigated. The structure and high-temperature strength in the compression of three alloys-Fe28Al5Si, Fe28Al5Si2Mo, and Fe28Al5Si2Ti-were studied. Long-term (at 800 °C for 100 h) annealing was performed for the achievement of structural stability. The phase composition and grain size of alloys were primarily described by means of scanning electron microscopy equipped with energy dispersive analysis and Electron Backscatter Diffraction (EBSD). The phase composition was verified by X-ray diffraction (XRD) analysis. The effect of Mo and Ti addition as well as the effect of long-term annealing on high-temperature yield stress in compression were investigated. Both additives-Mo and Ti-affected the yield stress values positively. Long-term annealing of Fe28Al5Si-X iron aluminide alloyed with Mo and Ti deteriorates yield stress values slightly due to grain coarsening.


Asunto(s)
Aleaciones/química , Aluminio/química , Calor , Hierro/química , Ensayo de Materiales , Fenómenos Mecánicos , Microscopía Electrónica de Rastreo , Molibdeno/química , Transición de Fase , Silicio/química , Titanio/química
4.
Angew Chem Int Ed Engl ; 58(8): 2266-2271, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30600888

RESUMEN

Chemical transformation of 9-azidophenanthrene on the Ag(111) surface was studied by nc-AFM in UHV. High-resolution imaging supported by first-principle calculations revealed the structure of the final products that originated from a common and elusive 9-phenanthryl nitrenoid intermediate chemisorbed on the Ag(111) surface. A formal nitrene insertion into the C-H bond along with its dimerisation and hydrogenation were identified as main reaction channels. Thus, the ability of aryl azides to form covalent σ- and π-bonds between their transformation products on a solid surface was demonstrated at a single-molecule level.

5.
J Am Chem Soc ; 140(3): 940-946, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29275621

RESUMEN

The converse piezoelectric effect is a phenomenon in which mechanical strain is generated in a material due to an applied electrical field. In this work, we demonstrate the converse piezoelectric effect in single heptahelicene-derived molecules on the Ag(111) surface using atomic force microscopy (AFM) and total energy density functional theory (DFT) calculations. The force-distance spectroscopy acquired over a wide range of bias voltages reveals a linear shift of the tip-sample distance at which the contact between the molecule and tip apex is established. We demonstrate that this effect is caused by the bias-induced deformation of the spring-like scaffold of the helical polyaromatic molecules. We attribute this effect to coupling of a soft vibrational mode of the molecular helix with a vertical electric dipole induced by molecule-substrate charge transfer. In addition, we also performed the same spectroscopic measurements on a more rigid o-carborane dithiol molecule on the Ag(111) surface. In this case, we identify a weaker linear electromechanical response, which underpins the importance of the helical scaffold on the observed piezoelectric response.

6.
Angew Chem Int Ed Engl ; 57(28): 8582-8586, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29931817

RESUMEN

On-surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on-surface chemistry route has now been used to synthesize the strong electron-acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para-aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface-molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo-character at the nitrogen sites.

7.
Phys Rev Lett ; 119(16): 166001, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29099201

RESUMEN

Here we show scanning tunneling microscopy (STM), noncontact atomic force microscopy (AFM), and inelastic electron tunneling spectroscopy (IETS) measurements on an organic molecule with a CO-terminated tip at 5 K. The high-resolution contrast observed simultaneously in all channels unambiguously demonstrates the common imaging mechanism in STM/AFM/IETS, related to the lateral bending of the CO-functionalized tip. The IETS spectroscopy reveals that the submolecular contrast at 5 K consists of both renormalization of vibrational frequency and variation of the amplitude of the IETS signal. This finding is also corroborated by first principles simulations. We extend accordingly the probe-particle AFM/STM/IETS model to include these two main ingredients necessary to reproduce the high-resolution IETS contrast. We also employ the first principles simulations to get more insight into a different response of frustrated translation and rotational modes of the CO tip during imaging.

8.
Small ; 11(30): 3686-93, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25940994

RESUMEN

A single atomic manipulation on the delta-doped B:Si(111)-(√3x√3)R30° surface using a low temperature dynamic atomic force microscopy based on the Kolibri sensor is investigated. Through a controlled vertical displacement of the probe, a single Si adatom in order to open a vacancy is removed. It is shown that this process is completely reversible, by accurately placing a Si atom back into the vacancy site. In addition, density functional theory simulations are carried out to understand the underlying mechanism of the atomic manipulation in detail. This process also rearranges the atoms at the tip apex, which can be effectively sharpened in this way. Such sharper tips allow for a deeper look into the Si adatom vacancy site. Namely, high-resolution images of the vacancy showing subsurface Si dangling bond triplets, which surround the substitutional B dopant atom in the first bilayer, are achieved.

9.
Inhal Toxicol ; 26(7): 419-25, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24862976

RESUMEN

OBJECTIVE: The study was designed to determine whether smoking affects CT score, bacterial colonization of the upper airways and distribution of inflammatory cells in nasal mucosa in patients with chronic rhinosinusitis. MATERIAL AND METHODS: Sixty-four patients were enrolled in the prospective study. We characterized differences in CT score, rate of revision surgery, differences in bacterial colonization in the middle nasal meatus and distribution of inflammatory cells in nasal tissue in smoking and non-smoking patients with chronic rhinosinusitis with nasal polyps (CRSwNP), chronic rhinosinusitis without nasal polyps (CRSsNP) and control group. RESULTS: Direct tobacco use was associated with significantly more severe form of the disease according to the preoperative CT investigation of paranasal sinuses using Lund-Mackay scoring system in both CRSwNP (p = 0.035) and CRSsNP (p = 0.023) groups. More intense colonization of upper-respiratory tract by the pathogenic bacteria in smokers compared to non-smokers was found. Non-pathogenic bacterial flora was more often present in non-smokers compared to smokers. Plasma cells and lymphocytes were the most numerous cells in nasal tissue in all three groups. In smokers with presence of pathogenic bacteria in middle nasal meatus there was stronger neutrophil (p = 0.002) and macrophage infiltration (p = 0.044) in CRSsNP group. CONCLUSION: Tobacco smoke exposure is related to higher Lund-Mackay score, increased colonization by pathogenic bacteria and lower incidence of commensals in middle nasal meatus, but does not influence cell distribution in nasal mucosa in patients with chronic rhinosinusitis.


Asunto(s)
Infecciones Bacterianas/inmunología , Inmunidad Innata , Mucosa Nasal/inmunología , Infecciones del Sistema Respiratorio/inmunología , Rinitis/inmunología , Sinusitis/inmunología , Fumar/efectos adversos , Adulto , Anciano , Infecciones Bacterianas/microbiología , Endoscopía , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/aislamiento & purificación , Bacterias Grampositivas/patogenicidad , Hospitales Universitarios , Humanos , Persona de Mediana Edad , Cavidad Nasal/diagnóstico por imagen , Cavidad Nasal/inmunología , Cavidad Nasal/microbiología , Cavidad Nasal/cirugía , Mucosa Nasal/diagnóstico por imagen , Mucosa Nasal/microbiología , Mucosa Nasal/cirugía , Senos Paranasales/diagnóstico por imagen , Senos Paranasales/inmunología , Senos Paranasales/microbiología , Senos Paranasales/cirugía , Estudios Prospectivos , Reoperación , Infecciones del Sistema Respiratorio/microbiología , Rinitis/diagnóstico por imagen , Rinitis/microbiología , Rinitis/cirugía , Sinusitis/diagnóstico por imagen , Sinusitis/microbiología , Sinusitis/cirugía , Eslovaquia , Tomografía Computarizada por Rayos X , Virulencia , Adulto Joven
10.
ACS Nano ; 18(13): 9576-9583, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38518264

RESUMEN

Precise control of multiple spin states on the atomic scale presents a promising avenue for designing and realizing magnetic switches. Despite substantial progress in recent decades, the challenge of achieving control over multiconfigurational reversible switches in low-dimensional nanostructures persists. Our work demonstrates multiple, fully reversible plasmon-driven spin-crossover switches in a single π-d metal-organic chain suspended between two electrodes. The plasmonic nanocavity stimulated by external visible light allows for reversible spin crossover between low- and high-spin states of different cobalt centers within the chain. We show that the distinct spin configurations remain stable for minutes under cryogenic conditions and can be nonperturbatively detected by conductance measurements. This multiconfigurational plasmon-driven spin-crossover demonstration extends the available toolset for designing optoelectrical molecular devices based on SCO compounds.

11.
ACS Nano ; 18(20): 13164-13170, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38711331

RESUMEN

Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecting spin states in open-shell molecular configurations is yet unexplored. Here, we use the tip of a scanning probe microscope to lift a perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecule from a metal surface to bring it into an open-shell spin one-half anionic state. We reveal a correlation between the appearance of a Kondo resonance in differential conductance spectroscopy and concurrent characteristic changes captured by the TERS measurements. Through a detailed investigation of various adsorbed and tip-contacted PTCDA scenarios, we infer that the Raman scattering on suspended PTCDA is resonant with a higher excited state. Theoretical simulation of the vibrational spectra enables a precise assignment of the individual TERS peaks to high-symmetry Ag modes, including the fingerprints of the observed spin state. These findings highlight the potential of TERS in capturing complex interactions between charge, spin, and photophysical properties in nanoscale molecular systems and suggest a pathway for designing single-molecule spin-optical devices.

12.
Materials (Basel) ; 16(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895764

RESUMEN

Diffusion bonding has many advantages, but it also has its specifics. When creating heterogeneous joints, problems arise with the creation of intermetallic phases. For this reason, an interlayer is needed to prevent the creation of these unfavorable phases. It is important to ensure that the interlayer is of sufficient thickness to prevent the elements from diffusing through the entire interlayer and the intermetallic phases from being formed again. Conversely, too thick an interlayer causes an increase in the heterogeneity of the bond properties. The creation of the initial diffusion bonds in a heterogeneous diffusion joint of AISI 304 and AISI 316L steel with a 0.2 mm thick nickel interlayer was made in a Gleeble 3500. The experiments to determine the diffusion kinetics were carried out in a vacuum furnace, with subsequent evaluation by EDX (Energy Dispersive X-ray Spectroscopy) analysis. Subsequently, the diffusion coefficients of nickel into both steels were determined, and generalized equations were formulated to calculate the diffusion coefficients for temperatures in the range of 950 to 1150 °C and holding times in the range of 3600 to 18,000 s. Equations are also given to determine the width of the diffused zone between each steel and the Ni interlayer.

13.
Materials (Basel) ; 16(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570086

RESUMEN

The nickel-iron-based alloy Inconel 718 is a progressive material with very good mechanical properties at elevated and lower temperatures. It is used both as wrought and cast alloys as well as material for additive manufacturing technologies. This is the reason why it has received so much attention, as supported by numerous publications. However, these are almost exclusively focused on a specific type of production and processing, and thus only report differences in the mechanical properties between samples prepared by different technologies. Therefore, the major aim of this research was to show how the structure and mechanical properties differ between samples produced by conventional production (wrought alloy) and additively manufactured SLM (Selective Laser Melting). It is shown that by applying appropriate heat treatment, similar strength properties at room and elevated temperatures can be achieved for SLM samples as for wrought samples. In addition, the mechanical properties are also tested up to a temperature of 900 °C, in contrast to the results published so far. Furthermore, it is proven that the microstructures of the wrought (here rolled) and SLM alloys differ significantly both in terms of grain shape and the size and distribution of precipitates.

14.
ACS Nano ; 17(16): 15441-15448, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37552585

RESUMEN

Emergent quantum phenomena in two-dimensional van der Waal (vdW) magnets are largely governed by the interplay between exchange and Coulomb interactions. The ability to precisely tune the Coulomb interaction enables the control of spin-correlated flat-band states, band gap, and unconventional magnetism in such strongly correlated materials. Here, we demonstrate a gate-tunable renormalization of spin-correlated flat-band states and bandgap in magnetic chromium tribromide (CrBr3) monolayers grown on graphene. Our gate-dependent scanning tunneling spectroscopy (STS) studies reveal that the interflat-band spacing and bandgap of CrBr3 can be continuously tuned by 120 and 240 meV, respectively, via electrostatic injection of carriers into the hybrid CrBr3/graphene system. This can be attributed to the self-screening of CrBr3 arising from the gate-induced carriers injected into CrBr3, which dominates over the weakened remote screening of the graphene substrate due to the decreased carrier density in graphene. Precise tuning of the spin-correlated flat-band states and bandgap in 2D magnets via electrostatic modulation of Coulomb interactions not only provides effective strategies for optimizing the spin transport channels but also may exert a crucial influence on the exchange energy and spin-wave gap, which could raise the critical temperature for magnetic order.

15.
Adv Sci (Weinh) ; 10(22): e2300223, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37199683

RESUMEN

Molecule-based functional devices may take advantage of surface-mediated spin state bistability. Whereas different spin states in conventional spin crossover complexes are only accessible at temperatures well below room temperature, and the lifetimes of the high-spin state are relatively short, a different behavior exhibited by prototypical nickel phthalocyanine is shown here. Direct interaction of the organometallic complex with a copper metal electrode mediates the coexistence of a high spin and a low spin state within the 2D molecular array. The spin state bistability is extremely non-volatile, since no external stimuli are required to preserve it. It originates from the surface-induced axial displacement of the functional nickel cores, which generates two stable local minima. Spin state unlocking and the full conversion to the low spin state are only possible by a high temperature stimulus. This spin state transition is accompanied by distinct changes in the molecular electronic structure that might facilitate the state readout at room temperature, as evidenced by valence spectroscopy. The non-volatility of the high spin state up to elevated temperatures and the controllable spin bistability render the system extremely intriguing for applications in molecule-based information storage devices.

16.
Materials (Basel) ; 15(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35806760

RESUMEN

High-strength steels are used more than general structural steel due to their combination of properties such as high strength, good toughness and weldability. They are mainly used in the manufacture of heavy vehicles for the mining industry, cranes, transportation, etc. However, welding these grades of steel brings new challenges. Also, a simulation for welding high-strength steel is required more often. To insert a material database into the simulation program, it is necessary to conduct investigations using CCT (Continuous Cooling Transformation) diagrams, welded joints research, and more. To investigate the behavior of S960MC steel during heating and cooling, we used dilatometry analysis supported by EBSD (Electron Backscatter Diffraction) analysis. A CCT diagram was constructed. The transformation temperatures of Ac1 and Ac3 increase with increasing heating rate. The Ac1 temperature increased by 54 °C and the Ac3 temperatures by 24 °C as the heating rate increased from 0.1 °C/s to 250 °C/s. The austenite decomposition temperatures have a decreasing trend in the cooling phase with increasing cooling rate. As the cooling rate changes from 0.03 °C/s to 100 °C/s, the initial transformation temperature drops from 813 °C to 465 °C. An increase in the cooling rate means a higher proportion of bainite and martensite. At the same time, the hardness increases from 119 HV10 to 362 HV10.

17.
Materials (Basel) ; 15(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36500036

RESUMEN

Fine-grained high-strength low-alloyed (HSLA) steels are used for their advantageous combination of mechanical properties such as high yield strength, tensile strength, ductility, and good formability. These properties are mainly based on applied grain boundary strengthening, which as the only strengthening mechanism allows for the yield strength to increase without a decrease in ductility. Therefore, any changes in grain size lead to irreversible changes in material properties. Such changes also occur during welding in the heat-affected zone (HAZ), where there is a significant change in austenitic grain. In coarse-grain HAZ, this leads to a decrease in yield strength, ductility, toughness, and fatigue strength. The paper experimentally determines the growth kinetics of austenitic grain for fine-grained HSLA steel S960MC. As a result, the values of the activation energy required for grain growth Q and the proportional constant K0 are determined. Knowing these values is important for numerical predictions of austenitic grain size in the HAZ. Based on these predictions, the changes in yield strength, ductility, toughness, and fatigue strength can be estimated.

18.
Materials (Basel) ; 15(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36295258

RESUMEN

The effect of boron addition into Fe-28Al-5Si-X (X = -, 2Mo, or 2Ti) on the structure and high-temperature yield stress was investigated. Generally, the alloying of binary Fe3Al-type iron aluminides by silicon significantly improves high-temperature mechanical properties by solid-solution strengthening. On the other hand, the workability and ductile properties at room or slightly elevated temperatures get worse with the increasing silicon content. Boron alloying together with titanium or molybdenum alloying is one of the ways to improve the workability of this type of alloy and, at the same time, ensure the formation of a sufficient amount of secondary phase particles required for effective strengthening. In this paper, the influence of 1 at. % of boron on high-temperature yield stress is evaluated in response to structural changes and compared with results obtained previously on the same type of alloy (Fe-28Al-5Si-2X, X= -, Mo, or Ti) but without boron alloying. It can be concluded that the network structure of borides of refractory metals formed due to boron alloying works more effectively for alloy hardening at higher temperatures than a mixture of silicides and carbides present in the boron-free alloy of the same composition.

19.
ACS Nano ; 16(1): 1082-1088, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34919384

RESUMEN

Entanglement of excitons holds great promise for the future of quantum computing, which would use individual molecular dyes as building blocks of their circuitry. Studying entangled excitonic eigenstates emerging in coupled molecular assemblies in the near-field with submolecular resolution has the potential to bring insight into the photophysics of these fascinating quantum phenomena. In contrast to far-field spectroscopies, near-field spectroscopic mapping permits direct identification of the individual eigenmodes, type of exciton coupling, including excited states otherwise inaccessible in the far field (dark states). Here we combine tip-enhanced spectromicroscopy with atomic force microscopy to inspect delocalized single-exciton states of charged molecular assemblies engineered from individual perylenetetracarboxylic dianhydride (PTCDA) molecules. Hyperspectral mapping of the eigenstates and comparison with calculated many-body optical transitions reveals a second low-lying excited state of the anion monomers and its role in the exciton entanglement within the assemblies. We demonstrate control over the exciton coupling by switching the assembly charge states. Our results reveal the possibility of tailoring excitonic properties of organic dye aggregates for advanced functionalities and establish the methodology to address them individually at the nanoscale.

20.
Nat Commun ; 13(1): 6008, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224183

RESUMEN

Interplay between motion of nuclei and excitations has an important role in molecular photophysics of natural and artificial structures. Here we provide a detailed analysis of coupling between quantized librational modes (librons) and charged excited states (trions) on single phthalocyanine dyes adsorbed on a surface. By means of tip-induced electroluminescence performed with a scanning probe microscope, we identify libronic signatures in spectra of chirally adsorbed phthalocyanines and find that these signatures are absent from spectra of symmetrically adsorbed species. We create a model of the libronic coupling based on the Franck-Condon principle to simulate the spectral features. Experimentally measured librational spectra match very well the theoretically calculated librational eigenenergies and peak intensities (Franck-Condon factors). Moreover, the comparison reveals an unexpected depopulation channel for the zero libron of the excited state that can be effectively controlled by tuning the size of the nanocavity. Our results showcase the possibility of characterizing the dynamics of molecules by their low-energy molecular modes using µeV-resolved tip-enhanced spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA