Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(5): e145-e167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482696

RESUMEN

BACKGROUND: New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS: Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS: Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS: Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.


Asunto(s)
Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-fos , Transcriptoma , Proteínas de Unión al GTP rho , Animales , Humanos , Ratones , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/genética , Fenotipo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Transducción de Señal , Análisis de la Célula Individual , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética
2.
FASEB J ; 37(1): e22715, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36527391

RESUMEN

The intersection of protein and lipid biology is of growing importance for understanding how cells address structural challenges during adhesion and migration. While protein complexes engaged with the cytoskeleton play a vital role, support from the phospholipid membrane is crucial for directing localization and assembly of key protein complexes. During angiogenesis, dramatic cellular remodeling is necessary for endothelial cells to shift from a stable monolayer to invasive structures. However, the molecular dynamics between lipids and proteins during endothelial invasion are not defined. Here, we utilized cell culture, immunofluorescence, and lipidomic analyses to identify a novel role for the membrane binding protein Annexin A2 (ANXA2) in modulating the composition of specific membrane lipids necessary for cortical F-actin organization and adherens junction stabilization. In the absence of ANXA2, there is disorganized cortical F-actin, reduced junctional Arp2, excess sprout initiation, and ultimately failed sprout maturation. Furthermore, we observed reduced filipin III labeling of membrane cholesterol in cells with reduced ANXA2, suggesting there is an alteration in phospholipid membrane dynamics. Lipidomic analyses revealed that 42 lipid species were altered with loss of ANXA2, including an accumulation of phosphatidylcholine (16:0_16:0). We found that supplementation of phosphatidylcholine (16:0_16:0) in wild-type endothelial cells mimicked the ANXA2 knock-down phenotype, indicating that ANXA2 regulated the phospholipid membrane upstream of Arp2 recruitment and organization of cortical F-actin. Altogether, these data indicate a novel role for ANXA2 in coordinating events at endothelial junctions needed to initiate sprouting and show that proper lipid modulation is a critical component of these events.


Asunto(s)
Anexina A2 , Anexina A2/genética , Anexina A2/metabolismo , Actinas/metabolismo , Fosfolípidos , Células Endoteliales/metabolismo , Fosfatidilcolinas
3.
Am J Physiol Heart Circ Physiol ; 325(2): H338-H345, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389954

RESUMEN

Rodent husbandry requires careful consideration of environmental factors that may impact colony performance and subsequent physiological studies. Of note, recent reports have suggested corncob bedding may affect a broad range of organ systems. As corncob bedding may contain digestible hemicelluloses, trace sugars, and fiber, we hypothesized that corncob bedding impacts overnight fasting blood glucose and murine vascular function. Here, we compared mice housed on corncob bedding, which were then fasted overnight on either corncob or ALPHA-dri bedding, a virgin paper pulp cellulose alternative. Male and female mice were used from two noninduced, endothelial-specific conditional knockout strains [Cadherin 5-cre/ERT2, floxed hemoglobin-α1 (Hba1fl/fl) or Cadherin 5-cre/ERT2, floxed cytochrome-B5 reductase 3 (CyB5R3fl/fl)] on a C57BL/6J genetic background. After fasting overnight, initial fasting blood glucose was measured, and mice were anesthetized with isoflurane for measurement of blood perfusion via laser speckle contrast analysis using a PeriMed PeriCam PSI NR system. After a 15-min equilibration, the mice were injected intraperitoneally with the α1-adrenergic receptor agonist, phenylephrine (5 mg/kg), or saline, and monitored for changes in blood perfusion. After a 15-min response period, blood glucose was remeasured postprocedure. In both strains, mice fasted on corncob bedding had higher blood glucose than the pulp cellulose group. In the CyB5R3fl/fl strain, mice housed on corncob bedding displayed a significant reduction in phenylephrine-mediated change in perfusion. In the Hba1fl/fl strain, phenylephrine-induced change in perfusion was not different in the corncob group. This work suggests that corncob bedding, in part due to its ingestion by mice, could impact vascular measurements and fasting blood glucose. To promote scientific rigor and improve reproducibility, bedding type should be routinely included in published methods.NEW & NOTEWORTHY This study demonstrates real-time measurement of changes in perfusion to pharmacological treatment using laser speckle contrast analysis. Furthermore, this investigation revealed that fasting mice overnight on corncob bedding has differential effects on vascular function and that there was increased fasting blood glucose in mice fasted on corncob bedding compared with paper pulp cellulose bedding. This highlights the impact that bedding type can have on outcomes in vascular and metabolic research and reinforces the need for thorough and robust reporting of animal husbandry practices.


Asunto(s)
Glucemia , Vivienda para Animales , Animales , Ratones , Masculino , Femenino , Hemoglobina Glucada , Reproducibilidad de los Resultados , Ratones Endogámicos C57BL , Celulosa , Ropa de Cama y Ropa Blanca , Ayuno
5.
J Vasc Res ; 60(2): 69-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37586339
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA